Extensive Games and the Sequence Form

Bernhard von Stengel

Department of Mathematics London School of Economics

- Linear programming and zero-sum games
- Extensive games
 - perfect recall and the sequence form
 - computing equilibria with the sequence form

Linear programming duality

Primal LP:

maximize $c^{\top}y$ subject to Ay < b,

y > 0.

Dual LP:

minimize $\mathbf{x}^{\top} \mathbf{b}$ subject to $\mathbf{x} > \mathbf{0}$, $\mathbf{x}^{\top} \mathbf{A} > \mathbf{c}^{\top}.$

Primal LP:

maximize $c^{\top}y$ subject to Ay < b, Dual LP:

 $\begin{array}{ll} \text{minimize } \mathbf{x}^{\top} \mathbf{b} \\ \text{subject to } \mathbf{x} &\geq \mathbf{0} \\ \mathbf{x}^{\top} \mathbf{A} \geq \mathbf{c}^{\top}. \end{array}$

Weak LP duality: For any feasible primal y, dual x :

y > 0.

 $\mathbf{c}^{\top}\mathbf{y} \leq \mathbf{x}^{\top}\mathbf{b}$

Primal LP:

Dual LP:

maximize $c^{\top}y$ minimize $x^{\top}b$ subject to $Ay \leq b$,subject to $x \geq 0$, $y \geq 0$. $x^{\top}A \geq c^{\top}$.

Weak LP duality: For any feasible primal y, dual x :

 $(\boldsymbol{c}^{\top})\boldsymbol{y} \leq (\boldsymbol{x}^{\top}\boldsymbol{A})\boldsymbol{y} = \boldsymbol{x}^{\top}(\boldsymbol{A}\boldsymbol{y}) \leq \boldsymbol{x}^{\top}(\boldsymbol{b})$

Primal LP:

Dual LP:

maximize $c^{\top}y$ minimize $x^{\top}b$ subject to $Ay \leq b$,subject to $x \geq 0$, $y \geq 0$. $x^{\top}A \geq c^{\top}$.

Weak LP duality: For any feasible primal y, dual x :

 $\mathbf{c}^{\top}\mathbf{y} \leq \mathbf{x}^{\top}\mathbf{b}$

So $c^{\top}y = x^{\top}b \Rightarrow y$ optimal for primal LP, x optimal for dual LP.

Primal LP:

Dual LP:

maximize $c^{\top}y$ minimize $x^{\top}b$ subject to $Ay \leq b$,subject to $x \geq 0$, $y \geq 0$. $x^{\top}A \geq c^{\top}$.

Weak LP duality: For any feasible primal y, dual x :

 $\mathbf{c}^{\top}\mathbf{y} \leq \mathbf{x}^{\top}\mathbf{b}$

So $\boldsymbol{c}^{\top}\boldsymbol{y} = \boldsymbol{x}^{\top}\boldsymbol{b} \Rightarrow \boldsymbol{y}$ optimal for primal LP, \boldsymbol{x} optimal for dual LP.

Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions y and x with $c^{\top}y = x^{\top}b$.

Primal LP:

Dual LP:

maximize $c^{\top}y$ minimize $x^{\top}b$ subject to $Ay \leq b$,subject to $x \geq 0$, $y \geq 0$. $x^{\top}A \geq c^{\top}$.

Weak LP duality: For any feasible primal y, dual x :

 $\mathbf{c}^{\top}\mathbf{y} \leq \mathbf{x}^{\top}\mathbf{b}$

So $\mathbf{c}^{\top}\mathbf{y} = \mathbf{x}^{\top}\mathbf{b} \Rightarrow \mathbf{y}$ optimal for primal LP, \mathbf{x} optimal for dual LP.

Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions y and x with $c^{\top}y \ge x^{\top}b$.

Tucker diagram

Primal LP: maximize $c^{\top}y$ subject to $Ay \le b$, $y \ge 0$. Dual LP: minimize $x^{\top}b$ subject to $x^{\top}A \ge c^{\top}$, $x \ge 0$.

Zero-sum game (A, -A) written as general LP

Minimizer: minimize u subject to $Ay \le 1u$, $y \in Y$. Maximizer: maximize v subject to $x^{\top}A \ge v1^{\top}$, $x \in X$.

Zero-sum game (A, -A) written as general LP

Minimizer: minimize u subject to $Ay \le 1u$, $y \in Y$. Maximizer: maximize v subject to $x^{\top}A \ge v1^{\top}$, $x \in X$.

Simpler LP with positive payoffs

 $\mathbf{x}^{\mathsf{T}}(\mathbf{A} + \mathbf{1}\alpha\mathbf{1}^{\mathsf{T}})\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \mathbf{x}^{\mathsf{T}}\mathbf{1}\alpha\mathbf{1}^{\mathsf{T}}\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \alpha$

Simpler LP with positive payoffs

 $\mathbf{x}^{\mathsf{T}}(\mathbf{A} + \mathbf{1}\alpha\mathbf{1}^{\mathsf{T}})\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \mathbf{x}^{\mathsf{T}}\mathbf{1}\alpha\mathbf{1}^{\mathsf{T}}\mathbf{y} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{y} + \alpha$ \Rightarrow w.l.o.g. **A** > **0**, min-max cost **u** > **0**, max-min payoff **v** > **0**, replace y by $y' = y\frac{1}{u}$, and x by $x' = x\frac{1}{v}$, **maximize** $\mathbf{1}^{\top}\mathbf{y'} (= \frac{1}{\mu})$ subject to $\mathbf{A}\mathbf{y'} < \mathbf{1}$, Minimizer: Maximizer: minimize $\mathbf{1}^{\top} \mathbf{x'} (= \frac{1}{\mathbf{v}})$ subject to $\mathbf{x'}^{\top} \mathbf{A} \ge \mathbf{1}^{\top}$ y' > 0**x'** > 0 Α \hookrightarrow min VI 1 →max

Extensive Games,

Sequence Form

Game tree (game in extensive form)

Strategic (or normal) form

Strategy of a player:

specifies a move for every information set of that player.

	a p s) ;	a p t	a q s	a q t	b p s	b p t	b q s	b q t	с р s	с р t	с q s	с q t	d p s	d p t	d q s	d q t
L, U, C	5	5	5	5	5	10	10	10	10	20	50	20	50	5	5	5	5
L, V, C	5	5	5	5	5	10	10	10	10	20	50	20	50	5	5	5	5
L, U, D	5	5	5	5	5	20	20	20	20	30	15	30	15	5	5	5	5
L, V, D	5	5	5	5	5	20	20	20	20	30	15	30	15	5	5	5	5
R , U , C	1	0	10	20	20	10	10	10	10	20	50	20	50	5	5	5	5
R , U , D	1	0	10	20	20	20	20	20	20	30	15	30	15	5	5	5	5
R , V , C	2	0	20	-5	-5	10	10	10	10	20	50	20	50	5	5	5	5
R , V , D	1(0	10	20	20	20	20	20	20	30	15	30	15	5	5	5	5

Reduced strategic form

Reduced strategy of a player:

specifies a move for every information set of that player, except for those information sets unreachable due to an **own** earlier move (where we write * instead of a move).

	a , p , *	a , q , *	b ,*,*	C, *, S	c, *, t	d ,*,*
L, *, C	5	5	10	20	50	5
L, *, D	5	5	20	30	15	5
R, U, C	10	20	10	20	50	5
R , U , D	10	20	20	30	15	5
R , V , C	15	-5	10	20	50	5
R , V , D	15	-5	20	30	15	5

Exponential blowup of strategic form

number of pure strategies typically exponential in number of information sets.

Example:

number of information sets = ℓ number of pure strategies = 2^{ℓ}

Example [Kuhn]: simplified poker game,

number of information sets = **13** number of pure strategies = **8192**

Exponential blowup of reduced strategic form

Example: Game with (1) bounded number of moves per node,(2) no subgames (otherwise simplify by solving subgames first).

This tree with *n* nodes: $\approx 2^{\sqrt{n}/2}$ strategies per player, reduced strategic form still (sub-)exponential in tree size.

Use behavior strategies

Behavior strategy = local randomization

Use behavior strategies

Behavior strategy = local randomization

Mixed strategy too redundant, use behavior strategy instead:

- only one variable per move: player 1 chooses *L* with probability *X_L* player 1 chooses *R* with probability *X_R*... player 2 chooses *a* with probability *Y_a*...
- expected payoff =

5 $Y_a X_L$ + 10 $Y_a X_R Y_p X_U$ + 15 $Y_a X_R Y_p X_V$ + ···

Use behavior strategies

Behavior strategy = local randomization

Mixed strategy too redundant, use behavior strategy instead:

- only one variable per move: player 1 chooses *L* with probability *X_L* player 1 chooses *R* with probability *X_R*... player 2 chooses *a* with probability *Y_a*...
- expected payoff = $5 Y_a X_L + 10 Y_a X_R Y_p X_U + 15 Y_a X_R Y_p X_V + \cdots$
- problem: nonlinear!

Variable transformation

For each **sequence** σ of moves of player 1 introduce new variable x_{σ}

• new variables replace products:

if $\sigma = PQRS$ then $x_{\sigma} = X_P X_Q X_R X_S$

• Example:

• expected payoff = $5 x_L y_a + 10 x_{RU} y_{ap} + 15 x_{RV} y_{ap} + \cdots$ is **linear** in variables of one player.

New paradigm: Sequences instead of pure strategies

Before:

pure strategy	i
probability	Xi
mixed strategy	X
characterized by	1⊤ <u>x</u> = 1
expected payoff	x ⊤A y

After:

sequence	σ
realization probability	X_{σ}
realization plan	X
characterized by	Ex = e
expected payoff	x ⊤A y

Realization plans

Realization plan $\mathbf{x} = (\mathbf{x}_{\emptyset}, \mathbf{x}_L, \mathbf{x}_R, \mathbf{x}_C, \mathbf{x}_D, \mathbf{x}_{RU}, \mathbf{x}_{RV})$

(= vector of realization probabilities) characterized by $\mathbf{x} \ge \mathbf{0}$ and **linear** equalities

$$x_{0} = 1$$

$$x_{0} = x_{L} + x_{R}$$

$$x_{0} = x_{C} + x_{D}$$

$$x_{R} = x_{RU} + x_{RV}$$

written as $E_{X} = e$ with

$$E = \begin{bmatrix} 1 & & & \\ -1 & 1 & 1 & & \\ -1 & & 1 & 1 & \\ & -1 & & 1 & 1 \end{bmatrix}, \qquad e = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

The sequence form

Payoff matrix A

	[Ø	а	b	С	d	ар	aq	bs	bt
Ø	ſ					5				
L			5							
R										
RU							10	20		
RV							15	-5		
C				10					20	50
D				20					30	15

expected payoff $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}$,

rows played with *x* columns played with *y* subject to $\boldsymbol{x} \geq \boldsymbol{0}, \quad \boldsymbol{E}\boldsymbol{x} = \boldsymbol{e},$

subject to $y \ge 0$, Fy = f.

How to play

Given: realization plan \mathbf{x} with $\mathbf{E}\mathbf{x} = \mathbf{e}$.

Move *L* is last move of **unique** sequence, say *PQL*, where $x_{PQL} + x_{PQR} = x_{PQ}$.

$$\Rightarrow \quad \text{behavior-probability}(L) = \frac{X_{PQL}}{X_{PQ}}$$

How to play

Given: realization plan \mathbf{x} with $\mathbf{E}\mathbf{x} = \mathbf{e}$.

Move *L* is last move of **unique** sequence, say *PQL*, where $x_{PQL} + x_{PQR} = x_{PQ}$.

$$\Rightarrow \quad \text{behavior-probability}(L) = \frac{X_{PQL}}{X_{PQ}}$$

Required assumption of **perfect recall** [Kuhn 1953, Selten 1975]: Each node in an information set is preceded by same sequence, here **PQ**, of the player's **own** earlier moves.

Solving the Sequence Form:

Constrained Games

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m \mid Ex = e, x \ge 0\}$

e.g. $\boldsymbol{E} = [1 \ 1 \cdots 1], \boldsymbol{e} = 1$: strategy simplex

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m \mid Ex = e, x \ge 0\}$

e.g. $\boldsymbol{E} = [1 \ 1 \cdots 1], \boldsymbol{e} = 1$: strategy simplex

Player 2's strategy set

 $Y = \{y \in \mathbb{R}^n \mid Fy = f, y \ge 0\}$

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m \mid Ex = e, x \ge 0\}$

e.g. $\boldsymbol{E} = [1 \ 1 \cdots 1], \boldsymbol{e} = 1$: strategy simplex

Player 2's strategy set

$$Y = \{y \in \mathbb{R}^n \mid Fy = f, y \ge 0\}$$

payoff matrices A, B, expected payoffs $\mathbf{x}^{\top} A \mathbf{y}, \mathbf{x}^{\top} B \mathbf{y}$ for $(\mathbf{x}, \mathbf{y}) \in \mathbf{X} \times \mathbf{Y}$.

x in X best response against y in Y: solves primal LP

maximize $\mathbf{x}^{\top}(A\mathbf{y})$ subject to $\mathbf{E}\mathbf{x} = \mathbf{e}$ $\mathbf{x} \ge \mathbf{0}$

x in X best response against y in Y: solves primal LP

maximize $\mathbf{x}^{\top}(\mathbf{A}\mathbf{y})$ subject to $\mathbf{E}\mathbf{x} = \mathbf{e}$ $\mathbf{x} \ge \mathbf{0}$

Dual LP (with same value, = best response payoff to player 1):

minimize $e^{\top} u$ subject to $E^{\top} u \ge Ay$

x in X best response against y in Y: solves primal LP

maximize $\mathbf{x}^{\top}(\mathbf{A}\mathbf{y})$ subject to $\mathbf{E}\mathbf{x} = \mathbf{e}$ $\mathbf{x} \ge \mathbf{0}$

Dual LP (with same value, = best response payoff to player 1):

minimize $e^{\top} u$ subject to $E^{\top} u \ge Ay$

x, *u* optimal \Leftrightarrow complementary slackness:

 $\mathbf{x}^{\top}(\mathbf{E}^{\top}\mathbf{u}-\mathbf{A}\mathbf{y})=\mathbf{0}$

 \boldsymbol{x} in \boldsymbol{X} best response against \boldsymbol{y} in \boldsymbol{Y} : solves primal LP

maximize $\mathbf{x}^{\top}(\mathbf{A}\mathbf{y})$ subject to $\mathbf{E}\mathbf{x} = \mathbf{e}$ $\mathbf{x} \ge \mathbf{0}$

Dual LP (with same value, = best response payoff to player 1):

minimize $e^{\top} u$ subject to $E^{\top} u \ge Ay$

x, *u* optimal \Leftrightarrow complementary slackness:

$$\mathbf{x}^{\top}(\mathbf{E}^{\top}\mathbf{u}-\mathbf{A}\mathbf{y})=\mathbf{0}$$

best-response condition (only pure best responses can have positive probability)

Constrained zero-sum games

[Charnes 1953] Let B = -A. For $y \in Y$, best-response payoff to player 1 = value of LP maximize $x^{\top}(Ay)$ subject to Ex = e $x \ge 0$ equals value of dual LP minimize $e^{\top}u$ subject to $E^{\top}u > Ay$

Constrained zero-sum games

[Charnes 1953] Let $\mathbf{B} = -\mathbf{A}$. For $\mathbf{v} \in \mathbf{Y}$, best-response payoff to player 1 = value of LP maximize $\mathbf{X}^{\top}(\mathbf{A}\mathbf{Y})$ subject to **Ex** = **e x** > 0 equals value of dual LP minimize $e^{\top}u$ subject to $E^{\top} u > Av$ which is also **minimized** by player 2 for $y \in Y$, i.e. as solution to minimize $e^{\top}u$ subject to $\mathbf{E}^{\top}\mathbf{u} - \mathbf{A}\mathbf{v} > \mathbf{0}$ Fv = f**v** > 0.

Example

1) Best-response LP $\max_{x} \quad x^{\top}(Ay)$ subject to Ex = e $x \ge 0$

2) dual LP min $e^{\top}u$ subject to $E^{\top}u > Ay$

1 0 0 → min

2) dual LP

 $\begin{array}{ll} \min_{u} & \boldsymbol{e}^{\top}\boldsymbol{u} \\ \text{subject to} & \boldsymbol{E}^{\top}\boldsymbol{u} \geq \boldsymbol{A}\boldsymbol{y} \end{array}$

1 0 0 → min

 $\begin{array}{ll} \underset{u, y}{\min} & e^{\top} u \\ \text{subject to} & E^{\top} u \geq Ay \\ & Fy = f \\ & y \geq 0 \end{array}$

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$e^{\top} u$$

subject to $E^{\top} u - Ay \ge 0$
 $Fy = f$
 $y \ge 0$

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$e^{\top}u$$

subject to $E^{\top}u - Ay \ge 0$
 $Fy = f$
 $y \ge 0$

Theorem [Koller / Megiddo / von Stengel 1996]

A non-zero-sum game is solved via an LCP of linear size. One equilibrium is found by Lemke's algorithm.

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$e^{\top}u$$

subject to $E^{\top}u - Ay \ge 0$
 $Fy = f$
 $y \ge 0$

Theorem [Koller / Megiddo / von Stengel 1996]

A non-zero-sum game is solved via an LCP of linear size. One equilibrium is found by Lemke's algorithm.

[von Stengel / Elzen / Talman, *Econometrica* 2002] This algorithm mimicks the **Harsanyi-Selten tracing procedure** and finds a normal-form perfect equilibrium. (Allows variation of **starting vector** or **prior**.)

LCP – Lemke's algorithm

Consider a prior $(\overline{x}, \overline{y})$, and a new variable z_0 in the system

Equilibrium condition $\mathbf{x}^{\top}\mathbf{r} = \mathbf{0}$, $\mathbf{y}^{\top}\mathbf{s} = \mathbf{0}$, $[\mathbf{z}_0 = \mathbf{0}]$.

Initial solution $z_0 = 1$, x = 0, y = 0.

Complementary pivoting:

 $\mathbf{x}_{\sigma} \leftrightarrow \mathbf{r}_{\sigma}, \mathbf{y}_{\tau} \leftrightarrow \mathbf{s}_{\tau}$, until \mathbf{z}_0 leaves the basis.