Extensive Games and the Sequence Form

Bernhard von Stengel

Department of Mathematics London School of Economics

- Linear programming and zero-sum games
- Extensive games
	- perfect recall and the sequence form
	- computing equilibria with the sequence form

Linear programming duality

Primal LP:

maximize *c* ⊤*y*

subject to $Ay \leq b$,

 $y > 0$.

Dual LP:

minimize *x* ⊤*b* subject to $x \geq 0$, *x* '*A* ≥ *c* '.

Primal LP: **maximize** *c* ⊤*y* subject to $Ay < b$, $y > 0$. Dual LP: **minimize** *x* ⊤*b* subject to $x > 0$, *x* '*A* ≥ *c* '.

Weak LP duality: For any **feasible** primal *y*, dual *x* :

c [⊤]*y* ≤ *x* ⊤*b*

Primal LP: **maximize** *c* ⊤*y* subject to $Ay \leq b$,

Dual LP:

minimize *x* ⊤*b* subject to $x \geq 0$, *x* '*A* ≥ *c* '.

Weak LP duality: For any **feasible** primal *y*, dual *x* :

 $y > 0$.

$$
(\boldsymbol{c}^\top)\boldsymbol{y} \leq (\boldsymbol{x}^\top\boldsymbol{A})\boldsymbol{y} = \boldsymbol{x}^\top(\boldsymbol{A}\boldsymbol{y}) \leq \boldsymbol{x}^\top(\boldsymbol{b})
$$

Primal LP: **maximize** *c* ⊤*y* subject to $Ay < b$, $y > 0$. Dual LP: **minimize** *x* ⊤*b* subject to $x > 0$, *x* '*A* ≥ *c* '.

Weak LP duality: For any **feasible** primal *y*, dual *x* :

c [⊤]*y* ≤ *x* ⊤*b*

So *c* ⊤*y* = *x* [⊤]*b* ⇒ *y* optimal for primal LP, *x* optimal for dual LP.

Primal LP:

Dual LP:

maximize *c* ⊤*y* subject to $A_V < b$, $y > 0$. **minimize** *x* ⊤*b* subject to $x > 0$, *x* '*A* ≥ *c* '.

Weak LP duality: For any **feasible** primal *y*, dual *x* :

c [⊤]*y* ≤ *x* ⊤*b*

So *c* ⊤*y* = *x* [⊤]*b* ⇒ *y* optimal for primal LP, *x* optimal for dual LP.

Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions *y* and *x* with *c* ⊤*y* = *x* ⊤*b*.

Primal LP:

Dual LP:

maximize *c* ⊤*y* subject to $A_V < b$, $y > 0$. **minimize** *x* ⊤*b* subject to $x > 0$, *x* '*A* ≥ *c* '.

Weak LP duality: For any **feasible** primal *y*, dual *x* :

c [⊤]*y* ≤ *x* ⊤*b*

So *c* ⊤*y* = *x* [⊤]*b* ⇒ *y* optimal for primal LP, *x* optimal for dual LP.

Strong LP duality: If both primal and dual LP are feasible, then they have (optimal) solutions *y* and *x* with *c* [⊤]*y* ≥ *x* ⊤*b*.

Tucker diagram

 $\text{Primal LP: } \textbf{maximize } \textbf{c} \cdot \textbf{y} \text{ subject to } \textbf{A} \textbf{y} \leq \textbf{b}, \textbf{y} \geq \textbf{0}.$ Dual LP: **minimize** x' *b* subject to x' *A* \geq *c*^{\perp}, $x \geq 0$.

Zero-sum game (*A*, −*A*) **written as general LP**

Minimizer: **minimize** *u* subject to $Ay \leq 1$ *u*, $y \in Y$. Maximizer: **maximize** *v* subject to *x* [⊤]*A* ≥ *v***1** [⊤], *x* ∈ *X*.

Zero-sum game (*A*, −*A*) **written as general LP**

Minimizer: **minimize** *u* subject to $Ay \leq 1$ *u*, $y \in Y$. Maximizer: **maximize** *v* subject to *x* [⊤]*A* ≥ *v***1** [⊤], *x* ∈ *X*.

Simpler LP with positive payoffs

x⁻(*A* + 1α1⁻)*y* = *x*⁻*Ay* + *x*⁻¹α1^{*y*} = *x*⁻*Ay* + α

Simpler LP with positive payoffs

x⁻(*A* + 1α1⁻)*y* = *x*⁻*Ay* + *x*⁻¹α1^{*y*} = *x*⁻*Ay* + α \Rightarrow w.l.o.g. $A > 0$, min-max cost $u > 0$, max-min payoff $v > 0$, replace **y** by $y' = y\frac{1}{y}$ $\frac{1}{u}$, and **x** by $x' = x \frac{1}{v}$ *v* , Minimizer: **maximize 1**[⊤]**y'** (= $\frac{1}{u}$) subject to **Ay'** ≤ **1**, Maximizer: **minimize** $\mathbf{1}^\top \mathbf{x}'$ (= $\frac{1}{\mathbf{v}}$) subject to $\mathbf{x}'^\top \mathbf{A} \geq \mathbf{1}^\top$ **1 1** · ··· <u>1</u> ∨ *A y* ′ ≥ **0** $x' \ge 0$ \vert A $\vert \le$ **1 1** . . . **1** →max \hookrightarrow min

Extensive Games,

Sequence Form

Game tree (game in extensive form)

Strategic (or normal) form

Strategy of a player:

specifies a move for **every** information set of that player.

Reduced strategic form

Reduced strategy of a player:

specifies a move for every information set of that player, **except** for those information sets unreachable due to an **own** earlier move (where we write ∗ instead of a move).

Exponential blowup of strategic form

number of pure strategies typically **exponential** in number of information sets.

number of information sets number of pure strategies $= 2^{\ell}$

 L_1 \setminus R_1 L_2 \setminus R_2 L_3 \setminus R_3 L_2 \setminus R_ℓ

 \mathbb{Z}

*c*ℓ

Example [Kuhn]: simplified poker game,

number of information sets $=$ 13 number of pure strategies $= 8192$

Exponential blowup of reduced strategic form

Example: Game with (1) **bounded** number of moves per node, (2) no **subgames** (otherwise simplify by solving subgames first).

This tree with *n* nodes: $\approx 2^{\sqrt{n}/2}$ strategies per player, reduced strategic form still (sub-)**exponential** in **tree** size.

Use behavior strategies

Behavior strategy = **local** randomization

Use behavior strategies

Behavior strategy = **local** randomization

Mixed strategy too redundant, use behavior strategy instead:

- only one variable per **move**: player 1 chooses *L* with probability *X^L* player 1 chooses *R* with probability *X^R* . . . player 2 chooses *a* with probability *Y^a* . . .
- expected payoff $=$

 $5 Y_a X_l + 10 Y_a X_R Y_p X_{ll} + 15 Y_a X_R Y_p X_{l} + \cdots$

Use behavior strategies

Behavior strategy = **local** randomization

Mixed strategy too redundant, use behavior strategy instead:

- only one variable per **move**: player 1 chooses *L* with probability *X^L* player 1 chooses *R* with probability *X^R* . . . player 2 chooses *a* with probability *Y^a* . . .
- expected payoff $=$ $5 Y_a X_i + 10 Y_a X_R Y_n X_{ii} + 15 Y_a X_R Y_n X_{i'} + \cdots$
- problem: **nonlinear**!

Variable transformation

For each **sequence** σ of moves of player 1 introduce new variable **x**_σ

• new variables replace products:

if $σ = PQRS$ then $x_σ = X_PX_QX_RX_S$

• Example:

 $x_l = X_l$ $X_{RU} = X_R X_{U}$. . . *y^a* = *Y^a* $y_{ab} = Y_a Y_b$. . .

• expected payoff = $5 x_L y_a + 10 x_R y_b + 15 x_R y_b + \cdots$ is **linear** in variables of one player.

New paradigm: Sequences instead of pure strategies

Before:

After:

Realization plans

Realization plan $x = (x_0, x_L, x_R, x_C, x_D, x_{RU}, x_{RV})$

(= vector of realization probabilities) characterized by $x > 0$ and **linear** equalities

$$
x_0 = 1
$$

\n
$$
x_0 = x_L + x_R
$$

\n
$$
x_0 = x_L + x_R
$$

\n
$$
x_R = x_C + x_D
$$

\n
$$
x_{RU} + x_{RV}
$$

written as $E x = e$ with

$$
E = \begin{bmatrix} 1 \\ -1 & 1 & 1 \\ -1 & & 1 & 1 \\ & & -1 & & 1 & 1 \end{bmatrix}, \qquad e = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

The sequence form

Payoff matrix *A*

expected payoff *x* ⊤*Ay*,

columns played with **y** subject to $y > 0$, $F y = f$.

rows played with **x** subject to $x > 0$, $Ex = e$,

How to play

.

Given: realization plan **x** with $E x = e$.

Move *L* is last move of **unique** sequence, say PQL , where $x_{PQL} + x_{PQR} = x_{PQ}$.

$$
\Rightarrow \quad \text{behavior-probability}(L) = \frac{x_{PQL}}{x_{PQ}}
$$

How to play

.

Given: realization plan **x** with $E x = e$.

Move *L* is last move of **unique** sequence, say PQL , where $x_{PQL} + x_{PQR} = x_{PQ}$.

$$
\Rightarrow \quad \text{behavior-probability}(L) = \frac{x_{PQL}}{x_{PQ}}
$$

Required assumption of **perfect recall** [Kuhn 1953, Selten 1975]: Each node in an information set is preceded by same sequence, here *PQ*, of the player's **own** earlier moves.

Solving the Sequence Form:

Constrained Games

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m | Ex = e, x \ge 0\}$

e.g. $E = [1 \ 1 \cdots 1], e = 1$: strategy **simplex**

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m | Ex = e, x \ge 0\}$

e.g. $E = [1 \cdot 1 \cdots 1]$, $e = 1$: strategy **simplex**

Player 2's strategy set

 $Y = \{ y \in \mathbb{R}^n \mid Fy = f, y \ge 0 \}$

Constrained games

Polyhedrally constrained game:

Player 1's strategy set

 $X = \{x \in \mathbb{R}^m | Ex = e, x \ge 0\}$

e.g. $E = [1 \cdot 1 \cdots 1]$, $e = 1$: strategy **simplex**

Player 2's strategy set

 $Y = \{ y \in \mathbb{R}^n \mid Fy = f, y \ge 0 \}$

payoff matrices *A*, *B*, expected payoffs *x* ⊤*Ay*, *x* [⊤]*By* for (*x*, *y*) ∈ *X* × *Y*.

x in *X* best response against *y* in *Y*: solves primal LP

maximize *x* ⊤(*Ay*) subject to $Ex = e$ *x* ≥ **0**

x in *X* best response against *y* in *Y*: solves primal LP

maximize *x* ⊤(*Ay*) subject to $Ex = e$ *x* ≥ **0**

Dual LP (with same value, $=$ best response payoff to player 1):

minimize *e* ⊤*u* subject to *E* [⊤]*u* ≥ *Ay*

x in *X* best response against *y* in *Y*: solves primal LP

maximize *x* ⊤(*Ay*) subject to $Ex = e$ *x* ≥ **0**

Dual LP (with same value, $=$ best response payoff to player 1):

minimize *e* ⊤*u* subject to *E* [⊤]*u* ≥ *Ay*

x, *u* optimal ⇔ complementary slackness:

$$
\mathbf{x}^\top(\mathbf{E}^\top \mathbf{u} - \mathbf{A}\mathbf{y}) = \mathbf{0}
$$

x in *X* best response against *y* in *Y*: solves primal LP

maximize *x* ⊤(*Ay*) subject to $Ex = e$ *x* ≥ **0**

Dual LP (with same value, $=$ best response payoff to player 1):

minimize *e* ⊤*u* subject to *E* [⊤]*u* ≥ *Ay*

x, *u* optimal ⇔ complementary slackness:

$$
\mathbf{x}^\top(\mathbf{E}^\top \mathbf{u} - \mathbf{A} \mathbf{y}) = 0
$$

= best-response condition (only pure best responses can have positive probability)

Constrained zero-sum games

[Charnes 1953] Let *B* = −*A*. For $v \in Y$, best-response payoff to player 1 = value of LP maximize *x* ⊤(*Ay*) subject to $E x = e$ *x* ≥ **0** equals value of dual LP minimize *e* ⊤*u* subject to *E* [⊤]*u* ≥ *Ay*

Constrained zero-sum games

[Charnes 1953] Let *B* = −*A*. For $y \in Y$, best-response payoff to player 1 = value of LP maximize *x* ⊤(*Ay*) subject to $E x = e$ *x* ≥ **0** equals value of dual LP minimize *e* ⊤*u* subject to *E* [⊤]*u* ≥ *Ay* which is also **minimized** by player 2 for $y \in Y$, i.e. as solution to minimize *e* ⊤*u* subject to *E* [⊤]*u* − *Ay* ≥ **0** F **y** = f $y > 0$.

Example

1) Best-response LP max *x x* ⊤(*Ay*) subject to $Ex = e$ *x* ≥ **0**

x∅ **1**−**1**−**1 0 2** *xL* **1 2** ≥ **0** *xR* **1** *xC* **1 1** *xD* **1 0** $\overline{}$ ↓ **1 0 0** max

2) dual LP min *u e* ⊤*u*

subject to *E* [⊤]*u* ≥ *Ay*

1 0 0 \rightarrow min **2) dual LP**

min *u e* [⊤]*u* subject to *E* [⊤]*u* ≥ *Ay* *u***⁰** *u***¹** *u***²**

1 0 0 \rightarrow min

3) Treat
$$
y
$$
 as a variable:

min
\n*u, y*
\nsubject to
$$
E^{\top} u \ge Ay
$$

\n $Fy = f$
\n $y \ge 0$

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$
\mathbf{e}^{\top} \mathbf{u}
$$

subject to $\mathbf{E}^{\top} \mathbf{u} - \mathbf{A} \mathbf{y} \ge \mathbf{0}$
 $\mathbf{F} \mathbf{y} = \mathbf{f}$
 $\mathbf{y} \ge \mathbf{0}$.

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$
\mathbf{e}^{\top} \mathbf{u}
$$

subject to $\mathbf{E}^{\top} \mathbf{u} - \mathbf{A} \mathbf{y} \ge \mathbf{0}$
 $\mathbf{F} \mathbf{y} = \mathbf{f}$
 $\mathbf{y} \ge \mathbf{0}$.

Theorem [Koller / Megiddo / von Stengel 1996]

A non-zero-sum game is solved via an LCP of linear size. One equilibrium is found by Lemke's algorithm.

Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996] A zero-sum game is solved via an LP of linear size:

minimize
$$
\mathbf{e}^{\top} \mathbf{u}
$$

subject to $\mathbf{E}^{\top} \mathbf{u} - \mathbf{A} \mathbf{y} \ge \mathbf{0}$
 $\mathbf{F} \mathbf{y} = \mathbf{f}$
 $\mathbf{y} \ge \mathbf{0}$.

Theorem [Koller / Megiddo / von Stengel 1996]

A non-zero-sum game is solved via an LCP of linear size. One equilibrium is found by Lemke's algorithm.

[von Stengel / Elzen / Talman, *Econometrica* 2002] This algorithm mimicks the **Harsanyi-Selten tracing procedure** and finds a normal-form perfect equilibrium. (Allows variation of **starting vector** or **prior**.)

LCP – Lemke's algorithm

Consider a **prior** (\bar{x}, \bar{v}) , and a new variable z_0 in the system

Equilibrium condition $x^{\dagger} r = 0$, $y^{\dagger} s = 0$, $[z_0 = 0]$.

Initial solution $z_0 = 1$, $x = 0$, $y = 0$.

Complementary pivoting:

 $x_{\sigma} \leftrightarrow r_{\sigma}$, $y_{\tau} \leftrightarrow s_{\tau}$, until z_{0} leaves the basis.