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Overview

e Linear programming and zero-sum games

o Extensive games
o perfect recall and the sequence form
o computing equilibria with the sequence form
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Linear programming duality
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Primal and dual linear programs

Primal LP: Dual LP:
maximize c'y minimize x'b
subjectto Ay < b, subjectto x >0,

y=>0. x"TA>c'.
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Primal and dual linear programs
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Tucker diagram

Primal LP: maximize c'y subjectto Ay < b, y >0.

Dual LP: minimize x"b subjectto xTA>c¢', x > 0.

y=>0

VI < min

c’ —max
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Zero-sum game (A, —A) written as |general

Minimizer: minimize u subjectto Ay <1u, yeY.

Maximizer: maximize v subjectto xTA> v1', x € X.

y>0, 1Ty =1
x=20 A <
x™ =1 -
VI < min

Vv Vv V |—max

LP
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Zero-sum game (A, —A) written as |general | LP

Minimizer: minimize u subjectto Ay <1u, yeY.

Maximizer: maximize v subjectto xTA> v1', x € X.

y=>0 u
—1 0
x>0 A <
—1 0
v —1 —1 (0|=|-1
VI Il < min
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Simpler LP with positive payoffs

x"(A+1a1T)y = x"Ay+x"al’y = x"Ay + o
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Simpler LP with positive payoffs

x"(A+1a1T)y = x"Ay+x"al’y = x"Ay + o
= w.l.o.g. A > 0, min-max cost u > 0, max-min payoff v > 0,
replace y by y’ = y1 and x by x’ = x1,
Minimizer:  maximize 1Ty’ (= 1) subjectto Ay’ <A1,
Maximizer: minimize 17x’ (= 1) subjectto x’TA>1T
y'>0

x>0 A

IN

VI < min
11 1 |- max
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Extensive Games,

Sequence Form
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Game tree (game in extensive form)

15

10 15 20 -5
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Strategic (or normal) form

Strategy of a player:

specifies a move for every information set of that player.

a a a a b b b b ¢ ¢ ¢ ¢ d d d d

P P 9 9 p p q9 q p p g9 qg p p qg q

s t s t s t s t s t s t s t s t
Lu,C 5 5 5 5 10 10 10 10 20 50 20 50 5 5 5 5
Lv,C 5 5 5 5 10 10 10 10 20 50 20 50 5 5 5 5
L,U,D 5 5 5 5 20 20 20 20 30 15 30 15 5 5 5 5
L,v,D 5 5 5 5 20 20 20 20 30 15 30 15 5 5 5 5
R, U,C 10 10 20 20 10 10 10 10 20 50 20 50 5 5 5 5
R,U,D 10 10 20 20 20 20 20 20 30 15 30 15 5 5 5 5
R, V,C 20 20 -5 -5 10 10 10 10 20 50 20 50 5 5 5 5
R,V,D 10 10 20 20 20 20 20 20 30 15 30 15 5 5 5 5
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Reduced strategic form

Reduced strategy of a player:

specifies a move for every information set of that player,
except for those information sets unreachable due to an own
earlier move (where we write * instead of a move).

a,p,* a,q,x b,xx Cyk, b d, k%

L,xC 5 5 10 20 50 5
LD 5 5 20 30 15 5
R.U,C|| 10 20 10 20 50 5

10 20 20 15 5
R,V,C| | 15 -5 10 20 50 5
R,V,D 15 -5 20 30 15 5
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Exponential blowup of strategic form

number of pure strategies typically
exponential in number of information sets.

Example:

number of information sets = ¢

number of pure strategies = 2°
Example [Kuhn]: simplified poker game,

number of infformation sets = 13

number of pure strategies = 8192
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Exponential blowup of reduced strategic form

Example: Game with (1) bounded number of moves per node,
(2) no subgames (otherwise simplify by solving subgames first).

This tree with n nodes: ~ 2v"/2 strategies per player,
reduced strategic form still (sub-)exponential in tree size.
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Use behavior strategies

Behavior strategy = local randomization

(ATT A)
VA
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Use behavior strategies

Behavior strategy = local randomization

(ATT A)
VA

Mixed strategy too redundant, use behavior strategy instead:

e only one variable per move:
player 1 chooses L with probability X;
player 1 chooses R with probability Xg . . .
player 2 chooses a with probability Y . . .

e expected payoff =
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Use behavior strategies

Behavior strategy = local randomization

(ATT A)
VA

Mixed strategy too redundant, use behavior strategy instead:

e only one variable per move:
player 1 chooses L with probability X;
player 1 chooses R with probability Xg . . .
player 2 chooses a with probability Y . . .

e expected payoff =

e problem: nonlinear!
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Variable transformation

For each sequence o of moves of player 1
introduce new variable x,

e new variables replace products:
if o = PQRS then x,=XpXqXgpXs

e Example:
X = X[_
Xpu = XgXu
YVa =Ya
Yap = Ya¥p

o expected payoff = 5x. ya+ 10 Xgy Vap + 15 Xgy Yap + - - -
is linear in variables of one player.
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Before:

After:

New paradigm: Sequences
instead of pure strategies

pure strategy
probability
mixed strategy
characterized by
expected payoff

sequence

i

Xj

X

1Tx =1
xT Ay

realization probability Xo

realization plan
characterized by
expected payoff
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Xp = 1
X +Xp = Xp
Xgu+Xpy =

aRU’ap = 10
10 15 20 -5 agy = 5
apup = 0
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Realization plans

Realization plan X = (X@, XL, XR, Xc, Xp, XRU, XRV)
(= vector of realization probabilities)
characterized by x > 0 and linear equalities

X@=1
Xp = XL+ Xgr
Xp = Xc + Xp

Xp = Xru + XRv

written as Ex = e with

O OO =
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The sequence form

Payoff matrix A

® a b ap aq bs bt

0

L 5

R

RU 10 20

RV 15 -5

Cc 10 20 50

D 20 30 15
expected payoff x " Ay,
rows played with x subjecttox > 0, Ex = e,

columns played with y  subjectto y > 0,

Fy=f.
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How to play

Given: realization plan x with Ex = e.

Move L is last move of unique sequence,
say PQL, where XpaL + Xpgr = Xpq.

XpaL

= behavior-probability(L) = x
PQ
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How to play

Given: realization plan x with Ex = e.

Move L is last move of unique sequence,

say PQL, where XpaL + Xpar = Xpq.
. . XpaL
= behavior-probability(L) = — .
Xpq

Required assumption of perfect recall
[Kuhn 1953, Selten 1975]:

Each node in an information set is
preceded by same sequence, here PQ,
of the player’'s own earlier moves.

23/39



Solving the Sequence Form:

Constrained Games
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Constrained games

Polyhedrally constrained game:
Player 1’s strategy set
X={xceR"|Ex=e, x>0}

eg. E=[11--.1], e = 1: strategy simplex
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Constrained games

Polyhedrally constrained game:
Player 1’s strategy set
X={xceR"|Ex=e, x>0}

eg. E=[11--.1], e = 1: strategy simplex

Player 2’s strategy set

Y={yeR"|Fy=fy>0}

payoff matrices A, B,

expected payoffs x T Ay, x " By for (x,y) € X x Y.
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Best responses in a constrained game

x in X best response against y in Y: solves primal LP

maximize  x T (Ay)
subjectto Ex = e
x>0
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Best responses in a constrained game

x in X best response against y in Y: solves primal LP

maximize  x T (Ay)
subjectto Ex = e
x>0

Dual LP (with same value, = best response payoff to player 1):

minimize e'u
subjectto ETu > Ay

x,uoptimal < complementary slackness:
x"(ETu—Ay)=0

= best-response condition (only pure best responses can have
positive probability)
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Constrained zero-sum games

[Charnes 1953] Let B = —A.
For y € Y, best-response payoff to player 1 = value of LP

maximize  x T (Ay)
subjectto Ex = e
x>0

equals value of dual LP
minimize e'u
subjectto ETu > Ay
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Constrained zero-sum games

[Charnes 1953] Let B = —A.
For y € Y, best-response payoff to player 1 = value of LP
maximize  x T (Ay)
subjectto Ex = e
x>0
equals value of dual LP
minimize e'u
subjectto ETu > Ay
which is also minimized by player 2 for y € Y, i.e. as solution to
minimize e'u
subjectto ETu— Ay >0
Fy=f
y=>0.
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1) Best-response LP
max x T (Ay)
X

subjectto Ex = e
x>0

2) dual LP

min e'u
u

subjectto ETu > Ay

Example

Xp| 1—1-1
XL 1
>0 Xgp 1
Xc 1
XD 1
Il J
max
Ug Uy U2
1—1-1
1
L
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2) dual LP s
min e'u !
u 1 >
subjectto ETu > Ay 1
1
[0 0] mi

3) Treat y as a variable:
Uogh Uz  YpYayYbYc=>0

min e'u 1—1-1
uy 1 6 0
subjectto ETu zf_y . 1 |5 24
y = 1 3
y =0 1 0
1 —
11 1 1 _

(100 |—min
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Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996]
A zero-sum game is solved via an LP of linear size:

minimize e'u
subjectto ETu— Ay >0
Fy=f
y>0.
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Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996]
A zero-sum game is solved via an LP of linear size:

minimize e'u
subjectto ETu— Ay >0
Fy=f
y>0.

Theorem [Koller / Megiddo / von Stengel 1996]
A non-zero-sum game is solved via an LCP of linear size. One
equilibrium is found by Lemke’s algorithm.
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Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996]
A zero-sum game is solved via an LP of linear size:

minimize e'u
subjectto ETu— Ay >0
Fy=f
y>0.

Theorem [Koller / Megiddo / von Stengel 1996]
A non-zero-sum game is solved via an LCP of linear size. One
equilibrium is found by Lemke’s algorithm.

[von Stengel / Elzen / Talman, Econometrica 2002]

This algorithm mimicks the Harsanyi-Selten tracing procedure
and finds a normal-form perfect equilibrium.

(Allows variation of starting vector or prior.)
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LCP - Lemke’s algorithm

Consider a prior (X, y), and a new variable z in the system

Ex + elzp =| e

Fy |+ flzg =|f

ri=|ETu —Ay |—| Aylzo >|0
s |= F'v—B'x —|BTx|zy >|0
[x. vyl 2] > 0

Equilibrium condition xTr=0, y's=0, [z =0].
Initial solution zg =1, x =0,y = 0.

Complementary pivoting:
X, <> Iy, Yr <> Sr, Until zg leaves the basis.
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