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Overview

• Linear programming and zero-sum games

• Extensive games
◦ perfect recall and the sequence form
◦ computing equilibria with the sequence form

2 / 39



Linear programming duality
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Primal and dual linear programs

Primal LP:

maximize c⊤y

subject to Ay ≤ b ,

y ≥ 0 .

Dual LP:

minimize x⊤b

subject to x ≥ 0 ,

x⊤A ≥ c⊤.

Weak LP duality: For any feasible primal y , dual x :

c⊤y ≤ x⊤b

So c⊤y = x⊤b ⇒ y optimal for primal LP, x optimal for dual LP.

Strong LP duality: If both primal and dual LP are feasible, then
they have (optimal) solutions y and x with c⊤yx⊤b.
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Tucker diagram

Primal LP: maximize c⊤y subject to Ay ≤ b, y ≥ 0.

Dual LP: minimize x⊤b subject to x⊤A ≥ c⊤, x ≥ 0.

c⊤
∨

A

y ≥ 0

x ≥ 0 ≤ b

→max

↪→min

5 / 39



Zero-sum game (A,−A) written as general LP

Minimizer: minimize u subject to Ay ≤ 1u, y ∈ Y .

Maximizer: maximize v subject to x⊤A ≥ v1⊤, x ∈ X .

v v · · · v
∨

A

y ≥ 0, 1⊤y = 1

x ≥ 0
x⊤1 = 1

≤

u
u
...
u

→max

↪→min
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Simpler LP with positive payoffs

x⊤(A + 1α1⊤)y = x⊤Ay + x⊤1α1⊤y = x⊤Ay + α

⇒ w.l.o.g. A > 0, min-max cost u > 0, max-min payoff v > 0,
replace y by y ′ = y 1

u , and x by x ′ = x 1
v ,

Minimizer: maximize 1⊤y ′ (= 1
u ) subject to Ay ′ ≤ 1,

Maximizer: minimize 1⊤x ′ (= 1
v ) subject to x ′⊤A ≥ 1⊤

1 1 1· · ·
∨

A

y ′ ≥ 0

x ′ ≥ 0 ≤
1
1
...
1

→max
↪→ min
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Extensive Games,

Sequence Form
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Game tree (game in extensive form)

•

•

a

•

b

•

c

5

d

5

L

•

R

10

C

20

D

•

C

•

D

•

p *

•

q

20

s

50

t

30

s

15

t

10

U

15

V

20

U

–5

V

2

1 1

2 2

1
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Strategic (or normal) form

Strategy of a player:
specifies a move for every information set of that player.

a a a a b b b b c c c c d d d d
p p q q p p q q p p q q p p q q
s t s t s t s t s t s t s t s t

L, U, C 5 5 5 5 10 10 10 10 20 50 20 50 5 5 5 5
L, V , C 5 5 5 5 10 10 10 10 20 50 20 50 5 5 5 5
L, U, D 5 5 5 5 20 20 20 20 30 15 30 15 5 5 5 5
L, V , D 5 5 5 5 20 20 20 20 30 15 30 15 5 5 5 5
R, U, C 10 10 20 20 10 10 10 10 20 50 20 50 5 5 5 5
R, U, D 10 10 20 20 20 20 20 20 30 15 30 15 5 5 5 5
R, V , C 20 20 –5 –5 10 10 10 10 20 50 20 50 5 5 5 5
R, V , D 10 10 20 20 20 20 20 20 30 15 30 15 5 5 5 5
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Reduced strategic form

Reduced strategy of a player:
specifies a move for every information set of that player,
except for those information sets unreachable due to an own
earlier move (where we write ∗ instead of a move).

a, p, ∗ a, q, ∗ b, ∗, ∗ c, ∗, s c, ∗, t d, ∗, ∗

L, ∗,C 5 5 10 20 50 5
L, ∗,D 5 5 20 30 15 5
R,U,C 10 20 10 20 50 5
R,U,D 10 20 20 30 15 5
R,V ,C 15 –5 10 20 50 5
R,V ,D 15 –5 20 30 15 5
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Exponential blowup of strategic form

number of pure strategies typically
exponential in number of information sets.
Example:

•

•

c1

•

c2

•

c3

· · · •

cℓ

L1 R1 L2 R2 L3 R3 Lℓ Rℓ

2

1 1 1 1

number of information sets = ℓ
number of pure strategies = 2ℓ

Example [Kuhn]: simplified poker game,

number of information sets = 13
number of pure strategies = 8192
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Exponential blowup of reduced strategic form

Example: Game with (1) bounded number of moves per node,
(2) no subgames (otherwise simplify by solving subgames first).

• 1

2•

• •1

•

• •1

• • • • • • • •2 2 2 2zzz zzz

This tree with n nodes: ≈ 2
√

n/2 strategies per player,
reduced strategic form still (sub-)exponential in tree size.
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Use behavior strategies
Behavior strategy = local randomization

• •

Mixed strategy too redundant, use behavior strategy instead:

• only one variable per move:
player 1 chooses L with probability XL

player 1 chooses R with probability XR . . .
player 2 chooses a with probability Ya . . .

• expected payoff =
5 YaXL + 10 YaXRYpXU + 15 YaXRYpXV + · · ·

• problem: nonlinear!
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Variable transformation
For each sequence σ of moves of player 1
introduce new variable xσ

• new variables replace products:
if σ = PQRS then xσ=XPXQXRXS

• Example:
xL = XL
xRU = XRXU
. . .
ya = Ya
yap = YaYp
. . .

• expected payoff = 5 xL ya + 10 xRU yap + 15 xRV yap + · · ·
is linear in variables of one player.
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New paradigm: Sequences
instead of pure strategies

Before:
pure strategy i
probability xi

mixed strategy x
characterized by 1⊤x = 1
expected payoff x⊤Ay

After:
sequence σ

realization probability xσ

realization plan x
characterized by Ex = e
expected payoff x⊤Ay
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x∅ = 1
xL+xR = x∅

xRU+xRV = xR •

•

a

•

b

•

c

5

d

5

L

•

R

10

C

20

D

•

C

•

D

•

p

•

q

20

s

50

t

30

s

15

t

10

U

15

V

20

U

–5

V

2

1 1

2 2

1

aRU,ap = 10
a∅,d = 5

aRU,b = 0
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Realization plans

Realization plan x = (x∅, xL, xR, xC, xD, xRU , xRV )

(= vector of realization probabilities)

characterized by x ≥ 0 and linear equalities

x∅ = 1
x∅ = xL + xR
x∅ = xC + xD

xR = xRU + xRV

written as Ex = e with

E =




1
−1 1 1
−1 1 1

−1 1 1


 , e =




1
0
0
0
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The sequence form
Payoff matrix A

∅ a b c d ap aq bs bt

∅ 5
L 5
R
RU 10 20
RV 15 –5
C 10 20 50
D 20 30 15

expected payoff x⊤Ay ,

rows played with x subject to x ≥ 0, Ex = e,

columns played with y subject to y ≥ 0, Fy = f .
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How to play

Given: realization plan x with Ex = e.

Move L is last move of unique sequence,
say PQL, where xPQL + xPQR = xPQ.

•
L R

•
L R

1

•
P

1

•
Q

1

⇒ behavior-probability(L) =
xPQL

xPQ
.

Required assumption of perfect recall
[Kuhn 1953, Selten 1975]:
Each node in an information set is
preceded by same sequence, here PQ,
of the player’s own earlier moves.
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Solving the Sequence Form:

Constrained Games
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Constrained games

Polyhedrally constrained game:

Player 1’s strategy set

X = {x ∈ Rm | Ex = e, x ≥ 0 }

e.g. E = [1 1 · · · 1], e = 1: strategy simplex

Player 2’s strategy set

Y = {y ∈ Rn | Fy = f , y ≥ 0 }

payoff matrices A,B,

expected payoffs x⊤Ay , x⊤By for (x, y) ∈ X × Y .
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Best responses in a constrained game

x in X best response against y in Y : solves primal LP

maximize x⊤(Ay)
subject to Ex = e

x ≥ 0

Dual LP (with same value, = best response payoff to player 1):

minimize e⊤u
subject to E⊤u ≥ Ay

x, u optimal ⇔ complementary slackness:

x⊤(E⊤u − Ay) = 0

= best-response condition (only pure best responses can have
positive probability)
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Constrained zero-sum games

[Charnes 1953] Let B = −A.

For y ∈ Y , best-response payoff to player 1 = value of LP

maximize x⊤(Ay)
subject to Ex = e

x ≥ 0

equals value of dual LP

minimize e⊤u
subject to E⊤u ≥ Ay

which is also minimized by player 2 for y ∈ Y , i.e. as solution to

minimize e⊤u
subject to E⊤u − Ay ≥ 0

Fy = f
y ≥ 0.
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Example
1) Best-response LP

max
x

x⊤(Ay)

subject to Ex = e
x ≥ 0

≥ 0

x∅
xL
xR
xC
xD

1−1−1
1
1

1
1

1 0 0
↓

max

0
2
2
1
0

2) dual LP

min
u

e⊤u

subject to E⊤u ≥ Ay

u0 u1 u2
1−1−1

1
1

1
1

≥

1 0 0

0
2
2
1
0

→min
34 / 39



2) dual LP

min
u

e⊤u

subject to E⊤u ≥ Ay

u0 u1 u2

1−1−1
1
1

1
1

≥

1 0 0

0
2
2
1
0

→min

3) Treat y as a variable:

min
u, y

e⊤u

subject to E⊤u ≥ Ay
Fy = f

y ≥ 0

u0 u1 u2

1−1−1
1
1

1
1

≥

y∅ ya yb yc ≥ 0

6
2

0
4

3
0

1
−1 1 1 1

=
1
0

1 0 0 →min
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Linear size instead of exponential size

Input: 2-player game tree with perfect recall.

Theorem [Romanovskii 1961], [von Stengel 1996]
A zero-sum game is solved via an LP of linear size:

minimize e⊤u
subject to E⊤u − Ay ≥ 0

Fy = f
y ≥ 0.

Theorem [Koller / Megiddo / von Stengel 1996]
A non-zero-sum game is solved via an LCP of linear size. One
equilibrium is found by Lemke’s algorithm.

[von Stengel / Elzen / Talman, Econometrica 2002]
This algorithm mimicks the Harsanyi-Selten tracing procedure
and finds a normal-form perfect equilibrium.
(Allows variation of starting vector or prior.)
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LCP – Lemke’s algorithm

Consider a prior (x, y), and a new variable z0 in the system

Ex + e z0 = e
Fy + f z0 = f

r = E⊤u −Ay − Ay z0 ≥ 0
s = F⊤v − B⊤x − B⊤x z0 ≥ 0

x , y , z0 ≥ 0

Equilibrium condition x⊤r = 0, y⊤s = 0, [ z0 = 0 ].

Initial solution z0 = 1, x = 0, y = 0.

Complementary pivoting:
xσ ↔ rσ, yτ ↔ sτ , until z0 leaves the basis.
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