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Plan

• Lemke-Howson paths have a direction
◦ prove via signs of determinants
◦ index of an equilibrium

• Finding one Nash equilibrium of a bimatrix game is
PPAD-complete
◦ but seems fast in practice
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PPAD = Polynomial Parity Argument with
Direction

use signs of determinants
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Equilibria of symmetric and bimatrix games

For d × d matrix C, consider polytope

P = {z ∈ Rd | −z ≤ 0, Cz ≤ 1 }

with 2d inequalities labeled ⃝1 , . . . ,⃝d ,⃝1 , . . . ,⃝d when tight .

Completely labeled z ̸= 0 (scaled as probability vector)

⇔ Nash equilibrium (z, z) of game (C,C⊤)

bimatrix game (A,B): C =

(
0 A

B⊤ 0

)
, z = (x, y) :

Completely labeled (x, y) ̸= (0, 0)

⇔ Nash equilibrium (x, y) of game (A,B)
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Path of “almost completely labeled” edges

P = {z ∈ R3 | −z ≤ 0, Cz ≤ 1 }, two compl. labeled vertices
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Path of “almost completely labeled” edges

path of edges with labels ⃝2 , ⃝3 (label ⃝1 missing)
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Path of “almost completely labeled” edges

orientation of edges: ⃝2 on left, ⃝3 on right
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Path of “almost completely labeled” edges

opposite orientation (“sign”) of endpoints
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Path of “almost completely labeled” edges

equilibrium sign − or + does not depend on path
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Completely labeled points come in pairs

of opposite sign

Theorem [ Parity Argument ]

with Direction ]

Let P be a labeled polytope.

Then P has an even number of completely labeled vertices.

Half of these have sign − , half have sign + .

sign of completely labeled x is sign of determinant of the matrix
of facet normal vectors in order of their labels: if (e.g.) facet
a⊤

i x = βi has label i = ⃝1 ,⃝2 , ...,⃝d , then

sign(x) = sign |a1 a2 · · · ad |
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Pivoting changes signs

Lemma

Let x, y ∈ Rd be adjacent vertices of a simple polytope P ⊂ Rd

with facet normals b, a2, . . . , ad for x and c, a2, . . . , ad for y .

Then |b a2 · · · ad | and |c a2 · · · ad | have opposite sign.

x y

Proof is short, see B. von Stengel (2021), Finding Nash
equilibria of two-player games. arXiv:2102.04580.
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General Parity Argument with Direction

Facet normal vectors a1 a2 a3 c1 c2 c3, labels 1 2 3 1 2 3

a3

a2
a1

c1

c2

c3
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General Parity Argument with Direction

Start at a1 a2 a3, sign −

a3

a2
a1

c1

c2

c3

−

a1 a3a2
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General Parity Argument with Direction

Start at a1 a2 a3, sign − , label 1 missing, a1 → c3 gives sign +

a3

a2
a1

c1

c2

c3

+

c a33 a2

−

a1 a3a2
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General Parity Argument with Direction

Switch columns c3 and a3 in determinant: back to sign −

a3

a2
a1

c1

c2

c3

3a c32a

+

c a33 a2

−

a1 a3a2
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General Parity Argument with Direction

next pivot a3 → c2 gives sign +

a3

a2
a1

c1

c2

c3

c c32 a23a c32a

+

c a33 a2

−

a1 a3a2
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General Parity Argument with Direction

Switch columns c2 and a2 in determinant: back to sign −
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c2

c3 a c32c2

c c32 a23a c32a

+
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−
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General Parity Argument with Direction

Last pivot c3 → c1 gives sign + , opposite to starting sign − .

a3

a2
a1

c1

c2

c3

3ac1 2cc3 a3c2

a c33 c2a c32c2

c c32 a23a c32a

+

c a33 a2

−

a1 a3a2
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General Parity Argument with Direction

Only need: sign-switching of pivots and column exchanges

a3

a2
a1

c1

c2

c3

3ac1 2cc3 a3c2

a c33 c2a c32c2

c c32 a23a c32a

+

c a33 a2

−

a1 a3a2
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A more abstract example

−

a1 a5a4a3a2
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A more abstract example

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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A more abstract example

3a a54ac32a

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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A more abstract example

c 34 a2 4a a5c3a a54ac32a

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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A more abstract example

a4 c3 a5a2 c4

c 34 a2 4a a5c3a a54ac32a

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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A more abstract example

c5 4a2 c a5c3a4 c3 a5a2 c4

c 34 a2 4a a5c3a a54ac32a

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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A more abstract example

a2 c5a5 3c c4

c5 4a2 c a5c3a4 c3 a5a2 c4
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A more abstract example

c1 a2 c3 c4 c5a2 c5a5 3c c4

c5 4a2 c a5c3a4 c3 a5a2 c4

c 34 a2 4a a5c3a a54ac32a

+

c a33 a2 4a a5

−

a1 a5a4a3a2
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Sign vs. index of an equilibrium
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Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A,B) has an odd number of
equilibria, one more of index + than of index − .

[Proof: Endpoints of pivoting paths have opposite index − and + .]

Equilibria of index + include every

• pure-strategy equilibrium

• unique equilibrium

• dynamically stable equilibrium [Hofbauer 2003]

42 / 73



Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A,B) has an odd number of
equilibria, one more of index + than of index − .

[Proof: Endpoints of pivoting paths have opposite index − and + .]

Equilibria of index + include every

• pure-strategy equilibrium

• unique equilibrium

• dynamically stable equilibrium [Hofbauer 2003]

43 / 73



Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A,B) has an odd number of
equilibria, one more of index + than of index − .

[Proof: Endpoints of pivoting paths have opposite index − and + .]

Equilibria of index + include every

• pure-strategy equilibrium

• unique equilibrium

• dynamically stable equilibrium [Hofbauer 2003]

44 / 73



Dynamically stable equilibrium: needs index +
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PPAD-completeness
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The Parity Argument (PA)

Given: Implicit graph  G  of degree at most 2 (every 
node has at most 2 neighbors).

Then  G  is a collection of paths and cycles:

The number of degree-1 nodes (endpoints of paths) is 
even.
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More generally (Euler)

The number of odd-degree nodes of a graph is even:
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Schweinkram (filth)!
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The computational complexity view

60 / 73



..

.
..
.S outin

Successor
circuit

00
01
10
11

01
10
11
10

x,y S(x,y)

Implicit graph via Boolean circuits
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2  n 2  ncircuits S, P:  

0n

Input:

polynomial size in  n
source

0n

Output:
Any sink, or
source other than 

P

P

PP

00 01

1011

S

S

S

S

The problem End−Of−the−Line (EOL)
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PPAD = any instances of EOL
"polynomial parity argument with direction"
[ PaPADimitriou  1994]
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PPAD-completeness

A computational problem is PPAD-complete if EOL 
can be reduced to it.

[Chen & Deng 2005]:
2-NASH is PPAD-complete.

Problem 2-NASH:

Input:  2-player game (A,B) in strategic form with
integer payoffs.

Output: One Nash equilibrium of (A,B).
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Don’t be fooled:

2-NASH is tractable in practice

just like the simplex algorithm for LP
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Comments on PPAD-completeness and proof

• Many path-following problems are PPAD-complete
◦ Sperner
◦ Scarf’s Lemma (market equilibria)

• Classic problem: 3D Brouwer (discretized fixed points)
◦ End-of-Line reduces to Brouwer [huge blowup]
◦ encode Brouwer fixed points as Nash equilibria

• Lemke’s algorithm with random starting points
◦ seems to have short running times similar to simplex algo.

• In progress (and stuck): Better PPAD-completeness proof?
◦ complementary paths on polytopes for invertible circuits

to encode End-of-Line?
◦ encode sinks/sources as Nash equilibria
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