PPAD

Bernhard von Stengel

Department of Mathematics London School of Economics

Plan

- Lemke-Howson paths have a **direction**
	- prove via signs of determinants
	- index of an equilibrium
- Finding one Nash equilibrium of a bimatrix game is PPAD-complete
	- but seems fast in practice

PPAD = Polynomial Parity Argument with **Direction**

use signs of determinants

Equilibria of symmetric and bimatrix games

For $d \times d$ matrix C, consider polytope

$$
P = \{z \in \mathbb{R}^d \mid -z \leq 0, \quad Cz \leq 1 \}
$$

with 2*d* inequalities labeled $(1), \ldots, (d), (1), \ldots, (d)$ when **tight**.

Equilibria of symmetric and bimatrix games

For $d \times d$ matrix C, consider polytope

$$
P = \{z \in \mathbb{R}^d \mid -z \leq 0, \quad Cz \leq 1 \}
$$

with **2***d* inequalities labeled $(1), \ldots, (d), (1), \ldots, (d)$ when **tight**.

Completely labeled $z \neq 0$ (scaled as probability vector)

⇔ Nash equilibrium (*z*, *z*) of game (*C*, *C* ⊤)

Equilibria of symmetric and bimatrix games

For $d \times d$ matrix C, consider polytope

$$
P = \{z \in \mathbb{R}^d \mid -z \leq 0, \quad Cz \leq 1 \}
$$

with 2*d* inequalities labeled $(1), \ldots, (d), (1), \ldots, (d)$ when **tight**.

Completely labeled $z \neq 0$ (scaled as probability vector)

⇔ Nash equilibrium (*z*, *z*) of game (*C*, *C* ⊤)

bimatrix game
$$
(A, B)
$$
: $C = \begin{pmatrix} 0 & A \\ B^T & 0 \end{pmatrix}$, $z = (x, y)$:

Completely labeled $(x, y) \neq (0, 0)$

⇔ Nash equilibrium (*x*, *y*) of game (*A*, *B*)

 $P = \{z \in \mathbb{R}^3 \mid -z \leq 0, \; Cz \leq 1 \}$, two compl. labeled vertices

path of edges with labels (2) , (3) (label (1) missing)

orientation of edges: 2 on left, 3 on right

opposite orientation ("sign") of endpoints

Completely labeled points come in pairs

Theorem [Parity Argument]

Let *P* be a labeled polytope.

Then *P* has an **even** number of completely labeled vertices.

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let *P* be a labeled polytope.

Then *P* has an **even** number of completely labeled vertices. Half of these have **sign** \ominus , half have sign \oplus .

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let *P* be a labeled polytope.

Then *P* has an **even** number of completely labeled vertices. Half of these have **sign** \ominus , half have sign \oplus .

sign of completely labeled *x* is **sign of determinant** of the matrix of facet normal vectors in order of their labels: if (e.g.) facet a_i^{\dagger} *x* = β_i has label *i* = $\textcircled{1}, \textcircled{2}, ..., \textcircled{d}$, then

 $sign(x) = sign |a_1 a_2 \cdots a_d|$

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $\boldsymbol{P} \subset \mathbb{R}^d$

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for **x** and c, a_2, \ldots, a_d for **y**.

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for x and c, a_2, \ldots, a_d for y .

Then $|\mathbf{b} \mathbf{a}_2 \cdots \mathbf{a}_d|$ and $|\mathbf{c} \mathbf{a}_2 \cdots \mathbf{a}_d|$ have opposite sign.

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for x and c, a_2, \ldots, a_d for y .

Then $|\mathbf{b} \mathbf{a}_2 \cdots \mathbf{a}_d|$ and $|\mathbf{c} \mathbf{a}_2 \cdots \mathbf{a}_d|$ have opposite sign.

Proof is short, see B. von Stengel (2021), Finding Nash equilibria of two-player games. arXiv:2102.04580.

Facet normal vectors a_1 a_2 a_3 c_1 c_2 c_3 , labels 1 2 3 1 2 3

Start at \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 , sign \ominus

Start at $\bm{a_1}$ $\bm{a_2}$ $\bm{a_3}$, sign \ominus , label 1 missing, $\bm{a_1} \rightarrow \bm{c_3}$ gives sign \oplus

Switch columns c_3 and a_3 in determinant: back to sign \ominus

next pivot $a_3 \rightarrow c_2$ gives sign \oplus

Switch columns c_2 and a_2 in determinant: back to sign \ominus

 $\mathsf{next} \ \mathsf{pivot} \ \pmb{\mathit{a}}_2 \rightarrow \pmb{\mathit{a}}_3$ gives sign \oplus

Switch columns a_3 and c_3 in determinant: back to sign \ominus

Last pivot $c_3 \to c_1$ gives sign \oplus , opposite to starting sign \ominus .

Only need: sign-switching of **pivots** and **column exchanges**

Sign vs. index of an equilibrium

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (*A*, *B*) has an odd number of equilibria, one more of index \oplus than of index \ominus .

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (*A*, *B*) has an odd number of equilibria, one more of index \oplus than of index \ominus .

[Proof: Endpoints of pivoting paths have opposite index \ominus and \oplus .]

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (*A*, *B*) has an odd number of equilibria, one more of index \oplus than of index \ominus .

[Proof: Endpoints of pivoting paths have opposite index \ominus and \oplus .]

Equilibria of index \bigoplus include every

- pure-strategy equilibrium
- unique equilibrium
- **dynamically stable** equilibrium [Hofbauer 2003]

PPAD-completeness

The Parity Argument (PA)

Given: Implicit graph G of degree at most 2 (every node has at most 2 neighbors).

Then G is a collection of paths and cycles:

The number of degree-1 nodes (endpoints of paths) is **even**.

More generally (Euler)

The number of odd-degree nodes of a graph is even:

Schweinkram (filth)!

The computational complexity view

 $x, y \in \mathbb{C}(x,y)$

 \overline{c}

00

10

11

Successor circuit

Predecessor circuit

Sources and Sinks

Sources and Sinks

The problem End−Of−the−Line (EOL)

Input:

circuits S, P: $2^n \rightarrow 2^n$ source 0ⁿ polynomial size in n

Output:

source other than 0ⁿ Any sink, or

The problem End−Of−the−Line (EOL)

Input:

circuits S, P: $2^n \rightarrow 2^n$ source 0ⁿ polynomial size in n

Output:

source other than 0ⁿ Any sink, or

PPAD = any instances of EOL "polynomial parity argument with direction" [PaPADimitriou 1994]

PPAD-completeness

A computational problem is **PPAD-complete** if EOL can be reduced to it.

[Chen & Deng 2005]: 2-NASH is PPAD-complete.

Problem 2-NASH:

- **Input**: 2-player game (A,B) in strategic form with integer payoffs.
- **Output:** One Nash equilibrium of (A,B).

Don't be fooled:

2-NASH is tractable in practice

just like the simplex algorithm for LP
Comments on PPAD-completeness and proof

- Many path-following problems are PPAD-complete ◦ Sperner
	- Scarf's Lemma (market equilibria)
- Classic problem: **3D Brouwer** (discretized fixed points)
	- End-of-Line reduces to Brouwer [huge blowup]
	- encode Brouwer fixed points as Nash equilibria
- Lemke's algorithm with random starting points
	- seems to have **short running** times similar to simplex algo.

Comments on PPAD-completeness and proof

- Many path-following problems are PPAD-complete ◦ Sperner
	- Scarf's Lemma (market equilibria)
- Classic problem: **3D Brouwer** (discretized fixed points) ◦ End-of-Line reduces to Brouwer [huge blowup] ◦ encode Brouwer fixed points as Nash equilibria
- Lemke's algorithm with random starting points ◦ seems to have **short running** times similar to simplex algo.
- **In progress (and stuck):** Better PPAD-completeness proof?
	- complementary paths on polytopes for **invertible** circuits to encode End-of-Line?
	- encode sinks/sources as Nash equilibria