PPAD

Bernhard von Stengel

Department of Mathematics London School of Economics

Plan

- Lemke-Howson paths have a direction
 - prove via signs of determinants
 - index of an equilibrium
- Finding one Nash equilibrium of a bimatrix game is PPAD-complete
 - but seems fast in practice

PPAD = Polynomial Parity Argument with Direction

use signs of determinants

Equilibria of symmetric and bimatrix games

For $\boldsymbol{d} \times \boldsymbol{d}$ matrix \boldsymbol{C} , consider polytope

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^d \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1} \}$$

with 2d inequalities labeled $(1, \ldots, d), (1, \ldots, d)$ when tight.

Equilibria of symmetric and bimatrix games

For $\boldsymbol{d} \times \boldsymbol{d}$ matrix \boldsymbol{C} , consider polytope

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^d \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1} \}$$

with 2d inequalities labeled $(1, \ldots, d), (1, \ldots, d)$ when tight.

Completely labeled $z \neq 0$ (scaled as probability vector)

 \Leftrightarrow Nash equilibrium (z, z) of game (C, C^{\top})

Equilibria of symmetric and bimatrix games

For $\boldsymbol{d} \times \boldsymbol{d}$ matrix \boldsymbol{C} , consider polytope

$$\boldsymbol{P} = \{\boldsymbol{z} \in \mathbb{R}^d \mid -\boldsymbol{z} \leq \boldsymbol{0}, \ \boldsymbol{C}\boldsymbol{z} \leq \boldsymbol{1} \}$$

with 2d inequalities labeled $(1, \ldots, d), (1, \ldots, d)$ when tight.

Completely labeled $z \neq 0$ (scaled as probability vector)

 \Leftrightarrow Nash equilibrium (z, z) of game (C, C^{\top})

bimatrix game (A, B):
$$C = \begin{pmatrix} 0 & A \\ B^{\top} & 0 \end{pmatrix}, \quad z = (x, y)$$
:

Completely labeled $(x, y) \neq (0, 0)$

 \Leftrightarrow Nash equilibrium (x, y) of game (A, B)

 $P = \{z \in \mathbb{R}^3 \mid -z \leq 0, \ Cz \leq 1\}$, two compl. labeled vertices

path of edges with labels (2), (3) (label (1) missing)

orientation of edges: 2 on left, 3 on right

opposite orientation ("sign") of endpoints

equilibrium $\textbf{sign} \ominus \text{or} \oplus \text{does not depend on path}$

Completely labeled points come in pairs

Theorem [Parity Argument]

Let **P** be a labeled polytope.

Then *P* has an even number of completely labeled vertices.

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let **P** be a labeled polytope.

Then **P** has an **even** number of completely labeled vertices. Half of these have sign \bigcirc , half have sign \oplus .

Completely labeled points come in pairs of opposite sign

Theorem [Parity Argument with Direction]

Let **P** be a labeled polytope.

Then **P** has an **even** number of completely labeled vertices. Half of these have sign \bigcirc , half have sign \oplus .

sign of completely labeled **x** is **sign of determinant** of the matrix of facet normal vectors in order of their labels: if (e.g.) facet $\mathbf{a}_i^\top \mathbf{x} = \beta_i$ has label $\mathbf{i} = (1, (2), ..., (d),$ then

 $sign(\mathbf{x}) = sign |a_1 a_2 \cdots a_d|$

Lemma

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $\mathbf{P} \subset \mathbb{R}^d$

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for x and c, a_2, \ldots, a_d for y.

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for x and c, a_2, \ldots, a_d for y.

Then $|\boldsymbol{b} | \boldsymbol{a}_2 \cdots \boldsymbol{a}_d|$ and $|\boldsymbol{c} | \boldsymbol{a}_2 \cdots \boldsymbol{a}_d|$ have opposite sign.

Lemma

Let $x, y \in \mathbb{R}^d$ be adjacent vertices of a simple polytope $P \subset \mathbb{R}^d$ with facet normals b, a_2, \ldots, a_d for x and c, a_2, \ldots, a_d for y.

Then $|\mathbf{b} \mathbf{a}_2 \cdots \mathbf{a}_d|$ and $|\mathbf{c} \mathbf{a}_2 \cdots \mathbf{a}_d|$ have opposite sign.

Proof is short, see B. von Stengel (2021), Finding Nash equilibria of two-player games. arXiv:2102.04580.

Facet normal vectors a1 a2 a3 c1 c2 c3, labels 1 2 3 1 2 3

Start at $a_1 a_2 a_3$, sign \bigcirc

Start at $a_1 a_2 a_3$, sign \bigcirc , label **1** missing, $a_1 \rightarrow c_3$ gives sign \oplus

Switch columns c_3 and a_3 in determinant: back to sign \ominus

next pivot $a_3 \rightarrow c_2$ gives sign \oplus

Switch columns c_2 and a_2 in determinant: back to sign \ominus

next pivot $a_2 \rightarrow a_3$ gives sign \oplus

Switch columns a_3 and c_3 in determinant: back to sign \ominus

Last pivot $c_3 \rightarrow c_1$ gives sign \oplus , opposite to starting sign \bigcirc .

Only need: sign-switching of pivots and column exchanges

Sign vs. index of an equilibrium

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

[*Proof:* Endpoints of pivoting paths have opposite index \bigcirc and \bigcirc .]

Index of an equilibrium

Theorem [Shapley 1974]

A nondegenerate bimatrix game (A, B) has an odd number of equilibria, one more of index \oplus than of index \bigcirc .

[*Proof:* Endpoints of pivoting paths have opposite index \bigcirc and \oplus .]

Equilibria of index \oplus include every

- pure-strategy equilibrium
- unique equilibrium
- dynamically stable equilibrium [Hofbauer 2003]

PPAD-completeness

The Parity Argument (PA)

Given: Implicit graph G of degree at most 2 (every node has at most 2 neighbors).

Then G is a collection of paths and cycles:

The number of degree-1 nodes (endpoints of paths) is **even**.

More generally (Euler)

The number of odd-degree nodes of a graph is even:

Schweinkram (filth)!

The computational complexity view

Successor circuit S(x,y) x,y 00 01 in S 01 t÷. out 10 10 11 11 10

 $\begin{array}{c} Successor \\ circuit \\ in \\ \hline S \\ \hline$

Successor circuit

Successor circuit S(x,y)x,y 00 01 in S 01 10 out 10 11 11 10 Predecessor P(x,y)circuit x,y 00 11 01 00 Ρ in out 10 01 11 00

circuit in S out Predecessor circuit in P out

Successor

x,y 00 01 10 11	S(x,y) 01 10 11 10
x,y	P(x,y)
00	11
01	00
10	01
11	00

Sources and Sinks

Sources and Sinks

The problem End–Of–the–Line (EOL)

Input:

circuits S, P: $2^n \rightarrow 2^n$ polynomial size in n source 0^n

Output:

Any sink, or source other than 0ⁿ

The problem End–Of–the–Line (EOL)

Input:

circuits S, P: $2^n \rightarrow 2^n$ polynomial size in n source 0^n

Output:

Any sink, or source other than 0ⁿ

PPAD = any instances of EOL "polynomial parity argument with direction" [PaPADimitriou 1994]

PPAD-completeness

A computational problem is **PPAD-complete** if EOL can be reduced to it.

```
[Chen & Deng 2005]:
2-NASH is PPAD-complete.
```

Problem 2-NASH:

- **Input**: 2-player game (A,B) in strategic form with integer payoffs.
- **Output**: One Nash equilibrium of (A,B).

Don't be fooled:

2-NASH is tractable in practice

just like the simplex algorithm for LP
Comments on PPAD-completeness and proof

- Many path-following problems are PPAD-complete
 - Sperner
 - Scarf's Lemma (market equilibria)
- Classic problem: **3D Brouwer** (discretized fixed points)
 - End-of-Line reduces to Brouwer [huge blowup]
 - encode Brouwer fixed points as Nash equilibria
- Lemke's algorithm with random starting points
 - seems to have **short running** times similar to simplex algo.

Comments on PPAD-completeness and proof

- Many path-following problems are PPAD-complete
 - Sperner
 - Scarf's Lemma (market equilibria)
- Classic problem: **3D Brouwer** (discretized fixed points)
 - End-of-Line reduces to Brouwer [huge blowup]
 - encode Brouwer fixed points as Nash equilibria
- Lemke's algorithm with random starting points
 - seems to have **short running** times similar to simplex algo.
- In progress (and stuck): Better PPAD-completeness proof?
 - complementary paths on polytopes for **invertible** circuits to encode End-of-Line?
 - encode sinks/sources as Nash equilibria