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Plan

• Correlated equilibria of n-player games

• Existence proof without existence of Nash equilibria
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Correlated equilibria
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Nash equilibria
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Correlated equilibria
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Incentive constraints
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Linear incentive constraints!

set of correlated equilibria 

= polytope, defined by linear incentive constraints
  that compare any two strategies of a player

- variables = probabilities for strategy profiles

- holds for any number of players

- find easily CE with maximum payoff(-sum)
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The correlated-equilibrium polytope
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Existence proof
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Correlated equilibrium and strategies

player i , pure strategy set Si , strategy profiles S = Si × S−i ,

ui(a, s−i) = payoff to player i for a ∈ Si .

Incentive constraints for CE distribution z on S :

for all players i and all a, b ∈ Si :

∑
s−i∈S−i

z(a, s−i)
[
ui(a, s−i) − ui(b, s−i)

]
≥ 0
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LP existence proof for CE

[Hart/Schmeidler 1989; Nau/McCardle 1990]

Existence of CE via LP duality

Auxiliary game:

Row chooses s ∈ S mixes with z(s)
Col chooses player i and a, b ∈ Si mixes with y i

a b

payoff to Row = ui(a, s−i) − ui(b, s−i) if s = (a, s−i),
= 0 otherwise.

Payoff matrix U, expected payoffs z⊤Uy .

Auxiliary game has value 0 ⇔ CE z exists.
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Expected payoff in auxiliary game

z⊤Uy =∑
i

∑
s−i∈S−i

∑
a,b∈Si

z(a, s−i)
[
ui(a, s−i) − ui(b, s−i)

]
y i

a b

to show value 0

it suffices: ∀y ∃ pure s: (Uy)s ≥ 0

can show: ∀y ∃ product distribution x : x⊤Uy = 0

x(s) =
∏

i

x i(si).
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Use product distribution

x⊤Uy
=

∑
i

∑
s−i∈S−i

∑
a,b∈Si

x i(a)x(s−i)
[
ui(a, s−i) − ui(b, s−i)

]
y i

a b

=
∑

i

∑
s−i∈S−i

x(s−i) ·

=

 ∑
a,b∈Si

x i(a)ui(a, s−i)y i
a b −

∑
a,b∈Si

x i(a)ui(b, s−i)y i
a b



set
[ ]

to zero for suitable x i(a) depending on y i
a b
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Neutralizing deviation plans
Lemma [Hart/Schmeidler 1989]
(Lemma 12.10 in Game Theory Basics)

∀ya b ≥ 0 ∃ probabilities x(a) [which give x⊤Uy = 0]

∀a ∈ Si x(a)
∑
b∈Si

ya b =
∑
c∈Si

x(c)yc a

Interpretation (for each original player i ):

Increase w.l.o.g. diagonal elements ya a. Adversary’s y is a Markov
chain, a “deviation plan” that says how to deviate from a to b.

Then x is a stationary distribution that stays invariant under that
Markov chain, so the adversary gains nothing with y .

⇒ Auxiliary game has value 0, CE exists!
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CE for compactly specified games

Example

Anonymous game with many players, same actions, and payoffs
specified by number of other players choosing an action.

General compactly specified game = game in strategic form with

• polynomial number of players

• polynomial number of actions per player

• polynomial-time evaluation of payoffs for product profiles x

⇒ Theorem [Papadimitriou/Roughgarden 2008]:
Can find one CE in polynomial time.
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Algorithm [Papadimitriou/Roughgarden 2008]

• iterate ellipsoid algorithm to find deviation plans y = (y i
a,b)

• in each iteration, neutralize via behavior profile x to get
x⊤Uy = 0

• derandomize x to pure profile s with payoff (Uy)s ≥ 0 to Row
[Jiang/Leyton-Brown 2010]

• infeasibility after polynomially many iterations

⇒ polynomially many rows U of U suffice to solve z⊤U ≥ 0

⇒ one CE z found in polynomial time
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Open problem

Given: Extensive game with perfect recall

Want: Find one CE for the strategic form in polynomial time.

Problem: Too many strategies to condition on!

Alternative approach [von Stengel/Forges 2008]:
EFCE = Extensive-Form Correlated Equilibrium

recommending (and comparing / learning) moves rather than
strategies.
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