Correlated Equilibria – Existence via LP Duality

Bernhard von Stengel

Department of Mathematics London School of Economics

- Correlated equilibria of *n*-player games
- Existence proof without existence of Nash equilibria

Correlated equilibria

Nash equilibria

Correlated equilibria

Incentive constraints

$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = 1$	1
$\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\geq0$	

$4a+1b \geq 5a+0b$
$5c+0d \geq 4c+1d$
$\Leftrightarrow b \geq a, c \geq d$
$4a+1c \geq 5a+0c$
$\mathbf{5b} + \mathbf{0d} \geq \mathbf{4b} + \mathbf{1d}$
$\Leftrightarrow \mathbf{c} \geq \mathbf{a}, \mathbf{b} \geq \mathbf{d}$

Linear incentive constraints!

set of correlated equilibria

- polytope, defined by linear incentive constraints that compare any two strategies of a player
- variables = probabilities for strategy profiles
- holds for any number of players
- find easily CE with maximum payoff(-sum)

The correlated-equilibrium polytope

http://www.maths.lse.ac.uk/Personal/stengel/05.html

The correlated-equilibrium polytope

http://www.maths.lse.ac.uk/Personal/stengel/05.html

The correlated-equilibrium polytope

http://www.maths.lse.ac.uk/Personal/stengel/05.html

Existence proof

Correlated equilibrium and strategies

player *i*, pure strategy set S_i , strategy profiles $S = S_i \times S_{-i}$, $u^i(a, s_{-i}) = payoff$ to player *i* for $a \in S_i$.

Incentive constraints for CE distribution z on S: for all players i and all $a, b \in S_i$:

$$\sum_{\boldsymbol{s}_{-i}\in\boldsymbol{S}_{-i}}\boldsymbol{z}(\boldsymbol{a},\boldsymbol{s}_{-i})\Big[\boldsymbol{u}^{i}(\boldsymbol{a},\boldsymbol{s}_{-i})-\boldsymbol{u}^{i}(\boldsymbol{b},\boldsymbol{s}_{-i})\Big]\geq\boldsymbol{0}$$

LP existence proof for CE

[Hart/Schmeidler 1989; Nau/McCardle 1990]

Existence of CE via LP duality

Auxiliary game:

Rowchooses $s \in S$ mixes with |z(s)|Colchooses player i and $a, b \in S_i$ mixes with $y_{a\,b}^i$ payoff to Row $= u^i(a, s_{-i}) - u^i(b, s_{-i})$ if $s = (a, s_{-i})$,
otherwise.

Payoff matrix \boldsymbol{U} , expected payoffs $\boldsymbol{z}^{\top}\boldsymbol{U}\boldsymbol{y}$.

Auxiliary game has value $\mathbf{0} \Leftrightarrow CE \mathbf{z}$ exists.

Expected payoff in auxiliary game

$$z^{\top}Uy =$$

$$\sum_{i} \sum_{s_{-i} \in S_{-i}} \sum_{a,b \in S_{i}} z(a,s_{-i}) \Big[u^{i}(a,s_{-i}) - u^{i}(b,s_{-i}) \Big] y^{i}_{ab}$$

to show value 0

it suffices: $\forall y \exists$ pure **s**: $(Uy)_s \ge 0$

can show: $\forall y \exists$ product distribution $x : x^\top Uy = 0$

 $\boldsymbol{x}(\boldsymbol{s}) = \prod_{i} \boldsymbol{x}^{i}(\boldsymbol{s}_{i}).$

$$\begin{aligned} & = \sum_{i}^{\mathbf{x}^{\top} \mathbf{U} \mathbf{y}} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) \mathbf{x}(\mathbf{s}_{-i}) \left[u^{i}(a, \mathbf{s}_{-i}) - u^{i}(b, \mathbf{s}_{-i}) \right] \mathbf{y}^{i}_{ab} \\ & = \sum_{i} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \mathbf{x}(\mathbf{s}_{-i}) \cdot \boxed{} \\ & = \left[\sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) u^{i}(a, \mathbf{s}_{-i}) \mathbf{y}^{i}_{ab} - \sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) u^{i}(b, \mathbf{s}_{-i}) \mathbf{y}^{i}_{ab} \right] \end{aligned}$$

$$\begin{aligned} & = \sum_{i}^{\mathbf{x}^{\top} \mathbf{U} \mathbf{y}} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) \mathbf{x}(\mathbf{s}_{-i}) \left[u^{i}(a, \mathbf{s}_{-i}) - u^{i}(b, \mathbf{s}_{-i}) \right] \mathbf{y}^{i}_{ab} \\ & = \sum_{i} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \mathbf{x}(\mathbf{s}_{-i}) \cdot \boxed{} \\ & = \left[\sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) u^{i}(a, \mathbf{s}_{-i}) \mathbf{y}^{i}_{ab} - \sum_{c, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(c) u^{i}(b, \mathbf{s}_{-i}) \mathbf{y}^{i}_{cb} \right] \end{aligned}$$

$$\begin{aligned} & = \sum_{i}^{\mathbf{x}^{\top} \mathbf{U} \mathbf{y}} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) \mathbf{x}(\mathbf{s}_{-i}) \left[u^{i}(a, \mathbf{s}_{-i}) - u^{i}(b, \mathbf{s}_{-i}) \right] \mathbf{y}_{ab}^{i} \\ & = \sum_{i} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \mathbf{x}(\mathbf{s}_{-i}) \cdot \boxed{} \\ & = \left[\sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) u^{i}(a, \mathbf{s}_{-i}) \mathbf{y}_{ab}^{i} - \sum_{c, a \in \mathbf{S}_{i}} \mathbf{x}^{i}(c) u^{i}(a, \mathbf{s}_{-i}) \mathbf{y}_{ca}^{i} \right] \end{aligned}$$

$$=\sum_{i}^{\mathbf{x}^{\top} \mathbf{U} \mathbf{y}} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \sum_{a, b \in \mathbf{S}_{i}} x^{i}(a) x(\mathbf{s}_{-i}) \left[u^{i}(a, \mathbf{s}_{-i}) - u^{i}(b, \mathbf{s}_{-i}) \right] y^{i}_{ab}$$
$$=\sum_{i} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} x(\mathbf{s}_{-i}) \cdot \boxed{$$
$$= \sum_{i} \sum_{a \in \mathbf{S}_{i}} u^{i}(a, \mathbf{s}_{-i}) \left[x^{i}(a) \sum_{b \in \mathbf{S}_{i}} y^{i}_{ab} - \sum_{c \in \mathbf{S}_{i}} x^{i}(c) y^{i}_{ca} \right]$$

$$= \sum_{i}^{\mathbf{x}^{\top} \mathbf{U} \mathbf{y}} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \sum_{a, b \in \mathbf{S}_{i}} \mathbf{x}^{i}(a) \mathbf{x}(\mathbf{s}_{-i}) \left[\mathbf{u}^{i}(a, \mathbf{s}_{-i}) - \mathbf{u}^{i}(b, \mathbf{s}_{-i}) \right] \mathbf{y}_{a b}^{i}$$

$$= \sum_{i} \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} \mathbf{x}(\mathbf{s}_{-i}) \cdot \left[$$

$$= \left[\sum_{a \in \mathbf{S}_{i}} \mathbf{u}^{i}(a, \mathbf{s}_{-i}) \left[\mathbf{x}^{i}(a) \sum_{b \in \mathbf{S}_{i}} \mathbf{y}_{a b}^{i} - \sum_{c \in \mathbf{S}_{i}} \mathbf{x}^{i}(c) \mathbf{y}_{c a}^{i} \right]$$

$$= \left[\left[\sum_{a \in \mathbf{S}_{i}} \mathbf{u}^{i}(a, \mathbf{s}_{-i}) \left[\mathbf{x}^{i}(a) \sum_{b \in \mathbf{S}_{i}} \mathbf{y}_{a b}^{i} - \sum_{c \in \mathbf{S}_{i}} \mathbf{x}^{i}(c) \mathbf{y}_{c a}^{i} \right] \right]$$

$$= \left[\left[\left[\left(\mathbf{x}_{i} \right) \right] \right] \text{ to zero for suitable } \mathbf{x}^{i}(a) \text{ depending on } \mathbf{y}_{a b}^{i} \right]$$

Neutralizing deviation plans

Lemma [Hart/Schmeidler 1989] (Lemma 12.10 in *Game Theory Basics*)

 $\forall y_{ab} \geq 0 \exists$ probabilities x(a) [which give $x^{\top}Uy = 0$]

$$\forall \mathbf{a} \in \mathbf{S}_i \qquad \mathbf{x}(\mathbf{a}) \sum_{\mathbf{b} \in \mathbf{S}_i} \mathbf{y}_{\mathbf{a} \mathbf{b}} = \sum_{\mathbf{c} \in \mathbf{S}_i} \mathbf{x}(\mathbf{c}) \mathbf{y}_{\mathbf{c} \mathbf{a}}$$

Neutralizing deviation plans

Lemma [Hart/Schmeidler 1989] (Lemma 12.10 in *Game Theory Basics*)

 $\forall y_{ab} \geq 0 \exists$ probabilities x(a) [which give $x^{\top}Uy = 0$]

$$\forall \mathbf{a} \in \mathbf{S}_i \qquad \mathbf{x}(\mathbf{a}) \sum_{\mathbf{b} \in \mathbf{S}_i} \mathbf{y}_{\mathbf{a} \mathbf{b}} = \sum_{\mathbf{c} \in \mathbf{S}_i} \mathbf{x}(\mathbf{c}) \mathbf{y}_{\mathbf{c} \mathbf{a}}$$

Interpretation (for each original player *i*):

Increase w.l.o.g. diagonal elements y_{aa} . Adversary's y is a Markov chain, a "deviation plan" that says how to deviate from a to b.

Then x is a stationary distribution that stays invariant under that Markov chain, so the adversary **gains nothing** with y.

Neutralizing deviation plans

Lemma [Hart/Schmeidler 1989] (Lemma 12.10 in *Game Theory Basics*)

 $\forall y_{ab} \geq 0 \exists$ probabilities x(a) [which give $x^{\top}Uy = 0$]

$$\forall \mathbf{a} \in \mathbf{S}_i \qquad \mathbf{x}(\mathbf{a}) \sum_{\mathbf{b} \in \mathbf{S}_i} \mathbf{y}_{\mathbf{a} \mathbf{b}} = \sum_{\mathbf{c} \in \mathbf{S}_i} \mathbf{x}(\mathbf{c}) \mathbf{y}_{\mathbf{c} \mathbf{a}}$$

Interpretation (for each original player *i*):

Increase w.l.o.g. diagonal elements y_{aa} . Adversary's y is a Markov chain, a "deviation plan" that says how to deviate from a to b.

Then x is a stationary distribution that stays invariant under that Markov chain, so the adversary **gains nothing** with y.

 \Rightarrow Auxiliary game has value **0**, CE exists!

CE for compactly specified games

Example

Anonymous game with many players, same actions, and payoffs specified by number of other players choosing an action.

CE for compactly specified games

Example

Anonymous game with many players, same actions, and payoffs specified by number of other players choosing an action.

General compactly specified game = game in strategic form with

- polynomial number of players
- polynomial number of actions per player
- polynomial-time evaluation of payoffs for product profiles x
- ⇒ Theorem [Papadimitriou/Roughgarden 2008]: Can find one CE in polynomial time.

Algorithm [Papadimitriou/Roughgarden 2008]

- iterate ellipsoid algorithm to find deviation plans $y = (y_{a,b}^i)$
- in each iteration, neutralize via behavior profile x to get $x^{\top}Uy = 0$
- derandomize x to pure profile s with payoff $(Uy)_s \ge 0$ to Row [Jiang/Leyton-Brown 2010]
- infeasibility after polynomially many iterations

Algorithm [Papadimitriou/Roughgarden 2008]

- iterate ellipsoid algorithm to find deviation plans $y = (y_{a,b}^i)$
- in each iteration, neutralize via behavior profile x to get $x^{\top}Uy = 0$
- derandomize x to pure profile s with payoff $(Uy)_s \ge 0$ to Row [Jiang/Leyton-Brown 2010]
- infeasibility after polynomially many iterations
- \Rightarrow polynomially many rows \overline{U} of U suffice to solve $\overline{z}^{\top}\overline{U} \ge 0$
- \Rightarrow one CE \overline{z} found in polynomial time

Open problem

- Given: Extensive game with perfect recall
- Want: Find one CE for the strategic form in polynomial time.
- Problem: Too many strategies to condition on!

Open problem

- Given: Extensive game with perfect recall
- Want: Find one CE for the strategic form in polynomial time.
- Problem: Too many strategies to condition on!
- Alternative approach [von Stengel/Forges 2008]: EFCE = Extensive-Form Correlated Equilibrium
- recommending (and comparing / learning) **moves** rather than strategies.