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A simple mechanism design setting: Single item auction

• A seller has a single item to sell

• There are n potential buyers, aka bidders, players, agents

• Buyer i has value vi for the item

If bidder i acquires the item at a price pi , their utility will be ui = vi − pi .

This is called a quasilinear utility setting.

The essential difficulty of auctions and more generally of mechanism

design is that the values vi are private.

Thus, a mechanism must elicit these values and compute

• the outcome, i.e., who gets the item

• the payment of each bidder
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Examples of single item auctions

• English or Ascending auction

• price starts at 0 and goes up

• as the price goes up, bidders drop out

• last bidder to remain gets the item and pays the current price

• Dutch or Descending auction

• price starts at infinity and goes down

• first bidder to accept the price wins the item and pays the price

• Sealed-bid first-price auction

• bidders submit their bids in sealed envelopes

• highest bidder gets the item and pays the highest bid

• Sealed-bid second-price auction

• bidders submit their bids in sealed envelopes

• highest bidder gets the item and pays the second highest bid

First-price auction ↔ Dutch auction

Second-price auction ↔ English auction
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First-price auction

• vi value of bidder i

• bi bid of bidder i , not necessarily equal to vi

• pi payment of bidder i

• ui = vi − pi utility of bidder i

In the first-price auction, the item is given to the bidder with the

maximum bid, who pays their bid.

An auction induces a game between the bidders. This is usually an

incomplete information game.

What do the players know? Two common settings:

• players have complete information; they know the values of all

bidders

• Bayesian setting, in which values come from known probability

distributions: vi ∼ Fi ; player i knows vi and F1, . . . ,Fn.
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First-price auction – complete information example

Two bidders with values v1 = 4 and v2 = 7 participate in a first-price

auction.

(Let’s assume that the bids must be positive integers and in case of a tie,

the item is given to bidder 1.)

This defines a 4× 7 matrix game. What are its Nash equilibria? It has a

few of them. For example:

• (b1, b2) = (4, 5), which gives utilities (u1, u2) = (0, v2 − b2) = (0, 2)

or

• (b1, b2) = (3, 4), which gives utilities (u1, u2) = (0, v2 − b2) = (0, 3)

Is there a dominant strategy equilibrium?
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First-price auction – Bayesian example

Two bidders with values drawn independently from the [0, 1] uniform

distribution.

In the Bayesian setting, the appropriate equilibrium concept is

Bayes-Nash equilibrium, in which deviations do not increase the

expected utility.

It can be shown that (b1, b2) = ( v12 ,
v2
2 ) is a Bayes-Nash equilibrium.
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Dominant strategies and truthful auctions

In auctions and more generally in mechanism design, it is desirable to

move beyond Nash equilibria and consider (weakly) dominant-strategy

equilibria.

Definition

A mechanism is truthful (or incentive compatible) if bidding truthfully

is a weakly dominant strategy equilibrium.

In the jargon of auctions, this is also known as DSIC — dominant

strategy incentive compatible.

In these lectures, we consider DSIC mechanisms.
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Dominant strategies and truthful auctions

We want truthful bidding, i.e. bi = vi , to be a weakly dominant

strategy for a few reasons:

• Bidding truthfully remains a dominant strategy even when a bidder

has incomplete information about the values of the other bidders

• It makes it easier for bidders to compute their best strategy

• The revelation principle works :: every mechanism is equivalent

(same allocation, same payments) to a truthful mechanism
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Second-price (Vickrey) auction

Are there any interesting truthful auctions?

The first-price auction is not truthful. In particular, the highest bidder

has no reason to bid higher than the second highest bid.
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Second-price (Vickrey) auction

Theorem

The second-price auction is truthful.

Proof.

The payment for bidder i is pi = maxj ̸=i bj .

If bi ≥ pi then bidder i wins and gains ui = vi − pi . Otherwise ui = 0.

Bidder i selects bi to maximize their utility:

ui = max(vi − pi , 0).

So,

• if vi − pi ≥ 0, the bidder should bid any value greater than pi ; in

particular bi = vi is optimal

• otherwise the utility will be ui = 0, so by bidding bi < pi , the bidder

will lose the item and achieve utility 0; in particular bi = vi is

optimal. 9



Truthfulness in second-price auction

Why is the second-price auction truthful?

• The payment depends only on the allocation and the values of the

other players

• The allocation is monotone: increasing the declared value makes

it more likely to get the item
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A look at truthfulness

Consider one bidder with value v for an item. Let

• b be the bid, the value that the bidder declares

• a(b) be the probability or fraction that the bidder gets

• p(b) be the payment

• The utility of the bidder is

u(b|v) = a(b) · v − p(b)

• For which functions a and p is the mechanism truthful? That

is, when

u(v |v) = sup
b

u(b|v)?
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A look at truthfulness

Theorem

A mechanism is truthful if and only if

• the utility u(v) = u(v |v) of the bidder is a convex function of the
private value v.

• the probability of getting the item is given by

a(v) = u′(v)

Note: no mention of payments!
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A digression: convexity
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Convexity

Definition: A function f : Rn → R is called convex when

λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y)

for every x, y and λ ∈ [0, 1].
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The three layers of convexity

We focus on functions of one variable, but everything generalizes

appropriately to many variables.

The following are equivalent (for doubly differentiable functions)

1. f (x) is convex

2. f ′(x) is monotone (nondecreasing)

3. f ′′(x) is nonnegative
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Examples of convex functions

• x2

• 1
4x

4

• max{0, x
2 − 1

6 , x − 1
2}
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Important properties of convex functions

Proposition

For every function g, the function f defined by

f (x) = sup
y
{x · y − g(y)},

is convex.

Proposition

For every convex function f , there exists a function f ∗ (called the
conjugate of f ), such that

f (x) = sup
y
{f ′(y) · x − f ∗(f ′(y))}
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Conjugate

The conjugate function f ∗ of a function f is defined by

f ∗(y) = sup
x
{x · y − f (x)}

y = f ′(x)

Notice the symmetry

f ∗(y) = sup
x
{x · y − f (x)} x ↔ y

f (x) = sup
y
{x · y − f ∗(x)} f ↔ f ∗
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Example

• f (x) = 1
4x

4

• f ′(x) = x3

• f ∗′(x) = x1/3

• f ∗(x) = 3
4x

4/3

• f ′(x) · x − f ∗(f ′(x)) = x3 · x − 3
4 (x

3)4/3 = f (x)
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Supporting hyperplanes

For every convex function f , the conjugate function f ∗ defines the
supporting hyperplanes

f (x) = sup
y
{f ′(y) · x − f ∗(f ′(y))}

Example:

f (x) =
1

4
x4 = sup

y

{
y3 · x − 3

4
y4

}
.
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A look at truthfulness

Putting everything together for truthful mechanisms:

• the utility of the agent is u(v) = argmaxb{a(b) · v − p(b)}, which is

convex even if the mechanism is not truthful.

• Convexity implies u(v) = supy{u′(v) · v − u∗(u′(y))}
• The allocation is a(v) = u′(v), and

• the payment is p(v) = u∗(u′(v)), where u∗ is the conjugate of u.

We can add a constant to the payment without affecting the argmax:

p(v) = u∗(u′(v)) + const.
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Back to truthfulness
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Truthfulness and monotonicity

Monotonicity for the single-item auction: For any fixed bids of the

other bidders, when bidder i increases their bid bi , the chances of getting

the item cannot decrease.

• The second-price auction is truthful and allocates the item to the

agent with the highest value.

• Is there a truthful mechanism to allocate it to the agent with

median (or minimum) value?

No, because the allocation function is not monotone.
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The general mechanism design framework

domains and objectives
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Beyond single-item auctions

• k-unit auction: there are k copies of an item and each bidder wants

a single copy.

• combinatorial auctions: there are m items and each bidder i has a

private valuation vi (S) for every subset S of these items.

• general mechanism design setting: there is a set A of possible

outcomes and each bidder has a private valuation vi (a) for every

a ∈ A.
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General mechanism design setting

Definition (Mechanism design setting)

We can define a mechanism design problem by:

• the set of bidders or agents. Wlog we assume it to be {1, 2, . . . , n}.
• the set A of possible outcomes

• sets of valuation functions V1 × · · · × Vn, one for each bidder. Each

element vi ∈ Vi determines the value of bidder i for each outcome:

vi : A → R.

Example (Two voters, three candidates)

Alice Bob Carol

Voter 1 10 18 20

Voter 2 21 18 12
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Single-item auction is the general mechanism design setting

Example (Single-item auction)

Suppose that v∗
1 , . . . , v

∗
n denote the values of the bidders in a

single-item auction. Then

• The set of outcomes is A = {1, 2 . . . , n}: which bidder gets the item.

• The valuation functions are of the form

vi (a) =

{
v∗
i a = i

0 otherwise

O1 O2 O3

Player 1 v1 0 0

Player 2 0 v2 0

Player 3 0 0 v3
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Combinatorial auction

Example (Combinatorial auction)

Suppose that v∗
1 (S), . . . , v

∗
n (S) denote the valuation functions of the

bidders in a combinatorial auction of m items. Then

• The set of outcomes A contains all allocation functions of m items
to n bidders. Such an allocation can be represented by a legal 0-1
matrix ai,j , i ∈ [n], j ∈ [m], where ai,j = 1 if and only if bidder i gets
item j .

• The valuation functions are of the form

vi (a) = v∗
i ({j : ai,j = 1}).

Example (3 players, 2 items)

O1 O2 O3 O4 O5 O6 O7 O8 O9
Agent 1 v∗

1 (12) v∗
1 (1) v∗

1 (1) v∗
1 (2) v∗

1 (2) 0 0 0 0
Agent 2 0 v∗

2 (2) 0 v∗
2 (1) 0 v∗

2 (12) v∗
2 (1) v∗

2 (2) 0
Agent 3 0 0 v∗

3 (2) 0 v∗
3 (1) 0 v∗

3 (2) v∗
3 (1) v∗

3 (12)
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Mechanisms in the general setting

Definition

Fix a mechanism design setting with n bidders, set of outcomes A, and
set of valuation functions V = V1 × · · · × Vn.

A (direct revelation) mechanism consists of two parts:

• a social choice function f : V → A

• a vector of payment functions p = (p1, . . . , pn), where pi : V → R.

• Each bidder i provides its valuation function vi ∈ Vi .
• The outcome is determined by the social choice function f and the
payments of the bidders are determined by the payment functions.

• The utility of bidder i is ui (v) = vi (f (v))− pi (v).

Definition (Truthful)

A mechanism (f , p) is called truthful or incentive compatible if for
every player i , every v ∈ V and every v ′

i ∈ Vi :

ui (v) ≥ vi (f (v
′
i , v−i ))− pi (v

′
i , v−i ).
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Single-parameter domains

An important special class of mechanism design is the single-parameter

setting.

• The private value of a bidder i is a single real value, v∗
i ∈ R

• For every outcome a, the value of the bidder is proportional to v∗
i ,

i.e., vi (a) = λi (a)v
∗
i , for some λi .

Example (Examples)

• Shortest path problem on a graph, where every edge e belongs to

some agent who is willing to sell it at a price.

• A multi-unit auction where the value of bidder i for k items is

(2k2 − 1)v∗
i .
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Vickrey-Clarke-Groves (VCG) mechanism

For a given outcome, the sum of the values of all bidders is called social

welfare, i.e., the social welfare for outcome a is
∑

i∈[n] vi (a).

The VCG mechanism is a truthful mechanism, which selects the

outcome that maximizes the social welfare. For example, for the

single-item auction, it allocates the item to the bidder with the highest

value.

Definition (Vickrey-Clarke-Groves (VCG) mechanisms)

The VCG mechanism has

• f (v) = argmaxa∈A

∑
i∈[n] vi (a)

• pi (v) = −
∑

j ̸=i vj(f (v)) + hi (v−i ), for some hi : V−i → R.
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The VCG mechanism
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Vickrey-Clarke-Groves (VCG) mechanism

The VCG mechanism has

• f (v) = argmaxa∈A

∑
i∈[n] vi (a)

• pi (v) = −
∑

j ̸=i vj(f (v)) + hi (v−i ), for some hi : V−i → R.

Note that the payments of VCG are not completely determined.

Choosing hi (v−i ) = maxa∈A

∑
j ̸=i vj(a) is called the Clarke pivot rule.

With these payments, one can interpret the VCG as the mechanism that

each bidder pays their value minus a discount equal to the increase of the

social welfare due to their participation in the mechanism.

pi (v) = vi (f (v))−

∑
j∈[n]

vj(f (v))−max
a∈A

∑
j ̸=i

vj(a)


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Examples of the VCG mechanism

Alice Bob Carol

Bidder 1 10 18 20

Bidder 2 21 18 12

VCG selects Bob (his column has the maximum sum).

Bidder 1 pays 18-(36-21)=3

Bidder 2 pays 18-(36-20)=2
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Examples of the VCG mechanism

Example (Second-price auction)

The second price auction is VCG with Clarke pivot rule.

The social welfare of the VCG outcome is equal to the highest value.

For simplicity, assume that v1 ≥ v2 · · · ≥ vn. Then the social welfare is

v1. If the winner does not participate, the social welfare will drop to v2,

so the winner pays their value (v1) minus a discount v1 − v2; so the

payment is v1 − (v1 − v2) = v2.
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Examples of the VCG mechanism

Example (multi-unit auction)

There are k ≥ 1 identical units of a good and each bidder wants a

single one of them.

VCG (with Clarke pivot rule) will give the k items to the k highest bids

and each one of them will pay the (k + 1)-st highest bid.
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Examples of the VCG mechanism

Example (Buying a shortest path)

Given a graph in which every edge is controlled by a different seller, we

want to buy a shortest path from some vertex s to some other vertex t.

Note that this is an inverse auction (procurement): the bidders are

sellers and the auctioneer a buyer.

The VCG mechanism will select the shortest path. Each bidder will get

their value plus the increase in the length of the shortest path when we

remove their edge.
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Examples of the VCG mechanism

1

2

3

4

1

4

2

9

3

• VCG selects a shortest path P: P = (1, 2, 3, 4)
• Edges not in P are paid nothing
• To compute the payment of an edge e on the path P:

• We remove e and compute a shortest path Pe

• The payment for edge e is

pe = ve + length of Pe − length of P

For example,
• for edge [1, 2], Pe = (1, 3, 4). The payment is 1 + 7− 6 = 2
• for edge [2, 3], Pe = (1, 3, 4). The payment is 2 + 7− 6 = 3
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Examples of the VCG mechanism

Example (Public project)

A city wants to undertake a public project with cost C , for example to

build a new road. There are n citizens/bidders. Bidder i will get benefit

vi from the project.

The city will undertake the project when the sum of reported values

exceeds C , i.e.,
∑

i∈[n] bi ≥ C . The social welfare will be
∑

i∈[n] vi − C

if the road is built, and 0 otherwise.

If we use the VCG mechanism, the payment of bidder i will be 0, unless

bidder i is critical. A bidder is critical if the total bids of the other

bidders is below C , but together with bi the sum is above C . In this

case, the bidder will pay C −
∑

j ̸=i bj .

Note that this solution has some undesirable properties: it is not

budget-balanced (i.e., the total of payments is less than C in general),

and it is susceptible to collusion (e.g., if two bidders report that their

values are C , the project will be built, and they will pay nothing).
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Truthfulness of the VCG

Theorem

VCG is truthful.

Proof.

Fix some player i , v−i , and vi . If bi is the bid of bidder i , its utility is

ui (bi , v−i ) = vi (f (bi , v−i ))− p(bi , v−i ).

We want to show that bi = vi maximizes this expression. By the
definition of VCG, p(bi , v−i ) = −

∑
j ̸=i vj(f (bi , v−i )) + hj(v−i ), so

ui (bi , v−i ) =
∑
j∈[n]

vj(f (bi , v−i )) + hi (v−i ).

Note that the term with hi is not affected by bi , so bidder i wants to
select bi that maximizes the social welfare

∑
j∈[n] vj(f (bi , v−i )). But, by

the definition of VCG, this is maximized when bi = vi .

It follows from the proof that VCG aligns the interests of all bidders with
the objective of the mechanism (i.e., to maximize the social welfare).
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Why VCG is not always the answer

VCG is a truthful mechanism that can be applied to every mechanism
design setting.

Why do we need to search for other mechanisms?

• The computational or communication complexity of VCG may be
prohibitive (e.g. combinatorial auctions).

• VCG optimizes the social welfare. But in many cases, the objective
may be different.

• For example, a usual objective is to maximize revenue. The theory of
optimal auctions tries to maximize revenue when the mechanism
designer knows the probability distributions of the values of bidders.

• Another example: in the scheduling problem, there are n machines
(bidders) and m tasks, and we want a mechanism to allocate the
tasks to minimize the makespan. The objective here (makespan) is
different than the social welfare.

• Payments may not be allowed (e.g. in voting), or payments may
have to satisfy certain conditions (e.g., in the public project setting,
we require budget balance).
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The related machines scheduling problem
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The related machines scheduling problem

There are n machines (agents) with speeds s1, . . . , sn which are private

values. There is also a set of tasks T to be scheduled on the machines.

The mechanism consists of the allocation function a(s1, . . . , sn) that

allocates the tasks to the machines and the payment functions

p1(s1, . . . , sn), . . . , pn(s1, . . . , sn).

Greedy algorithm = allocate one-by-one the items to optimize the

makespan myopically.

Greedy is not truthful: Take two machines with the first slightly faster

than the second and jobs 2, 1 + ϵ, 1 + ϵ. The first (fast) machine will get

the first job, while the second will get the other two tasks.

38



The related machines scheduling problem

Two things to note:

• each set of tasks defines a different mechanism design setting

• the objective is to minimize the makespan, i.e., the time when every

task has finished.

Therefore VCG, which maximizes the total welfare (= the sum of

completion times), may not be optimal.

Actually, VCG has approximation ratio n (equal to the number of

machines).
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The related machines scheduling problem

Theorem

There exists a truthful mechanism with optimal makespan.

Algorithm: return the lexicographically minimum among the optimal

allocations.

Let w = (w1, . . . ,wn) be the load assigned to the machines. w is

lexicographically smaller than w ′ if there is k such that

wi = w ′
i for i < k , and

wk < w ′
k

This algorithm achieves optimal makespan, but it is not a polynomial

time algorithm. However, there is a monotone PTAS.
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Selling digital goods
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Selling digital goods

Formally, we have n unit-demand bidders with valuations v1, . . . , vn and n

identical items.

Suppose that v1 ≥ v2 ≥ · · · ≥ vn and assume we know them. If we want

to maximize revenue with the same price for all bidders, we should

select p = vi , where vi maximizes ivi .

What can we do if we don’t know the values?

For every bidder i , a truthful mechanism should make a take-it-or-leave-it

offer of some price pi .

Example (Random Sampling Optimal Pricing (RSOP))

The bidders are uniformly partitioned into two parts, and the optimal

single price of each part (i.e., argmaxvi{i · vi}) is offered to the bidders

of the other part.

This is a prior-free mechanism: the designer does not assume anything

about the values.
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