
Mechanism design

Lecture 1: Introduction, VCG, single parameter settings

Elias Koutsoupias

Oxford

ADFOCS 2024

A simple mechanism design setting: Single item auction

• A seller has a single item to sell

• There are n potential buyers, aka bidders, players, agents

• Buyer i has value vi for the item

If bidder i acquires the item at a price pi , their utility will be ui = vi − pi .

This is called a quasilinear utility setting.

The essential difficulty of auctions and more generally of mechanism

design is that the values vi are private.

Thus, a mechanism must elicit these values and compute

• the outcome, i.e., who gets the item

• the payment of each bidder

1

Examples of single item auctions

• English or Ascending auction

• price starts at 0 and goes up

• as the price goes up, bidders drop out

• last bidder to remain gets the item and pays the current price

• Dutch or Descending auction

• price starts at infinity and goes down

• first bidder to accept the price wins the item and pays the price

• Sealed-bid first-price auction

• bidders submit their bids in sealed envelopes

• highest bidder gets the item and pays the highest bid

• Sealed-bid second-price auction

• bidders submit their bids in sealed envelopes

• highest bidder gets the item and pays the second highest bid

First-price auction ↔ Dutch auction

Second-price auction ↔ English auction

2

First-price auction

• vi value of bidder i

• bi bid of bidder i , not necessarily equal to vi

• pi payment of bidder i

• ui = vi − pi utility of bidder i

In the first-price auction, the item is given to the bidder with the

maximum bid, who pays their bid.

An auction induces a game between the bidders. This is usually an

incomplete information game.

What do the players know? Two common settings:

• players have complete information; they know the values of all

bidders

• Bayesian setting, in which values come from known probability

distributions: vi ∼ Fi ; player i knows vi and F1, . . . ,Fn.

3

First-price auction – complete information example

Two bidders with values v1 = 4 and v2 = 7 participate in a first-price

auction.

(Let’s assume that the bids must be positive integers and in case of a tie,

the item is given to bidder 1.)

This defines a 4× 7 matrix game. What are its Nash equilibria? It has a

few of them. For example:

• (b1, b2) = (4, 5), which gives utilities (u1, u2) = (0, v2 − b2) = (0, 2)

or

• (b1, b2) = (3, 4), which gives utilities (u1, u2) = (0, v2 − b2) = (0, 3)

Is there a dominant strategy equilibrium?

4

First-price auction – Bayesian example

Two bidders with values drawn independently from the [0, 1] uniform

distribution.

In the Bayesian setting, the appropriate equilibrium concept is

Bayes-Nash equilibrium, in which deviations do not increase the

expected utility.

It can be shown that (b1, b2) = (v12 ,
v2
2) is a Bayes-Nash equilibrium.

5

Dominant strategies and truthful auctions

In auctions and more generally in mechanism design, it is desirable to

move beyond Nash equilibria and consider (weakly) dominant-strategy

equilibria.

Definition

A mechanism is truthful (or incentive compatible) if bidding truthfully

is a weakly dominant strategy equilibrium.

In the jargon of auctions, this is also known as DSIC — dominant

strategy incentive compatible.

In these lectures, we consider DSIC mechanisms.

6

Dominant strategies and truthful auctions

We want truthful bidding, i.e. bi = vi , to be a weakly dominant

strategy for a few reasons:

• Bidding truthfully remains a dominant strategy even when a bidder

has incomplete information about the values of the other bidders

• It makes it easier for bidders to compute their best strategy

• The revelation principle works :: every mechanism is equivalent

(same allocation, same payments) to a truthful mechanism

7

Second-price (Vickrey) auction

Are there any interesting truthful auctions?

The first-price auction is not truthful. In particular, the highest bidder

has no reason to bid higher than the second highest bid.

8

Second-price (Vickrey) auction

Theorem

The second-price auction is truthful.

Proof.

The payment for bidder i is pi = maxj ̸=i bj .

If bi ≥ pi then bidder i wins and gains ui = vi − pi . Otherwise ui = 0.

Bidder i selects bi to maximize their utility:

ui = max(vi − pi , 0).

So,

• if vi − pi ≥ 0, the bidder should bid any value greater than pi ; in

particular bi = vi is optimal

• otherwise the utility will be ui = 0, so by bidding bi < pi , the bidder

will lose the item and achieve utility 0; in particular bi = vi is

optimal. 9

Truthfulness in second-price auction

Why is the second-price auction truthful?

• The payment depends only on the allocation and the values of the

other players

• The allocation is monotone: increasing the declared value makes

it more likely to get the item

10

A look at truthfulness

Consider one bidder with value v for an item. Let

• b be the bid, the value that the bidder declares

• a(b) be the probability or fraction that the bidder gets

• p(b) be the payment

• The utility of the bidder is

u(b|v) = a(b) · v − p(b)

• For which functions a and p is the mechanism truthful? That

is, when

u(v |v) = sup
b

u(b|v)?

11

A look at truthfulness

Theorem

A mechanism is truthful if and only if

• the utility u(v) = u(v |v) of the bidder is a convex function of the
private value v.

• the probability of getting the item is given by

a(v) = u′(v)

Note: no mention of payments!

12

A digression: convexity

12

Convexity

Definition: A function f : Rn → R is called convex when

λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y)

for every x, y and λ ∈ [0, 1].

13

The three layers of convexity

We focus on functions of one variable, but everything generalizes

appropriately to many variables.

The following are equivalent (for doubly differentiable functions)

1. f (x) is convex

2. f ′(x) is monotone (nondecreasing)

3. f ′′(x) is nonnegative

14

Examples of convex functions

• x2

• 1
4x

4

• max{0, x
2 − 1

6 , x − 1
2}

15

Important properties of convex functions

Proposition

For every function g, the function f defined by

f (x) = sup
y
{x · y − g(y)},

is convex.

Proposition

For every convex function f , there exists a function f ∗ (called the
conjugate of f), such that

f (x) = sup
y
{f ′(y) · x − f ∗(f ′(y))}

16

Conjugate

The conjugate function f ∗ of a function f is defined by

f ∗(y) = sup
x
{x · y − f (x)}

y = f ′(x)

Notice the symmetry

f ∗(y) = sup
x
{x · y − f (x)} x ↔ y

f (x) = sup
y
{x · y − f ∗(x)} f ↔ f ∗

17

Example

• f (x) = 1
4x

4

• f ′(x) = x3

• f ∗′(x) = x1/3

• f ∗(x) = 3
4x

4/3

• f ′(x) · x − f ∗(f ′(x)) = x3 · x − 3
4 (x

3)4/3 = f (x)

18

Supporting hyperplanes

For every convex function f , the conjugate function f ∗ defines the
supporting hyperplanes

f (x) = sup
y
{f ′(y) · x − f ∗(f ′(y))}

Example:

f (x) =
1

4
x4 = sup

y

{
y3 · x − 3

4
y4

}
.

19

A look at truthfulness

Putting everything together for truthful mechanisms:

• the utility of the agent is u(v) = argmaxb{a(b) · v − p(b)}, which is

convex even if the mechanism is not truthful.

• Convexity implies u(v) = supy{u′(v) · v − u∗(u′(y))}
• The allocation is a(v) = u′(v), and

• the payment is p(v) = u∗(u′(v)), where u∗ is the conjugate of u.

We can add a constant to the payment without affecting the argmax:

p(v) = u∗(u′(v)) + const.

20

Back to truthfulness

20

Truthfulness and monotonicity

Monotonicity for the single-item auction: For any fixed bids of the

other bidders, when bidder i increases their bid bi , the chances of getting

the item cannot decrease.

• The second-price auction is truthful and allocates the item to the

agent with the highest value.

• Is there a truthful mechanism to allocate it to the agent with

median (or minimum) value?

No, because the allocation function is not monotone.

21

The general mechanism design framework

domains and objectives

21

Beyond single-item auctions

• k-unit auction: there are k copies of an item and each bidder wants

a single copy.

• combinatorial auctions: there are m items and each bidder i has a

private valuation vi (S) for every subset S of these items.

• general mechanism design setting: there is a set A of possible

outcomes and each bidder has a private valuation vi (a) for every

a ∈ A.

22

General mechanism design setting

Definition (Mechanism design setting)

We can define a mechanism design problem by:

• the set of bidders or agents. Wlog we assume it to be {1, 2, . . . , n}.
• the set A of possible outcomes

• sets of valuation functions V1 × · · · × Vn, one for each bidder. Each

element vi ∈ Vi determines the value of bidder i for each outcome:

vi : A → R.

Example (Two voters, three candidates)

Alice Bob Carol

Voter 1 10 18 20

Voter 2 21 18 12

23

Single-item auction is the general mechanism design setting

Example (Single-item auction)

Suppose that v∗
1 , . . . , v

∗
n denote the values of the bidders in a

single-item auction. Then

• The set of outcomes is A = {1, 2 . . . , n}: which bidder gets the item.

• The valuation functions are of the form

vi (a) =

{
v∗
i a = i

0 otherwise

O1 O2 O3

Player 1 v1 0 0

Player 2 0 v2 0

Player 3 0 0 v3

24

Combinatorial auction

Example (Combinatorial auction)

Suppose that v∗
1 (S), . . . , v

∗
n (S) denote the valuation functions of the

bidders in a combinatorial auction of m items. Then

• The set of outcomes A contains all allocation functions of m items
to n bidders. Such an allocation can be represented by a legal 0-1
matrix ai,j , i ∈ [n], j ∈ [m], where ai,j = 1 if and only if bidder i gets
item j .

• The valuation functions are of the form

vi (a) = v∗
i ({j : ai,j = 1}).

Example (3 players, 2 items)

O1 O2 O3 O4 O5 O6 O7 O8 O9
Agent 1 v∗

1 (12) v∗
1 (1) v∗

1 (1) v∗
1 (2) v∗

1 (2) 0 0 0 0
Agent 2 0 v∗

2 (2) 0 v∗
2 (1) 0 v∗

2 (12) v∗
2 (1) v∗

2 (2) 0
Agent 3 0 0 v∗

3 (2) 0 v∗
3 (1) 0 v∗

3 (2) v∗
3 (1) v∗

3 (12)

25

Mechanisms in the general setting

Definition

Fix a mechanism design setting with n bidders, set of outcomes A, and
set of valuation functions V = V1 × · · · × Vn.

A (direct revelation) mechanism consists of two parts:

• a social choice function f : V → A

• a vector of payment functions p = (p1, . . . , pn), where pi : V → R.

• Each bidder i provides its valuation function vi ∈ Vi .
• The outcome is determined by the social choice function f and the
payments of the bidders are determined by the payment functions.

• The utility of bidder i is ui (v) = vi (f (v))− pi (v).

Definition (Truthful)

A mechanism (f , p) is called truthful or incentive compatible if for
every player i , every v ∈ V and every v ′

i ∈ Vi :

ui (v) ≥ vi (f (v
′
i , v−i))− pi (v

′
i , v−i).

26

Single-parameter domains

An important special class of mechanism design is the single-parameter

setting.

• The private value of a bidder i is a single real value, v∗
i ∈ R

• For every outcome a, the value of the bidder is proportional to v∗
i ,

i.e., vi (a) = λi (a)v
∗
i , for some λi .

Example (Examples)

• Shortest path problem on a graph, where every edge e belongs to

some agent who is willing to sell it at a price.

• A multi-unit auction where the value of bidder i for k items is

(2k2 − 1)v∗
i .

27

Vickrey-Clarke-Groves (VCG) mechanism

For a given outcome, the sum of the values of all bidders is called social

welfare, i.e., the social welfare for outcome a is
∑

i∈[n] vi (a).

The VCG mechanism is a truthful mechanism, which selects the

outcome that maximizes the social welfare. For example, for the

single-item auction, it allocates the item to the bidder with the highest

value.

Definition (Vickrey-Clarke-Groves (VCG) mechanisms)

The VCG mechanism has

• f (v) = argmaxa∈A

∑
i∈[n] vi (a)

• pi (v) = −
∑

j ̸=i vj(f (v)) + hi (v−i), for some hi : V−i → R.

28

The VCG mechanism

28

Vickrey-Clarke-Groves (VCG) mechanism

The VCG mechanism has

• f (v) = argmaxa∈A

∑
i∈[n] vi (a)

• pi (v) = −
∑

j ̸=i vj(f (v)) + hi (v−i), for some hi : V−i → R.

Note that the payments of VCG are not completely determined.

Choosing hi (v−i) = maxa∈A

∑
j ̸=i vj(a) is called the Clarke pivot rule.

With these payments, one can interpret the VCG as the mechanism that

each bidder pays their value minus a discount equal to the increase of the

social welfare due to their participation in the mechanism.

pi (v) = vi (f (v))−

∑
j∈[n]

vj(f (v))−max
a∈A

∑
j ̸=i

vj(a)



29

Examples of the VCG mechanism

Alice Bob Carol

Bidder 1 10 18 20

Bidder 2 21 18 12

VCG selects Bob (his column has the maximum sum).

Bidder 1 pays 18-(36-21)=3

Bidder 2 pays 18-(36-20)=2

30

Examples of the VCG mechanism

Example (Second-price auction)

The second price auction is VCG with Clarke pivot rule.

The social welfare of the VCG outcome is equal to the highest value.

For simplicity, assume that v1 ≥ v2 · · · ≥ vn. Then the social welfare is

v1. If the winner does not participate, the social welfare will drop to v2,

so the winner pays their value (v1) minus a discount v1 − v2; so the

payment is v1 − (v1 − v2) = v2.

31

Examples of the VCG mechanism

Example (multi-unit auction)

There are k ≥ 1 identical units of a good and each bidder wants a

single one of them.

VCG (with Clarke pivot rule) will give the k items to the k highest bids

and each one of them will pay the (k + 1)-st highest bid.

32

Examples of the VCG mechanism

Example (Buying a shortest path)

Given a graph in which every edge is controlled by a different seller, we

want to buy a shortest path from some vertex s to some other vertex t.

Note that this is an inverse auction (procurement): the bidders are

sellers and the auctioneer a buyer.

The VCG mechanism will select the shortest path. Each bidder will get

their value plus the increase in the length of the shortest path when we

remove their edge.

33

Examples of the VCG mechanism

1

2

3

4

1

4

2

9

3

• VCG selects a shortest path P: P = (1, 2, 3, 4)
• Edges not in P are paid nothing
• To compute the payment of an edge e on the path P:

• We remove e and compute a shortest path Pe

• The payment for edge e is

pe = ve + length of Pe − length of P

For example,
• for edge [1, 2], Pe = (1, 3, 4). The payment is 1 + 7− 6 = 2
• for edge [2, 3], Pe = (1, 3, 4). The payment is 2 + 7− 6 = 3

34

Examples of the VCG mechanism

Example (Public project)

A city wants to undertake a public project with cost C , for example to

build a new road. There are n citizens/bidders. Bidder i will get benefit

vi from the project.

The city will undertake the project when the sum of reported values

exceeds C , i.e.,
∑

i∈[n] bi ≥ C . The social welfare will be
∑

i∈[n] vi − C

if the road is built, and 0 otherwise.

If we use the VCG mechanism, the payment of bidder i will be 0, unless

bidder i is critical. A bidder is critical if the total bids of the other

bidders is below C , but together with bi the sum is above C . In this

case, the bidder will pay C −
∑

j ̸=i bj .

Note that this solution has some undesirable properties: it is not

budget-balanced (i.e., the total of payments is less than C in general),

and it is susceptible to collusion (e.g., if two bidders report that their

values are C , the project will be built, and they will pay nothing).

35

Truthfulness of the VCG

Theorem

VCG is truthful.

Proof.

Fix some player i , v−i , and vi . If bi is the bid of bidder i , its utility is

ui (bi , v−i) = vi (f (bi , v−i))− p(bi , v−i).

We want to show that bi = vi maximizes this expression. By the
definition of VCG, p(bi , v−i) = −

∑
j ̸=i vj(f (bi , v−i)) + hj(v−i), so

ui (bi , v−i) =
∑
j∈[n]

vj(f (bi , v−i)) + hi (v−i).

Note that the term with hi is not affected by bi , so bidder i wants to
select bi that maximizes the social welfare

∑
j∈[n] vj(f (bi , v−i)). But, by

the definition of VCG, this is maximized when bi = vi .

It follows from the proof that VCG aligns the interests of all bidders with
the objective of the mechanism (i.e., to maximize the social welfare).

36

Why VCG is not always the answer

VCG is a truthful mechanism that can be applied to every mechanism
design setting.

Why do we need to search for other mechanisms?

• The computational or communication complexity of VCG may be
prohibitive (e.g. combinatorial auctions).

• VCG optimizes the social welfare. But in many cases, the objective
may be different.

• For example, a usual objective is to maximize revenue. The theory of
optimal auctions tries to maximize revenue when the mechanism
designer knows the probability distributions of the values of bidders.

• Another example: in the scheduling problem, there are n machines
(bidders) and m tasks, and we want a mechanism to allocate the
tasks to minimize the makespan. The objective here (makespan) is
different than the social welfare.

• Payments may not be allowed (e.g. in voting), or payments may
have to satisfy certain conditions (e.g., in the public project setting,
we require budget balance).

37

The related machines scheduling problem

37

The related machines scheduling problem

There are n machines (agents) with speeds s1, . . . , sn which are private

values. There is also a set of tasks T to be scheduled on the machines.

The mechanism consists of the allocation function a(s1, . . . , sn) that

allocates the tasks to the machines and the payment functions

p1(s1, . . . , sn), . . . , pn(s1, . . . , sn).

Greedy algorithm = allocate one-by-one the items to optimize the

makespan myopically.

Greedy is not truthful: Take two machines with the first slightly faster

than the second and jobs 2, 1 + ϵ, 1 + ϵ. The first (fast) machine will get

the first job, while the second will get the other two tasks.

38

The related machines scheduling problem

Two things to note:

• each set of tasks defines a different mechanism design setting

• the objective is to minimize the makespan, i.e., the time when every

task has finished.

Therefore VCG, which maximizes the total welfare (= the sum of

completion times), may not be optimal.

Actually, VCG has approximation ratio n (equal to the number of

machines).

39

The related machines scheduling problem

Theorem

There exists a truthful mechanism with optimal makespan.

Algorithm: return the lexicographically minimum among the optimal

allocations.

Let w = (w1, . . . ,wn) be the load assigned to the machines. w is

lexicographically smaller than w ′ if there is k such that

wi = w ′
i for i < k , and

wk < w ′
k

This algorithm achieves optimal makespan, but it is not a polynomial

time algorithm. However, there is a monotone PTAS.

40

Selling digital goods

40

Selling digital goods

Formally, we have n unit-demand bidders with valuations v1, . . . , vn and n

identical items.

Suppose that v1 ≥ v2 ≥ · · · ≥ vn and assume we know them. If we want

to maximize revenue with the same price for all bidders, we should

select p = vi , where vi maximizes ivi .

What can we do if we don’t know the values?

For every bidder i , a truthful mechanism should make a take-it-or-leave-it

offer of some price pi .

Example (Random Sampling Optimal Pricing (RSOP))

The bidders are uniformly partitioned into two parts, and the optimal

single price of each part (i.e., argmaxvi{i · vi}) is offered to the bidders

of the other part.

This is a prior-free mechanism: the designer does not assume anything

about the values.
41

