
Mechanism design

Lecture 2: Multi-parameter mechanisms as algorithms

Elias Koutsoupias

Oxford

ADFOCS 2024

Multi-parameter mechanism design

0

A look at multidimensional truthfulness

Recall the characterization of truthfulness for single item auctions /
single parameter domains.

Theorem

A single-parameter mechanism is truthful if and only if

• the utility u(v) of the bidder is a convex function of the private
value v.

• the probability of getting the item is given by

a(v) = u′(v)

It generalizes to mutli-item auctions / multi-parameter domains:

Theorem

A mechanism is truthful if and only if

• the utility u(v) is a convex function

• the probability of getting item j is given by

aj(v) =
∂u(v)

∂vj
1

Important properties of convex functions

Recall the propositions for single-variable convex functions:

Proposition

For every function g, the function f defined by

f (x) = sup
y
{x · y − g(y)},

is convex.

Proposition

For every convex function f , there exists a function f ∗ (called the
conjugate of f), such that

f (x) = sup
y
{f ′(y) · x − f ∗(f ′(y))}

Both propositions hold for functions of many variables. Simply
interpret “·” as inner product, and f ′ as ∇f .

f (x) = sup
y
{∇f (y) · x − f ∗(∇f (y))}

2

A look at multidimensional truthfulness

Putting everything together. Consider a truthful mechanism (a, p) for an

agent with vector of values v and bid vector b:

• the utility of the agent is

u(v) = sup
b
{a(b) · v − p(b)},

which is convex even if the mechanism is not truthful.

• Convexity implies

u(v) = sup
y
{∇u(v) · v − u∗(∇u(y))}

• The allocation vector is a(v) = ∇u(v), and
• the payment is p(v) = u∗(∇u(v)), where u∗ is the conjugate of u.

We can add a constant to the payment function without affecting

truthfulness: p(v) = u∗(∇u(v)) + const.

3

Take away message for truthfulness

A mechanism (a, p) that produces legal outcomes is truthful if for every

agent

• the allocation function a(v) is monotone, that is, a(v) = ∇u(v) for
some convex function u(v)

• the payment function p(v) depends only on the allocation a(v) and

the values of the other bidders.

Furthermore, if the allocation function a(v) is monotone there exists

payment function p(v) for which the mechanism (a, p) is truthful, and

vice versa.

4

Affine maximizers

4

VCG and affine maximizers

Definition (Affine maximizer)

In an affine maximizer (or generalized VCG) there are constants λi ≥ 0

(one for each player) and γj (one for each outcome) and the mechanism

selects the outcome j which maximizes∑
i

λivij + γj .

Example (Affine maximizer for 2 players, 3 outcomes)

v11 v12 v13 ← λ1
v21 v22 v23 ← λ2
↑ ↑ ↑
γ1 γ2 γ3

VCG is the special case of λi = 1, γj = 0

5

VCG and affine maximizers

Theorem

Affine maximizers are truthful.

Why? They align the utility of every bidder with the weighted social

welfare (=
∑

i λivij + γj): payments are such that the utility of every

agent is maximized when the weighted social welfare is maximized.

6

Roberts theorem

6

Beyond VCG and affine maximizers?

Theorem (Roberts, 1979)

For unrestricted domains with 2 or more players and at least 3

outcomes, the only truthful deterministic mechanisms are the affine

maximizers.

• Major open problem: extend Roberts theorem to combinatorial

auctions, scheduling, and other domains.

7

Mechanisms without payments

Theorem (Gibbard-Satterthwaite)

The only truthful mechanisms without money are dictatorships

(In retrospect, a corollary of Roberts theorem.)

• In other words, truthful mechanisms without payments are very

weak.

• On the other hand, there are some very interesting mechanisms

without payments: For example the stable matching algorithm.

8

The graph balancing problem

8

The graph balancing problem

2 1

3

4

2 3

1

4

2

5

1
2

Graph balancing problem: Given a graph in which edges have two

weights (one for each of its nodes), orient the edges to minimize the

maximum load on the nodes. The load of a node is the corresponding

weight of all edges oriented towards the node.

Let ti,j denote the weight of node i on edge {i , j}.

Mechanism design setting: the nodes are agents and their weights are

private values. The agents want to minimize the load allocated to them.

9

Truthful balancing on stars

Consider the balancing setting on stars. The

VCG and its generalizations have large ap-

proximation ratio.

0

321

2

3

1
4

2

5

VCG mechanism (edge-independent)

argmin
S

∑
j∈S

t0,j +
∑
j ̸∈S

tj,0

Approximation ratio: n − 1 (= number of leaves)

Affine minimizers / Weighted VCG

argmin
S

∑
j∈S

t0,j + λ
∑
j ̸∈S

tj,0

Approximation ratio: Θ(
√
n), when λ = Θ(1/

√
n)

10

Truthful balancing on stars

A new mechanism:

Hybrid mechanism

argmin
S

∑
j∈S

t0,j +maxj ̸∈S tj,0

Compare with

VCG mechanism

argmin
S

∑
j∈S

t0,j +
∑

j ̸∈S
tj,0

11

The geometry of the Hybrid mechanism

The geometry of the Hybrid mechanism (where ri = t0,i , ℓi = ti,0). The

figure shows the partition of the space into allocations of the root, when

the there are two leaves. For example, the root gets both edges when

both r1 and r2 are small.

r1

r2

ℓ2

ℓ1ℓ1 − ℓ2 r1

r2

ℓ1

ℓ2

ℓ2 − ℓ1

12

Truthful balancing on stars - upper and lower bound

Theorem

The Hybrid mechanism for stars is truthful and has approx ratio 2

Proof of upper bound: Let S be the set allocated to the root. Then

cost of Hybrid ≤ min
S

∑
j∈S

t0,j +max
j ̸∈S

tj,0

≤ min
S

2max
{∑

j∈S

t0,j ,max
j ̸∈S

tj,0
}
= 2OPT

Lower bound:

0

1 2 · · · k

1

2

2

22

2k−1

2k

13

What about other graphs?

Definition (Star-Cover mechanism)

Given an arbitrary graph, partition its edges into stars T1, . . . ,Tr .

Run the Hybrid mechanism for each star independently.

Theorem

Star-Cover is truthful and has approximation ratio 2r .

14

Theorem

The approximation ratio of a k-inductive (or k-degenerate) graph is at

most 2(k + 1).

1

2

3

4

5

6

=

1

3

4

5

6

+
3

4

5

+

2

4

+

2

3

+

1

2

• trees : 4

• planar graphs : 12

• k-trees : 2(k + 1)

• treewidth k : 2(k + 1)

15

Trees

Theorem

The approximation ratio for trees is in [2.61, 4].

• Upper bound: trees are 1-inductive

• Lower bound: expand the lower bound for stars.

0

1 2 · · · k

0

0

1

1

2

2

· · · k

k

16

Extensions to Lp-norm

Lp-norm objective: minimize or maximize (
∑

i COST
p
i)

1/p.

• p =∞ (minimize the makespan)

• p = 1 (total welfare - VCG is optimal)

• p → 0 (Nash Social Welfare)

The Hybrid mechanism can be extended to this objective.

Theorem

For the problem of minimizing the Lp-norm, the Hybrid Lp mechanism

for stars has approximation ratio of most 2|p−1|/p.

This is optimal, for values of p ≥ 1.

17

The unrelated machines scheduling problem

17

The scheduling problem

Input

• n machines (aka bidders, agents, players)

• m tasks 
t1,1 t1,2 · · · t1,m
...

...
...

ti,1 ti,2 · · · ti,m
...

...
...

tn,1 tn,2 · · · tn,m


ti,j : execution of time of task j by machine i

Output

Allocation ai,j : 1 if and only if machine i gets task j

Objective

Minimize the makespan = maxi
∑

j ai,j ti,j

18

The scheduling problem

In the classical algorithmic setting:

• NP-hard to approximate within a factor of 1.5

• There exists a polytime 2-approximation algorithm

(Lenstra-Smoys-Tardos, 1987)

• Major open problem to close the gap [1.5, 2]

19

Mechanism design setting



t1,1 t1,2 · · · t1,m
...

...
...

ti,1 ti,2 · · · ti,m
...

...
...

tn,1 tn,2 · · · tn,m


The execution times ti = (ti,1, . . . , ti,m) of machine i are private values.

To incentivize the machines to be truthful (i.e., to report their actual

private values), the mechanisms pays them.

• A mechanism is defined by the allocation function a(t) and the

payment functions (p1(t), . . . , pn(t)).

• Each machine i reports values t∗i , perhaps different than ti , that

maximize its utility

20

Example: the VCG mechanism

The Vickrey-Clarke-Groves (VCG) mechanism

• allocates each task, independently of the others

• it gives each task j to the machine with the minimum (declared)

value ti,j and pays the second minimum value.

The VCG mechanism has approximation ratio exactly n. Lower

bound: 
1− ϵ 1− ϵ · · · 1− ϵ
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


Nisan and Ronen conjectured that no mechanism has better

approximation ratio.

21

The Nisan-Ronen conjecture

Theorem [Christodoulou-Koutsoupias-Kovacs, STOC 2023]

No deterministic mechanism can achieve an approximation ratio less than

n for the scheduling problem of n unrelated machines.

Conjectured by Noam Nisan and Amir Ronen [STOC 1999].

22

Why focus on scheduling?

• scheduling is an important classical optimization problem

• the objective is the maximum of completion times

• in contrast, the sum of completion times can be solved optimally by

VCG

• similarly, Minimum Spanning Tree and TSP admit “easy”

mechanisms

• multi-parameter domain

• in contrast, single parameter domains are usually easy

• extremely rich and challenging setting

23

Monotone algorithms for multiple tasks

23

Monotonicity for multiple tasks

Multiple parameter monotonicity / truthfulness

If ai,j(t) is the probability of allocating task j to machine i , then

• ai (t) = (ai,1(t), . . . , ai,m(t)) is monotone in (vector) ti , i.e., when

we change ti to t ′i :

(ai (t
′)− ai (t)) · (t ′i − ti) ≤ 0

(“·” means the inner product of vectors)

• ai (t) is the gradient of a concave function (= the dis-utility of the

player)

24

The types of 2× 2 deterministic monotone allocations

Consider 2 machines and 2 tasks, with input

(
t1 t2
s1 s2

)
.

An algorithm partitions the space of the first machine into 4 parts, one

for each possible allocation.

Monotonicity, ∆ai ·∆ti ≤ 0, implies that the partition must have the

following special partitions (called quasi-bundling, quasi-flipping, and

task-independent, respectively).

t1

t2
ψ1(t2, s)

R1

R12 R2

R∅

t1

t2
ψ1(t2, s)

R1

R12 R2

R∅

t1

t2
ψ1(t2, s)

R1

R12 R2

R∅

ψ1(t2, s) is the boundary function for task 1.
25

Relaxed affine minimizers

Affine minimizers have boundaries that are affine functions, e.g.,

ψ1(s1) = λ s1 + γ, for some constants λ and γ.

Relaxed affine minimizers extend affine minimizers as follows: when there

are only two possible allocations, the boundaries need only be monotone.

Relaxed affine minimizers are truthful mechanisms.

Example of a relaxed affine minimizer:

t1

t2

s2

s1s1 − 1

s2 − 1

R1

R12 R2

R∅

t1

t2

√
(s1 + s2)/2

√
(s1 + s2)/2

R12

R∅

26

Relaxed task independent algorithms

Task independent mechanisms are also truthful mechanisms (another

generalization of VCG).

t1

t2

s21

es2

R1

R12 R2

R∅

Boundaries are independent, except on countably many points. Boundary

functions can be arbitrary monotone functions, e.g., ψ1(s1) = s21 .

27

Characterization of (2 machines, 2 tasks) monotone algorithms

Theorem

There are only two types of monotone deterministic algorithms for 2

machines and 2 tasks:

• relaxed affine minimizers

• relaxed task independent algorithms

Major open question: what are the possible monotone algorithms for

multiple machines and tasks? For randomized algorithms?

28

Multigraph balancing

28

Multigraph balancing is a special case of scheduling

We don’t understand the interplay of monotonicity for more than two

machines.

To overcome this, we consider a special case of the scheduling problem in

which every task can be allocated to at most two machines.

This is equivalent to the multigraph balancing problem: given a

multigraph with double weights on its edges (one for each node), orient

its edges to minimize the maximum incoming weight.

29

Multigraph balancing is a special case of scheduling

2 3 4 1

1 2 ∞ ∞
∞ ∞ 9 3

Machines ↔ Nodes

Tasks ↔ Edges

The execution time for the other machines is so high (∞) that no

algorithm with poly(n) approximation ratio uses them.

30

1

2 3

2

1
3

2

4

9

1

3

Instances used in the proof of the

Nisan-Ronen conjecture: multi-cliques and

multi-stars

30

Instances of graphs that we consider

Multi-cliques and multi-stars with very high multiplicity.

1

4

3

2

z

0

z
0

z

0z

0

z

0

z 0

z
0

z

0

z

0

z

0

z0

z

0

1

4

3

2

0

z

0
z

0

z

0

z

0
z

0

z

• Every edge e = {i , j} has two values: 0 and zi,j ≥ 0.

• Important property: the optimal allocation has cost 0.

Theorem (Main)

No deterministic monotone algorithm can have an approximation ratio less

than n on multi-cliques.
31

Instances of graphs that we consider

Multi-cliques and multi-stars with very high multiplicity.

1

4

3

2

z

0

z
0

z

0z

0

z

0

z 0

z
0

z

0

z

0

z

0

z0

z

0

1

4

3

2

0

z

0
z

0

z

0

z

0
z

0

z

• Every edge e = {i , j} has two values: 0 and zi,j ≥ 0.

• Important property: the optimal allocation has cost 0.

Theorem (Main)

No deterministic monotone algorithm can have an approximation ratio less

than n on multi-cliques.
31

High level proof

Towards a contradiction, assume that the approximation ratio is less than

n. Then

Theorem (Box theorem)

Every multi-star with sufficiently high multiplicity contains a “box”.

box: a star whose edges are oriented almost independently

Theorem (Nice multi-star theorem)

Every multi-clique with sufficiently high multiplicity contains a “nice”

multi-star of a given multiplicity.

nice multi-star: if it contains a box of size n, the approximation ratio is

n.

32

Box theorem

32

Consider the star

0

321

0

z1

0
z2

0

z
3

• Fix the values of the leaves

• ψj(zj) = maximum (supremum) value for which the root takes task

j , when we keep all other tasks at value 0.

• What will happen if we increase the values of every task j to

ψj(zj)− ϵ?
• The star is called a box if the root will still take all the tasks.



0 0 ... 0 ... 0

z

z

. . .

z

. . .

z


→



ψ1(z) ψ2(z) ... ψj(z) ... ψn−1(z)

z

z

. . .

z

. . .

z


33

Examples of box and non-box stars for 2 and 3 leaves:

t1

t2

ψ2
o

ψ1

box

t1

t2

ψ2
o

ψ1

box

t1

t2

ψ2
o

ψ1

non-box

t1

t3

t2

ψ1

ψ3

ψ2

o

box

t1

t3

t2

ψ1

ψ3

ψ2

o

non-box

34

Examples of box and non-box stars for 2 and 3 leaves:

t1

t2

ψ2
o

ψ1

box

t1

t2

ψ2
o

ψ1

box

t1

t2

ψ2
o

ψ1

non-box

t1

t3

t2

ψ1

ψ3

ψ2

o

box

t1

t3

t2

ψ1

ψ3

ψ2

o

non-box

34

Theorem (Box theorem)

Every multi-star with sufficiently high multiplicity contains a box.

Proof (intuition):

• induction on the number of machines k = 2, . . . , n ;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box, but its sides are

boxes

t1

tk

t2

t1

tk

t2

t1

tk

t2

• ψk (sk) cannot be linear in sk because by changing sk the shape would

move rectilinearly (as above), which leads to a contradiction.

• By the 2x2 characterization, the allocation of task k is independent of tk′

of every parallel task k ′, so {1, 2, . . . , k ′} is a box.

35

Approximation ratio of multi-stars is Θ(
√
n)

A corollary of the box theorem is

Theorem

The approximation ratio of multi-stars is
√
n − 1.

Why? Fix all leaf values to z .

• Case 1: ψj(z) ≤ z/
√
n − 1

if root has value ψj(z) + ϵ, task j will be allocated to the leaf, which

gives an approximation ratio at least
√
n − 1

• Case 2:
∑

j ψj(z) ≥ z
√
n − 1

root with values ψj(z)− ϵ takes all tasks, which gives again an

approximation ratio of at least
√
n − 1.

To improve the ratio to n, we need to consider multi-cliques. Our aim is

to find a box that satisfies
∑

j ψj(z) ≥ (n − 1)z , for some z > 0.

36

Nice multi-star theorem

36

Nice multi-stars

To get a better approximation ratio, we need to consider multicliques,

instead of multistars.

The idea is that a multiclique contains a special type of multistars, called

nice, with an approximation ratio of n.

37

Nice multi-stars

What is a nice multi-star S(q, z)? A multi-star of n − 1 leaves with

• multiplicity q

• every edge has values (0, z)

• every simple star satisfies
∑

i ψi (z) ≥ (n − 1)z .

Theorem (Nice multi-star theorem)

For every q, there is a multi-clique that contains a nice multi-star
S(q, z) for some z > 0 — otherwise the approximation ratio is at least
n.

Why? A random multi-clique of sufficiently high multiplicity contains a
nice multi-star S(q, z), for some z , with positive probability.

By random: each edge has random values (0, x) or (x , 0) for
x ∈ {ϵ, 2ϵ, . . . , 1}.

38

Why are there nice multi-stars (with
∑

i ψi(z) ≥ (n − 1)z)?

Because on “average” every star in a clique is nice. This is due to

Young’s inequality.

Lemma (Young’s inequality)

If ψi and ψj are the boundary functions of an edge, then for every a ≥ 0:∫ a

0

ψi (x) dx +

∫ a

0

ψj(x) dx ≥ a2.

Why? Because ψi and ψj are inverse functions.

39

Why are there nice multi-stars (with
∑

i ψi(z) ≥ (n − 1)z)?

Because on “average” every star in a clique is nice. This is due to

Young’s inequality.

Lemma (Young’s inequality)

If ψi and ψj are the boundary functions of an edge, then for every a ≥ 0:∫ a

0

ψi (x) dx +

∫ a

0

ψj(x) dx ≥ a2.

Why? Because ψi and ψj are inverse functions.

39

On “average” every clique has a nice star

Lemma (Young’s inequality)

If ψi and ψj are the boundary functions of an edge, then for every a ≥ 0:∫ a

0

ψi (x) dx +

∫ a

0

ψj(x) dx ≥ a2.

If ψ’s were independent, then on “average” there exists a star such that

∫ a

0

∑
i

ψi (x) dx ≥
n − 1

2
a2

∃x :
∑
i

ψi (x) ≥ (n − 1)x ,

40

Problems to solve:

• ψ’s are not independent, but we need to show that the same x

works for all edges

• to be able to apply the Box theorem, we need a nice multi-star of

high multiplicity, not a simple star

41

Fixing the details

• ψ’s are not independent, but we need to show that the same x

works for all edges

• we need a nice multi-star of high multiplicity, not a simple star

The solution to the first problem : with positive probability there exists a

dipole in which all edges have (almost) the same ψ. This requires very

high multiplicity.

j

i

0
1

· · ·

0
1

· · ·

0
2ϵ0

2ϵ

0
ϵ0

ϵ

42

Fixing the details

• ψ’s are not independent, but we need to show that the same x

works for all edges

• we need a nice multi-star of high multiplicity, not a simple star

One solution to the second problem comes from extremal hypergraph

theory. What we need is a generalization of the Zarankiewicz problem:

Lemma (Zarankiewicz)

For every m and d, there exists k such that every k × k bipartite graph

with density d contains a complete m ×m bipartite graph.

43

Take away message

43

Theorem

No deterministic mechanism can achieve an approximation ratio less than

n for the scheduling problem of n unrelated machines.

Conclusion

The Nisan-Ronen conjecture is correct : truthfulness/monotonicity im-

poses severe restrictions

What can we do?

• Understand randomized mechanisms. They may be more powerful

• Move beyond DSIC mechanisms

44

Randomized / fractional mechanisms

44

The fractional version of scheduling

Fractional allocations

• With fractional allocations, each task can be split across the

machines.

• Computationally easier than the deterministic version: solvable in

polynomial time by linear programming.

• fractional approximation ratio ≤ randomized approximation ratio

45

Fractional version: upper bound

Definition

The SQUARE mechanism allocates each task independently. Machine i

gets task j with probability inversely proportional to t2i,j .

Theorem

The SQUARE mechanism is truthful and has approximation ratio

(n + 1)/2.

46

Fractional version: lower bound

A bad input 

0 ∞ · · · ∞ · · · ∞ n − 1

∞ 0 · · · ∞ · · · ∞ n − 1

· · ·
∞ ∞ · · · 0 · · · ∞ n − 1

· · ·
∞ ∞ · · · ∞ · · · 0 n − 1


Proving a lower bound of 2− 1/n

• Find the player who gets the largest fraction of the last task and

raise its diagonal value from 0 to 1.

• When we change the values, the allocation remains almost the same.

• The optimal cost for the new input is 1.

• The cost of the changed player is at least 1 + n−1
n − ϵ.

• Therefore the approximation ratio is at least 2− 1
n − ϵ.

47

Fractional version: lower bound

A bad input 

0 ∞ · · · ∞ · · · ∞ n − 1

∞ 0 · · · ∞ · · · ∞ n − 1

· · ·
∞ ∞ · · · 1 · · · ∞ n − 1

· · ·
∞ ∞ · · · ∞ · · · 0 n − 1


Proving a lower bound of 2− 1/n

• Find the player who gets the largest fraction of the last task and

raise its diagonal value from 0 to 1.

• When we change the values, the allocation remains almost the same.

• The optimal cost for the new input is 1.

• The cost of the changed player is at least 1 + n−1
n − ϵ.

• Therefore the approximation ratio is at least 2− 1
n − ϵ.

47

Open problems

47

Open questions

• What is the power of fractional and randomized monotone

algorithms?

• What is the approximation ratio for simple (multiplicity 1) cliques?

For trees?

• Understand the communication complexity of truthful combinatorial

auctions

Thank you!

48

Open questions

• What is the power of fractional and randomized monotone

algorithms?

• What is the approximation ratio for simple (multiplicity 1) cliques?

For trees?

• Understand the communication complexity of truthful combinatorial

auctions

Thank you!

48

