Prophet Inequalities

Part 1: Introduction

Paul Dutting, Google Research
duetting@google.com
ADFOCS 2024 Summer School
August 2024



Plan for Part 1

* What is a prophet inequality?
» Statement and proof of the classic prophet inequality

* What'’s so exciting about prophet inequalities?

» A powerful tool for mechanism design
» A new beyond worst-case’ paradigm for online algorithms

* On the way: Sample / overview of research landscape



Outline Other Parts

Part 1: Introduction
Part 2: Online matching and contention resolution
Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Useful Resources

* WINE 2016 Tutorial “Posted-Price Mechanisms and Prophet Inegaulities” by
Brendan Lucier [website, slides]

e EC 2017 Tutorial ”"Pricing in Combinatorial Markets” by Michal Feldman and
Brendan Lucier [on request]

 |PCO 2017 Summer School “Prophets and Secretaries” by Anupam Gupta
[lecture notes]

e EC 2021 Tutorial “Prophet Inequalities and Implications to Pricing and Online
Algorithms” by Michal Feldman, Thomas Kesselheim, and Sahil Singla [website,
slides-ptl, slides-pt2, slides-pt3]

(This course builds on these prior courses/tutorials, and re-uses some of the material)


https://www.cs.mcgill.ca/~wine2016/tutorials.html
https://www.cs.mcgill.ca/~wine2016/media/slides/WINE2016-Tutorial-Lucier.pptx
https://www.cs.cmu.edu/~anupamg/ipco17/ipco-talk3.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part1.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part2.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part3.pdf

Books and Surveys

e Survey “A Survey of Prophet Inequalities in Optimal Stopping” by Theodore Hill
and Robert Kertz [pdf] (from 1992)

* Survey “An Economic View of Prophet Inequalities” by Brendan Lucier [pdf]
(from 2017)

 Survey “Recent Developments in Prophet Inequalities” by Jose Correa, Patricio
Foncea, Ruben Hoeksma, Tim Osterwijk, Tjark Vredeveld [pdf] (from 2018)

 Forthcoming book “Prophet Inequalities: Theory and Practice” by Jose Correa,
Paul Ditting, Michal Feldman, Brendan Lucier, and Thomas Kesselheim
(planned for 2025)


http://www-stat.wharton.upenn.edu/~steele/Courses/900/Library/Prophet82Survey.pdf
https://cs.brown.edu/courses/cs1951k/lectures/2020/prophet_inequality_reading.pdf
https://www.dii.uchile.cl/~jcorrea/papers/Journals/CFHOV2019.pdf

The Classic Prophet Inequality



The Problem

* Given known distributions D4, D,, ..., D,, over (hon-negative) values:

* A gambler gets to see realizations v; ~ D; one-by-one, and needs to
immediately and irrevocable decide whether to accept v;

* The prophet sees the entire sequence of values v, v, ..., 1,, at once, and can
simply choose the maximum value

* Question: What’s the worst-case gap between [E[value accepted by gambler] and
[E[value accepted by prophet]? | I I
I |
| =: E[ALG]
= E|max;v;]
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Let’s Play

reject accept

ALG=0.8 vs. OPT=0.9



Optimal Policy

For fixed distributions D,,D,, ..., D,,, one can compute the optimal
online algorithm by backward induction:

VALy.q = Evn~2)n[vn]
VALi:n = ]Evi~2)i,...,vn~2)n [max{vi’ VALi+1:7’l}]

= Accept v; ifv; = VAL, 1.,



Competitive Ratio

Definition. The prophet inequality problem admits a competitive ratioof &« = 1 if,
for all distributions D4, D5, ..., D,,, there exists an online algorithm ALG such that

1
]E[ALG] = E . IE[maXl-vi]




Prophet Inequality

Theorem [Krengel-Succheston ‘77+'78] (+ Garling)

For all distributions D, D,, ..., D,,, there is an online algorithm ALG
such that E[ALG]| = % E[max;v;].

Krengel and Succheston in Oberwolfach




Stronger Version

Theorem [Samuel-Cahn '84]
For all distributions D, D,, ..., D,,, there is a threshold algorithm ALG;,
such that E|ALG,| = % [E|max;v;].

Threshold algorithm: set threshold/price 7, accept first v; = 7

Samuel-Cahn (from Gil Kalai’s Blog)




Tightness

The factor 2 cannot be improved upon:

Consider the following setting with n = 2 random variables:

1

vi=1w.p.1, v, = ~ W.p.¢€ and v, = 0 o.t.w. + Kk, Tonaehot”

Then E[ALG| < 1, while

E[maxvi]=6-1+(1—e)-1=2 — €
l

€

Sending € — 0 shows the claim.



Re-Discovery in TCS

* Prophet inequalities are a powerful tool in mechanism design
[Hajiaghayi, Kleinberg, Sandholm 2007]

* Prophet inequalities provide a new beyond the worst-case”
paradigm for online algorithms

This sparked a whole research field in (theoretical)
computer science, exploring applications and extensions of
the classic prophet inequality.



Proof of the Classic Prophet
Inequality
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Prophet Inequality

Theorem [Samuel-Cahn '84]

For all distributions D, D,, ..., D,,, there is a threshold algorithm ALG;
such that E|ALG,| = % [E|max;v;].

Threshold algorithm: set threshold/price 7, accept first v; = 7

: Let p. = Pr|3 v; =
Actually, different rules work: €L Pe rl3v; =1

Median rule: Set 7 such that p, = % [Samuel-Cahn ‘84]

Mean rule: Sett = % E [max v;| [Kleinberg-Weinberg ‘12]
l
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Proof: Recall p. := Pr|3 v; = 1|.
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Proof: Recall p. := Pr|3 v; = 1|.

Note that max v; < 7+ ).;(v; — 1) where x™: = max{x, 0}.
1
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Samuel-Cahn’s Proof

Proof: Recall p, := Pr[3 v; = 1.
Note that max v; <7+ ),;(v; — )" where x™: = max{x, 0}.
Using this, for any threshold rule,
E[ALG;] =p.-t+); Pr[vj<i v; < |- E[(v; — D]
>pe-t+ (1 —po) - L E[(v; — D7
>p-Tt+ (1 —py)- (IE[miaxvi] —T).

For median rule p, =7, and so

E[ALGmedian] = 5T + 5+ (E [miax vi|—1)= %E[miax vi.

Q.E.D.



Proof for Mean Rule

Same proof works for mean rule:
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Proof for Mean Rule

Same proof works for mean rule:

Recall: Previous proof showed that, for any threshold rule,

E|ALG;] Zpr-t+ (1 —py) - (IEI [miax vi] — T).

1
For mean rule 7 = S E [max vi], and so
l
E[ALGpean]l = e 3 [max vi] + (1 —py) ZE [max vi] = 1F [max vi] .
2 i 2 l 2 L
Q.E.D.



Several Alternative Proofs

* Induction [Hill Kertz ‘81]
 Stochastic dominance [Kleinberg Weinberg “12]
e Contention resolution [Feldman Svensson Zenklusen “16]

e Sample-based argument [Rubinstein Wang Weinberg 22]



Extensions to Richer Settings

* k-choice [Hajiaghayi Kleinberg Sandholm 07, Alaei ‘12]

* Matroid and polymatroid constraints [Kleinberg Weinberg "12, Dutting Kleinberg
‘15, Feldman Svensson Zenklusen ‘16]

 Downward-closed set systems [Rubinstein "16, Singla Rubinstein “17]
* Matching constraints [Gravin Wang '19, Ezra Feldman Gravin Tang 20|

* Combinatorial allocation [Feldman Gravin Lucier ‘15, Dutting Feldman Kesselheim
Lucier '17, Dutting Kesselheim Lucier ‘20, Correa Cristi ‘23]



Prophet Inequalities as a Tool
in Mechanism Design



Single-1tem Auction

Bidders with stochastic private values v; ~ D; ,

n bidders 1 item
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Single-1tem Auction

Bidders with stochastic private values v; ~ D; _,'\
Reported Allocat P ¢ Sl !
Valuations ¥; =———p! MECHANISM [ (Allocations, Payments)
on)
b

Strategic bidder maximizes utility := v; - 1 - — payment; ,
g Y i * Lligetsitem — PaYy i 2 bidders 1 item

No incentive

Seek truthful mechanism that to misreport

.. @ 1st Price Auction: Under-report
1. Maximizes welfare := E[).; v; - 1; gets itern | (@3 2nd Price Auction:  Truthful

2. Maximizes revenue := IE[Zi payment; ]



Single Item: Welfare

e 2nd_Price Auction: Is truthful and maximizes welfare, but
* Bidder payments “less natural”
 Bidders need to find their values: expensive/impossible
* Assumes bidders don’t collude

. “The Lovely but Lonely Vickrey Auction”
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Single Item: Welfare

e 2nd_Price Auction: Is truthful and maximizes welfare, but
* Bidder payments “less natural”
 Bidders need to find their values: expensive/impossible
* Assumes bidders don’t collude

. “The Lovely but Lonely Vickrey Auction”

| simpler |

* Posted-price mechanism (PPM): ...
* Bidders come in arbitrary order
e Offer them a take-it-or-leave-it price t
* Sell to first bidder that is willing to pay price

Corollary.
Prophet inequality implies PPM gives

1
welfare > EIE lm_ax vi].
l

Truthful and much simpler, but approximation & a stochastic assumption




Single Item: Revenue

Revenue maximization:
Theorem. [Myerson 1983]

* Stochastic private values v; ~ D; (assume regular) Bl FaE e = 5 [maX ﬁfr]
; l

 Optimal mechanism: l

1-Fi(vi)

”2nd Price Auction” on virtual value U; = v; — )
i(vi



Single Item: Revenue

Revenue maximization:

e Stochastic private values v; ~ D; (assume regular)

 Optimal mechanism:

”2nd Price Auction” on virtual value D; = v;
fi(vi)
Disadvantages:

* Highest bidder may loose

* Payments complicated functions of distributions

_ 1-Fi(vy)

Theorem.

Opt revenue = E lm_ax 9l+]
l

“Simple versus Optimal Mechanisms”




Single Item: Revenue

Revenue maximization:
e Stochastic private values v; ~ D; (assume regular)

 Optimal mechanism:

~ _ 1-Fi(vy)

”2nd Price Auction” on U; = v
' ' fi(wi)

Disadvantages:

* Highest bidder may loose

* Payments complicated functions of distributions

2nd Price Auction with Personalized Reserves:
* Set bidder specific reserves
» Sell to highest bidder above reserve

* Payment is max of reserve and highest competing bid

Theorem.

Opt revenue = E lm_ax ﬁ:r]
l

“Simple versus Optimal Mechanisms”

Theorem. Prophet ineq. implies “simple”

. . 1 .
auction achieves revenue = ~ E lmax v;r]
l

See book.




Combinatorial Auctions

Stochastic private values v; ~ D;; v;: subset of items — R \ 4

&7
Reported A4 @

Valuations ¥; | MECHANISM === (Allocations, Payments)

Strategic bidder maximizes utility := v;(S;) — payment;
g Y i(S;) — pay i 1 bidders m items

No incentive
Seek truthful mechanism that to misreport

1. Maximizes welfare := E[}; v;(S;)]

2. Maximizes revenue = IE[Zi payment; |




Multiple Items: Welfare

d
>

Gross
Substitutes

generalizes 2nd price auction |

* VCG Mechanism: |
* Truthful and maximizes welfare [vickrey ‘61, Clarke ‘71, Groves ‘73]
* Not poly-time beyond “simple” classes of values
 Additive: v;(AUB) =v;(A) + v;(B)
* Subadditive: v;(AURB) < v;(A) + v;(B)

Submodular

Sub
additive
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Multiple Items: Welfare

e VCG Mechanism: | generalizes 2nd price auction |

* Truthful and maximizes welfare [vickrey ‘61, Clarke ‘71, Groves ‘73]

* Not poly-time beyond “simple” classes of values
 Additive: v;(AUB) =v;(A) + v;(B)
* Subadditive: v;(AUB) < v;(A) + v;(B)

* Posted-Price Mechanism (PPM): | truthfuland poly-time ‘

* Set fixed prices p € RIj
* Buyers come in arbitrary order
* Select best subset of remaining items:

dI'8IMdXg c remaining items {vi (S) - ZjeS pj)}

d
>

Gross
Substitutes

Submodular

Sub
additive

Theorem: For welfare max, generalized
prophet inequalities imply

* 2 approx for submodular/X0S

*  O(loglog m) approx for subadditive

[Feldman Gravin Lucier ‘15, Ditting Feldman
Kesselheim Lucier ‘17, Ditting Kesselheim Lucier ‘20]



Multiple Items: Revenue

* Myerson’s mechanism does not work in multi-dimensional settings ?
* Single bidder, and multiple items ’
* Multiple bidders, and multiple items &
* Multiple combinatorial bidders, and multiple items = @
b
= O
Theorem: For revenue max, generalized L4
prophet inequalities used to get
2 approx for submodular/X0S n bidders m items

O(loglog m) approx for subadditive



Take Aways

What did we gain?
* Simple, (often) poly-time mechanisms
 Work for both welfare and revenue maximization

 Work for combinatorial auctions
(& also for other combinatorial feasibility constraints)

What did we lose?
* Stochastic assumption on bidders for welfare (necessary for revenue)

* Approximation algorithms (necessary for combinatorial auctions)



Implications for Online
Algorithms
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Inputs arrive one-by-one and must decide immediately and irrevocably
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Online Maximization Problems

Inputs arrive one-by-one and must decide immediately and irrevocably

Example: Selecting a large item / bidder
* Max in an online sequence v, ..., 1V,
Worst-case arrivals:

* Values determined by adversary
* Best algo selects at random: E|ALG| = % max; v;

Prophet model: Beyond the worst case

* Values from known, non-identical distributions: v; ~ D;

* Prophet ineq. gives: [E[ALG]| = %[E[maxi v; ]

value
A

time

a semi-random model,
stronger than i.i.d.




Overview: Maximization Problems

k-choice: 1 + o(1)
[Hajiaghayi Kleinberg Sandholm '07, Alaei ‘12]

Matroid and polymatroid constraints: O(1)
[Kleinberg Weinberg '12, Dutting Kleinberg ‘15, Feldman Svensson Zenklusen ‘16]

General downward-closed: O(logn) resp. O(logn - logr)
[Rubinstein ‘16, Rubinstein Singla ‘17]

Matching constraints: O(1)
[Gravin Wang '19, Ezra Feldman Gravin Tang ‘20]

Combinatorial allocation: O (1) (all the way up to subadditive)
[Feldman Gravin Lucier ‘15, Dutting Feldman Kesselheim Lucier 17, Ditting Kesselheim
Lucier ‘20, Correa Cristi ‘23]
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Requirements arrive one-by-one, and must be met while minimizing total cost
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Online Minimization Problems

Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
* Givenagraph ¢ = (U, E) with edge costsc, = 0Oandarootr € U
* Vertices u4, ..., u,, € U arriving online

r
* Immediately purchase edges to connect u; to the root r

* Minimize sum of purchased edge costs

Offline already hard: MST gives 2 approx. competitive ratio: algorithm’s cost
to optimal hindsight cost

Online for worst-case arrivals:
* No algorithm can be better than ((logn)

* Greedy achieves O(logn) Can we do better?



Prophet Model

Prophet Steiner Tree:

Given a graph ¢ = (U, E) with edge costsc, = 0O and arootr € U

Vertices u4, ..., u,, € U arriving online

Each vertex u; ~ D (known distribution over vertices)
Immediately purchase edges to connect u; to the root

Minimize sum of purchased edge costs

competitive ratio: algorithm’s
expected cost to expected optimal
hindsight cost




Prophet Model

Prophet Steiner Tree:

* Givenagraph ¢ = (U, E) with edge costsc, = 0andarootr € U

Vertices u4, ..., u,, € U arriving online = _ _
competitive ratio: algorithm’s

Each vertex u; ~ D (known distribution over vertices) expected cost to expected optimal
hindsight cost

Immediately purchase edges to connect u; to the root

Minimize sum of purchased edge costs

Other minimization problems:
* Facility location

* \ertex cover



Prophet Model

Prophet Steiner Tree:

* Givenagraph ¢ = (U, E) with edge costsc, = 0andarootr € U

Vertices u4, ..., u,, € U arriving online = _ _
competitive ratio: algorithm’s

Each vertex u; ~ D (known distribution over vertices) expected cost to expected optimal
hindsight cost

Immediately purchase edges to connect u; to the root

Minimize sum of purchased edge costs

Other minimization problems:
. _ Theorem: In the prophet model, online
* FaC|I|ty location Steiner Tree/Facility Location/Vertex

e \ertex cover Cover admit O(1) competitive ratio.



Algorithm and Analysis

Algorithm:

1. Take n fresh samples Uy, 75, ..., 1,,, where U;~D
2. Construct MST on samples and the root

3. When requirement v;~D arrives, connect it greedily to MST

Recall:
E[MST cost] < 2 - E[OPT]




Algorithm and Analysis

Algorithm:

1. Take n fresh samples Uy, 75, ..., 1,,, where U;~D

2. Construct MST on samples and the root Recall:

3. When requirement v;~D arrives, connect it greedily to MST E[MST cost] < 2 - E[OPT]
Proof idea:

* Main observation: In expectation,

greedy cost of connecting v; to MST < cost of connecting 7U; to closest other vertex in MST

e Summing over i: [E[total augmentation cost] < [E[MST cost]
e [E[ALG] = E[MST cost] + [E[total augmentation cost] < 2 - E[MST cost] < 4 - E[OPT]

Q.E.D.



Minimization is Harder

Prophet problem (minimization variant):

e costs ¢; ~ D; (known distributions),
* need to accept at least one
* Goal: minimize expected cost

« Benchmark: [E|min;c;|




Minimization is Harder

Prophet problem (minimization variant): value

A [
e costs ¢; ~ D; (known distributions), o

)
* need to accept at least one o
* Goal: minimize expected cost o ¢ y
. o
« Benchmark: [E|min;c;| >
time

No algorithm can achieve a bounded ratio: ‘ ~ same instance that is hard for max. problem

cci=1wp.1,¢c, =L w.p.%and c, = 0 o.t.w.
* Then E[ALG] = 1, while

- _ 1. _N.oo=1

]E[mimcl-]—L 1+(1 L) O—L.

Positive results fori.i.d. costs:



Take Aways

New “beyond-worst-case” paradigm for online algorithms:
* Many positive results for maximization problems

* To a lesser extent also for minimization problems

Suggestions for your online problems:
* May allow you to go beyond the worst case

* New way of thinking, e.g., when you don’t know how to design better worst-
case online algorithms



Further Directions



The I.1.D. Case

Theorem [Hill Kertz ‘82, Correa-Foncea-Hoeksma-Oosterwijk-Vredeveld ‘17]

For every distribution D, and n draws v; ~ D there exists an algorithm ALG such that

IE[ALG] > 0.745 - [E[maxivi],
and this is best possible.

» There is a sequence of increasing “quantiles” ¢, < g, < ... < q,
(independent of the distribution)

» The algorithm sets a sequence of decreasing thresholds 7, = 7, = --- = 7,, where
Pr|v; = 1;| = q;, and accepts the first v; = 1;




Alternative Arrival Orders

Given distributions D+, ..., D,,, what if the arrival order is not adversarial?

Free-Order Prophet Inequality:

* Algorithm chooses the arrival order

* Connections to Stochastic Probing

Free-Order = 1.342 [Correa et al. “17]
Prophet = 1.342 [Correa et al. “17]
Secretary = 1.366 [Correa Saona Zilliotto ‘19]

> 1.3785 [Bubna Chiplunkar ‘23]

Prophet Secretary:

e Arrival order chosen uniformly at random

* Connections to Secretary Problem

< 1.495 [Correa Saona Zilliotto ‘19]
< 1.379 [Peng Tang 22]
< 1.3778 [Bubna Chiplunkar 23]

< 1.581 [Esfandiari et al.15]
< 1.495 [Correa Saona Zilliotto ‘19]

Open
question:
i.i.d. worst
case for free
order?




Sample Access to Distributions

What if we only have sample access to distributions?

Single-Sample Prophet Inequality:

* Tight 2 approx. for single item
[Rubinstein-Wang-Weinberg '20]

* 0O(1) approx. for simple-matroids and matching
[Azar Kleinberg Weinberg '14, Caramanis et al. 22]

* 0O(1) approx. for XOS combinatorial auctions
[Ditting Kesselheim Lucier Reiffenhauser Singla 24]

For i.i.d. model: Tradeoff between # samples and approx.:

Open questions:

Single-sample O (1) approx
for general matroids? For
subadditive combinatorial
auctions?

* e foro(n) samples, = i for n samples [Correa Dutting, Fischer, Schewior “19]
* 1.342 4+ O(€) for O(n - poly(1/€)) samples [Rubinstein Wang Weinberg '20]




Competing w/ Optimal Online Policy

Often the optimal online algorithm via backward induction
is computationally infeasible.

Question: What is the best approximation
achievable by a poly-time online algorithm, when
evaluated against the optimal online policy?

-

ol 4
P, k//'

“philosopher inequality
[Braverman et al 24+]

n

For example:

* PTAS for "simple” laminar matroids [Anari Niazadeh Saberi Shameli “19]

* 1.96 approximation for online matching [Papadimitriou Pollner Saberi Wajc ‘21|
(and lots of follow up work)

* PTAS for Prophet Secretary [Ditting et al. ‘23] Open questions: PTAS for general
matroids? Better than 2 approx. for

XOS combinatorial auctions?




Summary

* What is a prophet inequality?

» Statement and proof of the classic prophet inequality

* What'’s so exciting about prophet inequalities?

» A powerful tool for mechanism design
» A new beyond worst-case’ paradigm for online algorithms

* On the way: Sample / overview of research landscape

Thanks! Coffee!



Additional Slides



Overview: Online Matching Against Optimal Online Policy

orophet < % PPSW 21 < 0.999999

PPSW’21>0.51 BDM’22>1-—1/e
SW’21 > 0.53 NSW 23+ > 0.65

BDPSW 24+ = 0.67

Figure: Fraction of [E[optimal online policy]| achievable with poly-time algorithm.
(Figure due to David Waijc)



