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Prophet Inequalities
Part 1: Introduction



Plan for Part 1

 

• What is a prophet inequality?
Ø Statement and proof of the classic prophet inequality

• What’s so exciting about prophet inequalities?
Ø A powerful tool for mechanism design
Ø A new ``beyond worst-case’’ paradigm for online algorithms

• On the way: Sample / overview of research landscape
 



Outline Other Parts

 

Part 1: Introduction

Part 2: Online matching and contention resolution

Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Useful Resources

 

• WINE 2016 Tutorial “Posted-Price Mechanisms and Prophet Ineqaulities” by 
Brendan Lucier [website, slides]

• EC 2017 Tutorial ”Pricing in Combinatorial Markets” by Michal Feldman and 
Brendan Lucier [on request]

• IPCO 2017 Summer School “Prophets and Secretaries” by Anupam Gupta 
[lecture notes]

• EC 2021 Tutorial “Prophet Inequalities and Implications to Pricing and Online 
Algorithms” by Michal Feldman, Thomas Kesselheim, and Sahil Singla [website, 
slides-pt1, slides-pt2, slides-pt3]

(This course builds on these prior courses/tutorials, and re-uses some of the material)

https://www.cs.mcgill.ca/~wine2016/tutorials.html
https://www.cs.mcgill.ca/~wine2016/media/slides/WINE2016-Tutorial-Lucier.pptx
https://www.cs.cmu.edu/~anupamg/ipco17/ipco-talk3.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part1.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part2.pdf
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities/slides-part3.pdf


Books and Surveys

 

• Survey “A Survey of Prophet Inequalities in Optimal Stopping” by Theodore Hill 
and Robert Kertz [pdf] (from 1992)

• Survey “An Economic View of Prophet Inequalities” by Brendan Lucier [pdf] 
(from 2017)

• Survey “Recent Developments in Prophet Inequalities” by Jose Correa, Patricio 
Foncea, Ruben Hoeksma, Tim Osterwijk, Tjark Vredeveld [pdf] (from 2018)

• Forthcoming book “Prophet Inequalities: Theory and Practice” by Jose Correa, 
Paul Dütting, Michal Feldman, Brendan Lucier, and Thomas Kesselheim
(planned for 2025)

http://www-stat.wharton.upenn.edu/~steele/Courses/900/Library/Prophet82Survey.pdf
https://cs.brown.edu/courses/cs1951k/lectures/2020/prophet_inequality_reading.pdf
https://www.dii.uchile.cl/~jcorrea/papers/Journals/CFHOV2019.pdf


The Classic Prophet Inequality



• Given known distributions 𝒟!, 𝒟", … , 𝒟# over (non-negative) values: 
• A gambler gets to see realizations 𝑣$ ~ 𝒟$ one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣$
• The prophet sees the entire sequence of values 𝑣!, 𝑣", … , 𝑣# at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max$𝑣$
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ALG = 0.8   vs.  OPT = 0.9



Optimal Policy

For fixed distributions 𝒟!, 𝒟", … , 𝒟%, one can compute the optimal 
online algorithm by backward induction:

𝑉𝐴𝐿%:% ∶= 𝔼'!~𝒟![𝑣%]
𝑉𝐴𝐿*:% ≔ 𝔼'"~𝒟",…,'!~𝒟![max{𝑣* , 𝑉𝐴𝐿*-!:%}]

⇒ Accept 𝑣*  if 𝑣* ≥ 𝑉𝐴𝐿*-!:%



Definition. The prophet inequality problem admits a competitive ratio of 𝛼 ≥ 1 if, 
for all distributions 𝒟!, 𝒟", … , 𝒟#, there exists an online algorithm 𝐴𝐿𝐺 such that

Competitive Ratio

𝔼 𝐴𝐿𝐺 ≥
1
𝛼
⋅ 𝔼 max$𝑣$



Prophet Inequality

Theorem [Krengel-Succheston ‘77+’78]   (+ Garling)
For all distributions 𝒟!, 𝒟", … , 𝒟%, there is an online algorithm 𝐴𝐿𝐺 
such that 𝔼 𝐴𝐿𝐺 ≥ !

"
𝔼 max*𝑣* .

Krengel and Succheston in Oberwolfach



Theorem [Samuel-Cahn ’84] 
For all distributions 𝒟!, 𝒟", … , 𝒟%, there is a threshold algorithm 𝐴𝐿𝐺. 
such that 𝔼 𝐴𝐿𝐺. ≥ !

"
𝔼 max*𝑣* .

Threshold algorithm: set threshold/price 𝜏, accept first 𝑣* ≥ 𝜏

Stronger Version

Samuel-Cahn (from Gil Kalai’s Blog)



Tightness

The factor ½ cannot be improved upon:

Consider the following setting with 𝑛 = 2 random variables:

𝑣!= 1 w.p. 1, 𝑣" =
!
/

w.p. 𝜖 and 𝑣" = 0 o.t.w.

Then 𝔼 𝐴𝐿𝐺 ≤ 1, while

𝔼 max
*
𝑣* = 𝜖 ⋅ !

/
+ 1 − 𝜖 ⋅ 1 = 2 − 𝜖

Sending 𝜖 → 0 shows the claim.

a.k.a. “longshot”



Re-Discovery in TCS

• Prophet inequalities are a powerful tool in mechanism design 
[Hajiaghayi, Kleinberg, Sandholm 2007]

• Prophet inequalities provide a new ``beyond the worst-case’’ 
paradigm for online algorithms

This sparked a whole research field in (theoretical) 
computer science, exploring applications and extensions of 

the classic prophet inequality.



Proof of the Classic Prophet 
Inequality
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Theorem [Samuel-Cahn ’84] 
For all distributions 𝒟!, 𝒟", … , 𝒟%, there is a threshold algorithm 𝐴𝐿𝐺. 
such that 𝔼 𝐴𝐿𝐺. ≥ !

"
𝔼 max*𝑣* .

Threshold algorithm: set threshold/price 𝜏, accept first 𝑣* ≥ 𝜏

Prophet Inequality

Actually, different rules work:

Median rule:  Set 𝜏 such that 𝑝% =
!
"

[Samuel-Cahn ‘84]

Mean rule:  Set 𝜏 = !
" 𝔼 max

$
𝑣$ [Kleinberg-Weinberg ‘12]     

Let 𝑝! ≔ Pr ∃ 𝑣" ≥ τ
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Proof:   Recall 𝑝& ≔ Pr ∃ 𝑣$ ≥ τ .

Note that max
'
𝑣$ ≤ 𝜏 + ∑$ 𝑣$ − 𝜏 ( where 𝑥(: = max 𝑥, 0 . 

Using this, for any threshold rule,

𝔼 A𝐿𝐺& = 𝑝& ⋅ τ + ∑$ Pr ∀)*$ 𝑣) < τ ⋅ 𝔼[ 𝑣$ − τ (]

≥ 𝑝& ⋅ τ + 1 − 𝑝& ⋅ ∑$𝔼[ 𝑣$ − τ (]

≥ 𝑝& ⋅ τ + 1 − 𝑝& ⋅ 𝔼 max
$
𝑣$ − τ .

For median rule 𝑝& = ½, and so

𝔼 A𝐿𝐺+,-'./ ≥ !
" ⋅ τ + !

" ⋅ 𝔼 max
$
𝑣$ − τ = !

"𝔼 max
$
𝑣$ . Q.E.D.
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Proof for Mean Rule
Same proof works for mean rule:

Recall: Previous proof showed that, for any threshold rule, 

𝔼 A𝐿𝐺% ≥ 𝑝& ⋅ τ + 1 − 𝑝& ⋅ 𝔼 max
$
𝑣$ − τ .

For mean rule 𝜏 = !
" ⋅ 𝔼 max

$
𝑣$ , and so

𝔼 A𝐿𝐺+,./ ≥ p& ⋅
!
"
𝔼 max

$
𝑣$ + 1 − 𝑝& ⋅ !

"
𝔼 max

$
𝑣$ = !

"
𝔼 max

$
𝑣$ .

Q.E.D.



Several Alternative Proofs

• Induction [Hill Kertz ‘81]

• Stochastic dominance [Kleinberg Weinberg ‘12]

• Contention resolution [Feldman Svensson Zenklusen ‘16]

• Sample-based argument [Rubinstein Wang Weinberg ‘22]



Extensions to Richer Settings

• k-choice [Hajiaghayi Kleinberg Sandholm ’07, Alaei ‘12]

• Matroid and polymatroid constraints [Kleinberg Weinberg ’12, Dütting Kleinberg 
‘15, Feldman Svensson Zenklusen ‘16] 

• Downward-closed set systems [Rubinstein ’16, Singla Rubinstein ‘17]

• Matching constraints [Gravin Wang ’19, Ezra Feldman Gravin Tang ‘20] 

• Combinatorial allocation [Feldman Gravin Lucier ‘15, Dütting Feldman Kesselheim
Lucier ’17, Dütting Kesselheim Lucier ‘20, Correa Cristi ‘23]



Prophet Inequalities as a Tool 
in Mechanism Design
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Single-Item Auction
Bidders with stochastic private values 𝑣$ ~ 𝒟$

Seek truthful mechanism that
1. Maximizes welfare ≔ 𝔼[∑$ 𝑣$ ⋅ 1$ 0,12 '1,+]
2. Maximizes revenue ≔ 𝔼[∑$ payment$]

Strategic bidder maximizes utility ≔ 𝑣$ ⋅ 1$ 0,12 '1,+ − payment$ 𝑛 bidders
No incentive 
to misreport

1st Price Auction:     Under-report
2nd Price Auction:    Truthful

1 item



Single Item: Welfare
• 2nd-Price Auction: Is truthful and maximizes welfare, but

• Bidder payments “less natural’’
• Bidders need to find their values: expensive/impossible
• Assumes bidders don’t collude
• … “The Lovely but Lonely Vickrey Auction”

[Ausubel Milgrom ‘06]
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simpler



Single Item: Revenue
Revenue maximization:

• Stochastic private values 𝑣! ~ 𝒟! (assume regular) 

• Optimal mechanism:
”2nd Price Auction” on virtual value  1𝑣! ≔ 𝑣! −

"#$!(&!)
(!(&!)

Theorem. [Myerson 1983] 
Opt revenue = 𝔼 max

#
9𝑣#$
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Single Item: Revenue
Revenue maximization:

• Stochastic private values 𝑣! ~ 𝒟! (assume regular) 

• Optimal mechanism:
”2nd Price Auction” on virtual value 1𝑣! ≔ 𝑣! −

"#$!(&!)
(!(&!)

Disadvantages:

• Highest bidder may loose

• Payments complicated functions of distributions

2nd Price Auction with Personalized Reserves:

• Set bidder specific reserves

• Sell to highest bidder above reserve

• Payment is max of reserve and highest competing bid

Truthful and much simpler, but 
approximation & a stochastic assumption 

“Simple versus Optimal Mechanisms”
[Hartline Roughgarden ‘09]

Theorem. [Myerson 1983] 
Opt revenue = 𝔼 max

#
9𝑣#$

Theorem. Prophet ineq. implies “simple” 
auction achieves revenue ≥ !

"
𝔼 max

#
9𝑣#$

See [Roughgarden ‘16] book.



Combinatorial Auctions
Stochastic private values 𝑣$ ~ 𝒟$;  𝑣': subset of items → ℝ:;

Seek truthful mechanism that
1. Maximizes welfare ≔ 𝔼[∑'𝑣$ 𝑆$ ]
2. Maximizes revenue ≔ 𝔼[∑$ payment$]

Strategic bidder maximizes utility ≔ 𝑣$ 𝑆$ − payment$ 𝑛 bidders 𝑚 items
No incentive 
to misreport



Multiple Items: Welfare
• VCG Mechanism:

• Truthful and maximizes welfare [Vickrey ‘61, Clarke ‘71, Groves ‘73]

• Not poly-time beyond “simple” classes of values
• Additive:         𝑣$ 𝐴 ∪ 𝐵 = 𝑣$ 𝐴 + 𝑣$(𝐵)
• Subadditive:   𝑣$ 𝐴 ∪ 𝐵 ≤ 𝑣$ 𝐴 + 𝑣$(𝐵)

generalizes 2nd price auction



Multiple Items: Welfare
• VCG Mechanism:

• Truthful and maximizes welfare [Vickrey ‘61, Clarke ‘71, Groves ‘73]

• Not poly-time beyond “simple” classes of values
• Additive:         𝑣$ 𝐴 ∪ 𝐵 = 𝑣$ 𝐴 + 𝑣$(𝐵)
• Subadditive:   𝑣$ 𝐴 ∪ 𝐵 ≤ 𝑣$ 𝐴 + 𝑣$(𝐵)

generalizes 2nd price auction

• Posted-Price Mechanism (PPM):
• Set fixed prices 𝒑 ∈ ℝ:;+
• Buyers come in arbitrary order
• Select best subset of remaining items:
argmax< ⊆ >,+.'/'/0 '1,+2 {𝑣$ 𝑆 − ∑)∈< 𝑝))}

truthful and poly-time



Multiple Items: Welfare
• VCG Mechanism:

• Truthful and maximizes welfare [Vickrey ‘61, Clarke ‘71, Groves ‘73]

• Not poly-time beyond “simple” classes of values
• Additive:         𝑣$ 𝐴 ∪ 𝐵 = 𝑣$ 𝐴 + 𝑣$(𝐵)
• Subadditive:   𝑣$ 𝐴 ∪ 𝐵 ≤ 𝑣$ 𝐴 + 𝑣$(𝐵)

• Posted-Price Mechanism (PPM):
• Set fixed prices 𝒑 ∈ ℝ:;+
• Buyers come in arbitrary order
• Select best subset of remaining items:
argmax< ⊆ >,+.'/'/0 '1,+2 {𝑣$ 𝑆 − ∑)∈< 𝑝))}

Theorem: For welfare max, generalized 
prophet inequalities imply
• 2 approx for submodular/XOS
• O loglog m approx for subadditive

[Feldman Gravin Lucier ‘15, Dütting Feldman 
Kesselheim Lucier ‘17, Dütting Kesselheim Lucier ‘20]

generalizes 2nd price auction

truthful and poly-time



Multiple Items: Revenue
• Myerson’s mechanism does not work in multi-dimensional settings

• Single bidder, and multiple items
• Multiple bidders, and multiple items
• Multiple combinatorial bidders, and multiple items 

𝑛 bidders 𝑚 items

Theorem: For revenue max, generalized 
prophet inequalities used to get
• 2 approx for submodular/XOS
• O loglog m approx for subadditive

[Chawla Hartline Malec Sivan ’10,
Chawla Miller’16, Cai Zhao’17,
Dütting Kesselheim Lucier’20]



Take Aways

What did we gain?
• Simple, (often) poly-time mechanisms
• Work for both welfare and revenue maximization
• Work for combinatorial auctions                                                                              

(& also for other combinatorial feasibility constraints)

What did we lose?
• Stochastic assumption on bidders for welfare (necessary for revenue)
• Approximation algorithms (necessary for combinatorial auctions)



Implications for Online 
Algorithms
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Inputs arrive one-by-one and must decide immediately and irrevocably
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Online Maximization Problems

Inputs arrive one-by-one and must decide immediately and irrevocably

Example: Selecting a large item / bidder
• Max in an online sequence 𝑣!, … , 𝑣#
Worst-case arrivals:
• Values determined by adversary

• Best algo selects at random:   𝔼 𝐴𝐿𝐺 ≥ !
#max$ 𝑣$

Prophet model: Beyond the worst case
• Values from known, non-identical distributions: 𝑣$ ~ 𝒟$
• Prophet ineq. gives:  𝔼 𝐴𝐿𝐺 ≥ !

"
𝔼[max$ 𝑣$]

time

a semi-random model,
stronger than i.i.d.

value



Overview: Maximization Problems

• k-choice: 1 + 𝑜(1)
[Hajiaghayi Kleinberg Sandholm ’07, Alaei ‘12]

• Matroid and polymatroid constraints: 𝑂(1)
[Kleinberg Weinberg ’12, Dütting Kleinberg ‘15, Feldman Svensson Zenklusen ‘16] 

• General downward-closed: 𝑂(log 𝑛) resp. 𝑂 log 𝑛 ⋅ log 𝑟
[Rubinstein ‘16, Rubinstein Singla ‘17]   

• Matching constraints: 𝑂(1)
[Gravin Wang ’19, Ezra Feldman Gravin Tang ‘20] 

• Combinatorial allocation: 𝑂(1) (all the way up to subadditive)                                 
[Feldman Gravin Lucier ‘15, Dütting Feldman Kesselheim Lucier ’17, Dütting Kesselheim
Lucier ‘20, Correa Cristi ‘23]
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Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ 𝑈
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

competitive ratio: algorithm’s cost 
to optimal hindsight cost

𝑟

1 1

11



Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ 𝑈
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

𝑟 𝑢!

competitive ratio: algorithm’s cost 
to optimal hindsight cost

1 1

11



Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ 𝑈
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

𝑢!

competitive ratio: algorithm’s cost 
to optimal hindsight cost

𝑟

1 1

11



Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ U
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

𝑢!

𝑢"

competitive ratio: algorithm’s cost 
to optimal hindsight cost

𝑟

1 1

11



Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ U
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

competitive ratio: algorithm’s cost 
to optimal hindsight cost

𝑢!

𝑢"
ALG = 3
OPT = 2

𝑟

1 1

11



Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ U
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

Offline already hard: MST gives 2 approx.

Online for worst-case arrivals:
• No algorithm can be better than Ω log n
• Greedy achieves 𝑂(log n)

[Imase Waxman ’91]
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Online Minimization Problems
Requirements arrive one-by-one, and must be met while minimizing total cost

Example: Online Steiner Tree
• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ U
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Immediately purchase edges to connect 𝑢& to the root 𝑟
• Minimize sum of purchased edge costs

Offline already hard: MST gives 2 approx.

Online for worst-case arrivals:
• No algorithm can be better than Ω log n
• Greedy achieves 𝑂(log n)

competitive ratio: algorithm’s cost 
to optimal hindsight cost

Can we do better?

𝑢!

𝑢"
ALG = 3
OPT = 2

𝑟

1 1

11

[Imase Waxman ’91]



Prophet Model
Prophet Steiner Tree:

• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ 𝑈
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Each vertex 𝑢& ~ 𝒟 (known distribution over vertices)
• Immediately purchase edges to connect 𝑢& to the root
• Minimize sum of purchased edge costs

competitive ratio: algorithm’s 
expected cost to expected optimal 
hindsight cost
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Prophet Model
Prophet Steiner Tree:

• Given a graph 𝐺 = (𝑈, 𝐸) with edge costs c# ≥ 0 and a root 𝑟 ∈ 𝑈
• Vertices 𝑢$, … , 𝑢% ∈ 𝑈 arriving online
• Each vertex 𝑢& ~ 𝒟 (known distribution over vertices)
• Immediately purchase edges to connect 𝑢& to the root
• Minimize sum of purchased edge costs

Other minimization problems:
• Facility location
• Vertex cover

competitive ratio: algorithm’s 
expected cost to expected optimal 
hindsight cost

Theorem: In the prophet model, online 
Steiner Tree/Facility Location/Vertex 
Cover admit O(1) competitive ratio.

[Garg Gupta 
Leonardi 
Sankowski ’08]



Algorithm and Analysis
Algorithm:

1. Take 𝑛 fresh samples 5𝑣#, 5𝑣$, … , 5𝑣%, where 5𝑣"~𝒟
2. Construct MST on samples and the root
3. When requirement 𝑣"~𝒟 arrives, connect it greedily to MST

Recall:
𝔼[MST cost] ≤ 2 ⋅ 𝔼[OPT]



Algorithm and Analysis
Algorithm:

1. Take 𝑛 fresh samples 5𝑣#, 5𝑣$, … , 5𝑣%, where 5𝑣"~𝒟
2. Construct MST on samples and the root
3. When requirement 𝑣"~𝒟 arrives, connect it greedily to MST

Proof idea:
• Main observation: In expectation,

greedy cost of connecting 𝑣! to MST ≤ cost of connecting 1𝑣! to closest other vertex in MST

• Summing over 𝑖:   𝔼[total augmentation cost] ≤ 𝔼[MST cost]
• 𝔼[ALG] = 𝔼[MST cost] + 𝔼[total augmentation cost] ≤ 2 ⋅ 𝔼[MST cost] ≤ 4 ⋅ 𝔼[OPT] 

Q.E.D.

Recall:
𝔼[MST cost] ≤ 2 ⋅ 𝔼[OPT]



Minimization is Harder
Prophet problem (minimization variant):

• costs 𝑐$ ~ 𝒟$ (known distributions), 
• need to accept at least one
• Goal: minimize expected cost
• Benchmark: 𝔼 min$𝑐$

time

value



Minimization is Harder
Prophet problem (minimization variant):

• costs 𝑐$ ~ 𝒟$ (known distributions), 
• need to accept at least one
• Goal: minimize expected cost
• Benchmark: 𝔼 min$𝑐$

No algorithm can achieve a bounded ratio:

• 𝑐! = 1 w.p. 1, 𝑐" = 𝐿 w.p. !L and 𝑐" = 0 o.t.w.

• Then 𝔼 𝐴𝐿𝐺 ≥ 1, while

𝔼 min
$
𝑐$ = !

L ⋅ 1 + 1 − !
L ⋅ 0 = !

L . 
Positive results for i.i.d. costs:
[Livanos Mehta ’24]

time

value

≈ same instance that is hard for max. problem



Take Aways

New “beyond-worst-case” paradigm for online algorithms:
• Many positive results for maximization problems
• To a lesser extent also for minimization problems

Suggestions for your online problems:
• May allow you to go beyond the worst case
• New way of thinking, e.g., when you don’t know how to design better worst-

case online algorithms



Further Directions



The I.I.D. Case

Theorem [Hill Kertz ‘82, Correa-Foncea-Hoeksma-Oosterwijk-Vredeveld ‘17]
For every distribution 𝒟, and 𝑛 draws 𝑣& ∼ 𝒟 there exists an algorithm 𝐴𝐿𝐺 such that

and this is best possible.
𝔼 𝐴𝐿𝐺 ≥ 0.745 ⋅ 𝔼 max"𝑣" ,

Ø There is a sequence of increasing “quantiles” 𝑞# ≤ 𝑞$ ≤ … ≤ 𝑞%                 
(independent of the distribution)

Ø The algorithm sets a sequence of decreasing thresholds 𝜏# ≥ 𝜏$ ≥ ⋯ ≥ 𝜏% where 
Pr 𝑣" ≥ 𝜏" = 𝑞", and accepts the first 𝑣" ≥ 𝜏"



Alternative Arrival Orders

 

Given distributions 𝒟#, … , 𝒟&, what if the arrival order is not adversarial?

Free-Order Prophet Inequality:
• Algorithm chooses the arrival order
• Connections to Stochastic Probing

Prophet Secretary:
• Arrival order chosen uniformly at random
• Connections to Secretary Problem

Lower bound Upper bound

Free-Order ≥ 1.342 [Correa et al. ‘17] ≤ 1.495 [Correa Saona Zilliotto ‘19]
≤ 1.379 [Peng Tang ‘22]
≤ 1.3778 [Bubna Chiplunkar ‘23]

Prophet 
Secretary

≥ 1.342 [Correa et al. ‘17]
≥ 1.366 [Correa Saona Zilliotto ‘19]
≥ 1.3785 [Bubna Chiplunkar ‘23]

≤ 1.581 [Esfandiari et al.‘15] 
≤ 1.495 [Correa Saona Zilliotto ‘19]

Open 
question:
i.i.d. worst 
case for free 
order?



Sample Access to Distributions
What if we only have sample access to distributions? 

Single-Sample Prophet Inequality:
• Tight 2 approx. for single item   

[Rubinstein-Wang-Weinberg ’20]
• O(1) approx. for simple-matroids and matching                                                                

[Azar Kleinberg Weinberg ’14, Caramanis et al. ‘22]
• O(1) approx. for XOS combinatorial auctions                                                              

[Dütting Kesselheim Lucier Reiffenhäuser Singla ‘24]

For i.i.d. model: Tradeoff between # samples and approx.:
• 𝑒 for 𝑜(𝑛) samples, ≥ '

'(#
for 𝑛 samples [Correa Dütting, Fischer, Schewior ‘19]

• 1.342 + 𝑂(𝜖) for 𝑂(𝑛 ⋅ 𝑝𝑜𝑙𝑦(1/𝜖)) samples [Rubinstein Wang Weinberg ’20]

Open questions: 

Single-sample 𝑂(1) approx 
for general matroids? For 
subadditive combinatorial 
auctions?



Competing w/ Optimal Online Policy

 

For example:

• PTAS for ”simple” laminar matroids [Anari Niazadeh Saberi Shameli ‘19]
• 1.96 approximation for online matching [Papadimitriou Pollner Saberi Wajc ‘21]         

(and lots of follow up work)
• PTAS for Prophet Secretary [Dütting et al. ‘23]

“philosopher inequality”

Often the optimal online algorithm via backward induction 
is computationally infeasible.

Question: What is the best approximation 
achievable by a poly-time online algorithm, when 
evaluated against the optimal online policy?

Open questions: PTAS for general 
matroids? Better than 2 approx. for 
XOS combinatorial auctions?

[Braverman et al 24+]



Summary

 

• What is a prophet inequality?
Ø Statement and proof of the classic prophet inequality

• What’s so exciting about prophet inequalities?
Ø A powerful tool for mechanism design
Ø A new ``beyond worst-case’’ paradigm for online algorithms

• On the way: Sample / overview of research landscape
 

Thanks! Coffee!



Additional Slides



Overview: Online Matching Against Optimal Online Policy

 
prophet ≤ !

"
 PPSW ‘21 ≤ 0.999999 

PPSW ’21 ≥ 0.51 
SW ’21 ≥ 0.53 

BDM ’22 ≥ 1 − 1/𝑒 
NSW ’23+ ≥ 0.65

BDPSW ’24+ ≥ 0.67

Figure: Fraction of 𝔼[optimal	online	policy]	achievable with poly-time algorithm.
(Figure due to David Wajc)


