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Online Matching

 

• Fundamental model with numerous applications:
• Items and buyers (in e-commerce) 
• Drivers and passengers (in ridesharing platforms) 
• Ad slots and advertisers (in online ad auctions) 
• Jobs and workers (in online labor markets)
• … Example: Matching in bipartite graph



Online Matching

 

• Fundamental model with numerous applications:
• Items and buyers (in e-commerce) 
• Drivers and passengers (in ridesharing platforms) 
• Ad slots and advertisers (in online ad auctions) 
• Jobs and workers (in online labor markets)
• …

• Two flavors: edge arrival or vertex arrival (a.k.a. “batched arrival”)
• Goal: maximize total weight of chosen matching

Example: Matching in bipartite graph



Plan for Part 2

 

• Alternative proof for single-choice prophet inequality
• via: “online contention resolution” 

• Prophet inequalities for online matching via this technique 
• with edge arrivals in general graphs
• with vertex (“batched”) arrivals in general graphs 

 



High-Level Idea

• (Relax)    Define a fractional relaxation

• (Round)  Devise an online rounding scheme
 



Outline Other Parts

 

Part 1: Introduction

Part 2: Online matching and contention resolution

Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Additional References
Surveys and book chapters:

• “Online Matching: A Brief Survey” by Zhiyi Huang, Zhihao Gavin Tang, and David Wajc 
[SIGEcom ’24]

• “Applications of Online Matching” by Zhiyi Huang and Thorben Tröbst (Chapter 5 in 
Echenique/Immorlica/Vazirani book) [link]

• “Online Matching in Advertisement Auctions” by Nikhil Devanur and Aranyak Mehta 
(Chapter 6 in Echenique/Immorlica/Vazirani book) [link]

• “Online Matching and Ad Allocation” by Aranyak Mehta (FnT-TCS Survey) [link]

https://arxiv.org/abs/2407.05381
https://www.cambridge.org/core/books/abs/online-and-matchingbased-market-design/applications-of-online-matching/E65C7B26A545C1EE7E5D07D51672558A
https://www.cambridge.org/core/books/abs/online-and-matchingbased-market-design/online-matching-in-advertisement-auctions/CF3A5F19768F0F645A4BCAF51249234C
https://www.nowpublishers.com/article/Details/TCS-057


Additional References

Tutorials and workshops:

• FOCS 2023 Workshop “Online Algorithms and Online Rounding: Recent Progress” by 
Zhiyi Huang and David Wajc [website]

• WINE 2023 Tutorial “Recent Progress and Future Directions in Online Matching” by Zhiyi 
Huang and  Zhihao Gavin Tang [slides-pt1, slides-pt2]

https://sites.google.com/corp/view/focs23workshop-online-rounding/home
https://i.cs.hku.hk/~zhiyi/file/online-matching-recent-progress/wine-2023-adverserial.pptx
https://i.cs.hku.hk/~zhiyi/file/online-matching-recent-progress/wine-2023-stochastic.pptx


Recall: The Classic Prophet Inequality



• Given known distributions 𝒟!, 𝒟", … , 𝒟# over (non-negative) values: 
• A gambler gets to see realizations 𝑣$ ~ 𝒟$ one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣$
• The prophet sees the entire sequence of values 𝑣!, 𝑣", … , 𝑣# at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max$𝑣$



Prophet Inequality

Theorem [Krengel-Succheston ‘77+’78]   (+ Garling)
For all distributions 𝒟!, 𝒟", … , 𝒟#, there is an algorithm ALG such 
that 𝔼 𝐴𝐿𝐺 ≥ !

"
𝔼 max$𝑣$ .

Krengel and Succheston in Oberwolfach



A Different Proof:
Online Contention Resolution Scheme 

(OCRS) 
[Chekuri Vondrak Zenklusen ‘14, Feldman Svensson 

Zenklusen ’16, Lee Singla ’18] 



Proof via Contention Resolution
For simplicity suppose:  𝑣$ = 𝑥$  with probability 𝑝$, and  𝑣$ = 0  otherwise 
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Lemma:  𝔼 max$𝑣$   is at most:    maximize
                                                            subject to    

∑$%!# 𝑦$ ⋅ 𝑥$
∑$%!# 𝑦$≤ 1 ∀ 𝑖
𝑦$ ∈ 0, 𝑝$ ∀ 𝑖

“ex ante relaxation”

PROPHET



Proof via Contention Resolution
For simplicity suppose:  𝑣$ = 𝑥$  with probability 𝑝$, and  𝑣$ = 0  otherwise 

Lemma:  𝔼 max$𝑣$   is at most:    maximize
                                                            subject to    

∑$%!# 𝑦$ ⋅ 𝑥$
∑$%!# 𝑦$≤ 1 ∀ 𝑖
𝑦$ ∈ 0, 𝑝$ ∀ 𝑖

“ex ante relaxation”
Proof (of the lemma):
Setting 𝑦$ 	= 	Pr[𝑥$	is	chosen by prophet] is feasible, and for this choice the 
objective value is equal to PROPHET.

PROPHET

Q.E.D.



Proof via Contention Resolution
Proof (of the prophet inequality):

ALG:  Upon arrival of element 𝑖, if 𝑣$ = 𝑥$, then pick element 𝑖 with prob. %!
" &! '!

 ,     

           where 𝛼$ = 1 − !
"
∑() $ 𝑦( (= probability element 𝑖 is reached)



Proof via Contention Resolution
Proof (of the prophet inequality):

ALG:  Upon arrival of element 𝑖, if 𝑣$ = 𝑥$, then pick element 𝑖 with prob. %!
" &! '!

 ,     

           where 𝛼$ = 1 − !
"
∑() $ 𝑦( (= probability element 𝑖 is reached)

Analysis:

• %!
" &! '!

≤ !
" &!

≤ 1 where we used   (1) 𝑦$ ≤ 𝑝$  and  (2) 𝛼$ ≥ 1 − !
"
∑( 𝑦( ≥

!
"
 



Proof via Contention Resolution
Proof (of the prophet inequality):

ALG:  Upon arrival of element 𝑖, if 𝑣$ = 𝑥$, then pick element 𝑖 with prob. %!
" &! '!

 ,     

           where 𝛼$ = 1 − !
"
∑() $ 𝑦( (= probability element 𝑖 is reached)

Analysis:

• %!
" &! '!

≤ !
" &!

≤ 1 where we used   (1) 𝑦$ ≤ 𝑝$  and  (2) 𝛼$ ≥ 1 − !
"
∑( 𝑦( ≥

!
"
 

• Every element 𝑖  is picked w.p. 𝑦$/2.  Proof by induction:
• Suppose this holds for every element 𝑗 < 𝑖

• Then Pr 𝑖	is	picked = Pr 𝑖	is	reached ⋅ Pr 𝑣! = 𝑥! ⋅
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• Every element 𝑖  is picked w.p. 𝑦$/2.  Proof by induction:
• Suppose this holds for every element 𝑗 < 𝑖

• Then Pr 𝑖	is	picked = Pr 𝑖	is	reached ⋅ Pr 𝑣! = 𝑥! ⋅
"!
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• And so 𝔼 ALG = ∑$*!# %!
" 𝑥$ ≥

!
"𝔼 max$𝑣$   (by lemma) Q.E.D.



Online Matching with Edge Arrivals
(in general graphs)

[Gravin Wang ‘19, Ezra Feldman Gravin Tang ’20, 
MacRury Ma Grammel ‘23] 



Matching with Edge Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge 𝑒 has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of an edge 𝑒, its weight 𝑤+ is revealed
• ALG decides whether to include 𝑒 in the matching (if feasible)
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Ber(0.5)U[0,3]
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Matching with Edge Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge 𝑒 has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of an edge 𝑒, its weight 𝑤+ is revealed
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Matching with Edge Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge 𝑒 has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of an edge 𝑒, its weight 𝑤+ is revealed
• ALG decides whether to include 𝑒 in the matching (if feasible)

• Goal: Maximize expected total weight
• Benchmark (“prophet”): Expected weight of offline optimum

ALG = 0.75
OPT = 1.5

1.5

00.75
𝑒"

𝑒!

𝑒,



Prophet Inequality

Theorem [Ezra Feldman Gravin Tang ‘20]
There is an algorithm for online matching with edge arrivals in general 
graphs that is 3-competitive against the prophet benchmark.



Prophet Inequality

Theorem [Ezra Feldman Gravin Tang ‘20]
There is an algorithm for online matching with edge arrivals in general 
graphs that is 3-competitive against the prophet benchmark.

Lower bound Upper bound

Bipartite graphs ≥ 2.25 [Gravin and Wang ‘19]
≥ 7/3 [Correa Cristi Fielbaum Pollner 
Weinberg ‘22]

≤ 3 [Gravin Tang ‘19]
≤ 2.865 [MacRury Ma Grammel ‘23]

General graphs ≥ 2.5 [MacRury, Ma, Grammel ‘23] 
≥ 2.564 for OCRS-based approaches

≤ 2.967 [Ezra Feldman Gravin Tang ‘20]
≤ 2.907 [MacRury Ma Grammel ‘23]

State of the art:



OCRS Proof
For simplicity suppose:  𝑤+ = 𝑥+  with probability 𝑝+, and  𝑤+ = 0  otherwise 

Lemma:  𝔼 max
;

w(M)   is at most:      max
                                                                        s.t.

∑< 𝑦< ⋅ 𝑥<
∑<:>∈< 𝑦<≤ 1 ∀ node 𝑢
𝑦< ∈ [0, 𝑝<] ∀ edge 𝑒PROPHET

“ex ante relaxation”
(cf. fractional matching polytope)
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available), then match edge 𝑒 with prob. %"
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 ,  where 𝛼+ = Pr[𝑒 available]



OCRS Proof
Proof (of the prophet inequality):
ALG:  Upon arrival of edge 𝑒 = (𝑢, 𝑣), if 𝑤+ = 𝑥+ and 𝑒 is available (i.e., 𝑢 and 𝑣 are 
available), then match edge 𝑒 with prob. %"

, &" '"
 ,  where 𝛼+ = Pr[𝑒 available]

Analysis:

• Pr 𝑒 matched = Pr 𝑒 available ⋅ Pr 𝑤+ = 𝑥+ ⋅ %"
, &" '"

= 𝛼+ ⋅ 𝑝+ ⋅
%"

, &" '"
= %"

,



OCRS Proof
Proof (of the prophet inequality):
ALG:  Upon arrival of edge 𝑒 = (𝑢, 𝑣), if 𝑤+ = 𝑥+ and 𝑒 is available (i.e., 𝑢 and 𝑣 are 
available), then match edge 𝑒 with prob. %"

, &" '"
 ,  where 𝛼+ = Pr[𝑒 available]

Analysis:

• Pr 𝑒 matched = Pr 𝑒 available ⋅ Pr 𝑤+ = 𝑥+ ⋅ %"
, &" '"

= 𝛼+ ⋅ 𝑝+ ⋅
%"

, &" '"
= %"

,  

• !!
" #! $!

≤ %
" #!

≤ 1 because (1) 𝑦& ≤ 𝑝&  and (2) 𝛼& ≥ 1 − Pr 𝑢 unvailable −

Pr 𝑣 unavailable ≥ %
"
 (by union bound)

• Pr 𝑢 unvailable = ∑+#)+:: ∈ +# Pr 𝑒<matched = ∑&"'&:) ∈ &"
"#"

+
≤

,

+
    



OCRS Proof
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• And so 𝔼 ALG = ∑+
%"
, 𝑥+ ≥

!
,𝔼 max

=
w(M)   (by lemma) Q.E.D.



Online Matching with Vertex Arrivals
(in general graphs)

[Ezra Feldman Gravin Tang ‘20] 



Matching with Vertex Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge e has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of a vertex 𝑣 ∈ 𝑉, weights of edges to previously 
arrived vertices are revealed

• ALG decides to whom vertex 𝑣 is matched (if at all)

U[0,3]U[0,3]
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Matching with Vertex Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
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• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge e has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of a vertex 𝑣 ∈ 𝑉, weights of edges to previously 
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• ALG decides to whom vertex 𝑣 is matched (if at all)
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Matching with Vertex Arrivals
• A weighted graph 𝐺 = (𝑉, 𝐸) (not necessarily bipartite)
• Edge e has weight 𝑤+ ~ 𝒟+
• Initially: 𝑤+  unknown,  𝒟+  known

• Upon arrival of a vertex 𝑣 ∈ 𝑉, weights of edges to previously 
arrived vertices are revealed

• ALG decides to whom vertex 𝑣 is matched (if at all)

• Goal: Maximize expected total weight
• Benchmark (“prophet”): Expected weight of offline optimum

1.81.6

𝑣!

𝑣" 𝑣,0.75

ALG = 1.6
OPT = 1.8



Prophet Inequality

Theorem [Ezra Feldman Gravin Tang ‘20]
There is an algorithm for online matching with vertex arrivals in general 
graphs that is 2-competitive against the prophet benchmark.

(this is best possible)



Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
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Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
• Upon arrival of vertex 𝑣:
• 𝐵> ≔ edges from 𝑣 to former vertices; −𝐵>≔ 𝐸\B> 
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Algorithm for Vertex Arrivals 𝑦& =
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Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
• Upon arrival of vertex 𝑣:
• 𝐵> ≔ edges from 𝑣 to former vertices; −𝐵>≔ 𝐸\B> 
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Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
• Upon arrival of vertex 𝑣:
• 𝐵> ≔ edges from 𝑣 to former vertices; −𝐵>≔ 𝐸\B> 
• Observe weights 𝑤+ of new edges 𝐵>

𝑦& =
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Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
• Upon arrival of vertex 𝑣:
• 𝐵> ≔ edges from 𝑣 to former vertices; −𝐵>≔ 𝐸\B> 
• Observe weights 𝑤+ of new edges 𝐵>

𝑦& =
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"
  for all 𝑒 ∈ 𝐸 
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Algorithm for Vertex Arrivals
• Precompute:  𝑦+ = Pr 𝑒 ∈ 𝑂𝑃𝑇
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Proof Outline

Lemma 1.  Pr 𝑒 is provisional = Pr 𝑒 ∈ 𝑂𝑃𝑇 = 𝑦<

Lemma 2.  Pr 𝑒 is matched | 𝑒 is provisional = !
"

Lemma 3.  Expected value of provisional edges is 𝔼[𝑂𝑃𝑇]

Conclusion:  ALG has a competitive ratio of 1/2.
Q.E.D.



Additional Directions

• Better understanding of random-order OCRS for matching and other problems. Recent 
progress in [MacRury Ma 2024], but not yet fully understood.  

• Infinite-time horizon prophet inequalities (cf. the Stationary Prophet Inequality 
Problem). Has connections to (offline) contention resolution schemes (CRS) [Kessel 
Shameli Patel Saberi Wajc ‘22, Patel Wajc ‘24]

• Online correlated selection (OCS) as in [Fahrbach, Huang, Tao, and Zadimoghaddam
‘20] (and follow-up). Has some connection to OCRS. Making this connection tighter and 
more explicit is an interesting direction.

• Online dependent rounding. One can do better than offline single-item CRS (1.519), 
but no better than 1/ 2 2	− 2 ≈ 1.208. What’s the right answer? Known 
techniques relate to philosopher inequality, and online edge coloring multi-graphs. 
[Naor Srinivasan Wajc 23+]



Summary

• Alternative proof for single-choice prophet inequality
• via: “online contention resolution” 

• Prophet inequalities for online matching via this technique 
• with edge arrivals in general graphs
• with vertex (“batched”) arrivals in general graphs 

 

Thanks! Coffee!


