Prophet Inequalities

Part 2: Online matching and contention resolution

Paul Dutting, Google Research
duetting@google.com
ADFOCS 2024 Summer School
August 2024

Online Matching

* Fundamental model with numerous applications:
* |[tems and buyers (in e-commerce)

* Drivers and passengers (in ridesharing platforms)

Ad slots and advertisers (in online ad auctions)

Jobs and workers (in online labor markets)
Example: Matching in bipartite graph

Online Matching

* Fundamental model with numerous applications:

* |[tems and buyers (in e-commerce)

Drivers and passengers (in ridesharing platforms)

Ad slots and advertisers (in online ad auctions)

Jobs and workers (in online labor markets)
Example: Matching in bipartite graph

* Two flavors: edge arrival or vertex arrival (a.k.a. “batched arrival”)

* Goal: maximize total weight of chosen matching

Plan for Part 2

* Alternative proof for single-choice prophet inequality

e via: “online contention resolution”

* Prophet inequalities for online matching via this technique
* with edge arrivals in general graphs

e with (“batched”) in general graphs

High-Level Idea

* (Relax) Define a fractional relaxation

* (Round) Devise an online rounding scheme

Outline Other Parts

Part 1: Introduction
Part 2: Online matching and contention resolution
Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities

Additional References

Surveys and book chapters:

* “Online Matching: A Brief Survey” by Zhiyi Huang, Zhihao Gavin Tang, and David Wajc
[SIGEcom ’24]

* “Applications of Online Matching” by Zhiyi Huang and Thorben Trobst (Chapter 5 in
Echenique/Immorlica/Vazirani book) [link]

* “Online Matching in Advertisement Auctions” by Nikhil Devanur and Aranyak Mehta
(Chapter 6 in Echenique/Immorlica/Vazirani book) [link]

* “Online Matching and Ad Allocation” by Aranyak Mehta (FnT-TCS Survey) [link]

https://arxiv.org/abs/2407.05381
https://www.cambridge.org/core/books/abs/online-and-matchingbased-market-design/applications-of-online-matching/E65C7B26A545C1EE7E5D07D51672558A
https://www.cambridge.org/core/books/abs/online-and-matchingbased-market-design/online-matching-in-advertisement-auctions/CF3A5F19768F0F645A4BCAF51249234C
https://www.nowpublishers.com/article/Details/TCS-057

Additional References

Tutorials and workshops:

 FOCS 2023 Workshop “Online Algorithms and Online Rounding: Recent Progress” by
Zhiyi Huang and David Wajc [website]

 WINE 2023 Tutorial “Recent Progress and Future Directions in Online Matching” by Zhiyi
Huang and Zhihao Gavin Tang [slides-pt1, slides-pt2]

https://sites.google.com/corp/view/focs23workshop-online-rounding/home
https://i.cs.hku.hk/~zhiyi/file/online-matching-recent-progress/wine-2023-adverserial.pptx
https://i.cs.hku.hk/~zhiyi/file/online-matching-recent-progress/wine-2023-stochastic.pptx

Recall: The Classic Prophet Inequality

The Problem

* Given known distributions D4, D,, ..., D,, over (hon-negative) values:

* A gambler gets to see realizations v; ~ D; one-by-one, and needs to
immediately and irrevocable decide whether to accept v;

* The prophet sees the entire sequence of values v, v, ..., 1,, at once, and can
simply choose the maximum value

* Question: What’s the worst-case gap between [E[value accepted by gambler] and
[E[value accepted by prophet]? | I I
I |
| =: E[ALG]
= E|max;v;]

Prophet Inequality

Theorem [Krengel-Succheston ‘77+'78] (+ Garling)

For all distributions D, D,, ..., D,,, there is an algorithm ALG such
that E[ALG]| = % E[max;v;].

Krengel and Succheston in Oberwolfach

A Different Proof:
Online Contention Resolution Scheme
(OCRS)

[Chekuri Vondrak Zenklusen ‘14, Feldman Svensson
Zenklusen ’16, Lee Singla "18]

Proof via Contention Resolution

For simplicity suppose: v; = x; with probability p;, and v; = 0 otherwise

Proof via Contention Resolution

For simplicity suppose: v; = x; with probability p;, and v; = 0 otherwise

. . . n
Lemma: [E[max;v;]| isat most: maximize -1 Vi' X
|)

! subjectto)=, Vi=1 Vi
PROPHET .
Vi € [O, pl] Vi

“ex ante relaxation”

Proof via Contention Resolution

For simplicity suppose: v; = x; with probability p;, and v; = 0 otherwise

. . . n
Lemma: [E[max;v;]| isat most: maximize -1 Vi' X
|)

! subjectto)=, Vi=1 Vi
PROPHET .
Vi € [O, pl] Vi

“ex ante relaxation”

Proof (of the lemma):

Setting y; = Prlx; is chosen by prophet] is feasible, and for this choice the

objective value is equal to PROPHET.
Q.E.D.

Proof via Contention Resolution

Proof (of the prophet inequality):

ALG: Upon arrival of element i, if v; = x;, then pick element i with prob. > ;/_ip_)
Ll

where o; = 1 — : Y.~ Vi (= probability element i is reached)
2 HJ<1/]

Proof via Contention Resolution

Proof (of the prophet inequality):
Vi

ALG: Upon arrival of element i, if v; = x;, then pick element i with prob. Tan
L Ml

where o; = 1 — : Y.~ Vi (= probability element i is reached)
2 HJ<1/]

Analysis:

. Yi 1 1 | 1
2Oll_piSZCZiS1whereweused (1) yi <p; and (2) a; = 1 szy] > -

’

Proof via Contention Resolution

Proof (of the prophet inequality):
ALG: Upon arrival of element i, if v; = x;, then pick element i with prob. > ;/_ip_

where o; = 1 — : Y.~ Vi (= probability element i is reached)
2 HJ<1/]

Analysis:

° Yi 1 | | | B 1 | | l
> i, < v < 1 whereweused (1)y; <p; and (2)a; = 1 . Yy = :

* Everyelement i is picked w.p. y;/2. Proof by induction:

* Suppose this holds for every element j < i

* Then Pr[i is picked] = Pr[i is reached] - Pr[v; = x;] - ; ;Ziipi =i Di-; jiipi = %

’

Proof via Contention Resolution

Proof (of the prophet inequality):

ALG: Upon arrival of element i, if v; = x;, then pick element i with prob. > ;/_ip_)
Ll

where o; = 1 — : Y.~ Vi (= probability element i is reached)
2 HJ<1/]

Analysis:

° Yi 1 | | | B 1 | | l
> i, < v < 1 whereweused (1)y; <p; and (2)a; = 1 . Yy = :

* Everyelement i is picked w.p. y;/2. Proof by induction:

* Suppose this holds for every element j < i

* Then Prli is picked] = Pr[i is reached] - Pr[v; = x;] - 5 Ofiipi = &i"Pig ()Jc/iipi J;i

* Andso E[ALG| = ?:1% X; = %E[maxivi] (by lemma) Q.E.D.

Online Matching with Edge Arrivals
(in general graphs)

[Gravin Wang ‘19, Ezra Feldman Gravin Tang '20,
MacRury Ma Grammel 23]

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)
* Edge e has weight w, ~ D,

* Initially: w, unknown, D, known
* Upon arrival of an edge ¢, its weight w, is revealed

* ALG decides whether to include e in the matching (if feasible)

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

Edge e has weight w, ~ D,
* Initially: w, unknown, D, known
Upon arrival of an edge ¢, its weight w, is revealed

decides whether to include e in the matching (if feasible)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Edge Arrivals

* Aweighted graph G = (V, E) (not necessarily bipartite) Q Q
* Edge e has weight w, ~ D, " :

* Initially: w, unknown, D, known U[0,3] Ber(0.5)

* Upon arrival of an edge ¢, its weight w, is revealed O

decides whether to include e in the matching (if feasible)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

Edge e has weight w, ~ D,
* Initially: w, unknown, D, known
Upon arrival of an edge ¢, its weight w, is revealed

ALG decides whether to include e in the matching (if feasible)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

* Edge e has weight w, ~ D,

* Initially: w, unknown, D, known

* Upon arrival of an edge ¢, its weight w, is revealed

ALG decides whether to include e in the matching (if feasible)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

* Edge e has weight w, ~ D,

* Initially: w, unknown, D, known

* Upon arrival of an edge ¢, its weight w, is revealed

ALG decides whether to include e in the matching (if feasible)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Edge Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

* Edge e has weight w, ~ D,

* Initially: w, unknown, D, known

* Upon arrival of an edge ¢, its weight w, is revealed

ALG decides whether to include e in the matching (if feasible)

ALG =0.75
OPT=1.5

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Prophet Inequality

Theorem [Ezra Feldman Gravin Tang 20|

There is an algorithm for online matching with edge arrivals in general
graphs that is 3-competitive against the prophet benchmark.

Prophet Inequality

Theorem [Ezra Feldman Gravin Tang 20|

There is an algorithm for online matching with edge arrivals in general
graphs that is 3-competitive against the prophet benchmark.

State of the art:

Bipartite graphs = 2.25 [Gravin and Wang ‘19] < 3 [Gravin Tang ‘19]
=> 7/3 [Correa Cristi Fielbaum Pollner < 2.865 [MacRury Ma Grammel ‘23]
Weinberg 22]

General graphs > 2.5 [MacRury, Ma, Grammel ‘23] < 2.967 [Ezra Feldman Gravin Tang ‘20]

= 2.564 for OCRS-based approaches < 2.907 [MacRury Ma Grammel 23]

OCRS Proof

For simplicity suppose: w, = x, with probability p., and w, = 0 otherwise

Lemma: [E[ml\?XW(M)] isat most: max e Ve Xe

' ' st. Deuce Vo<1 Vnodeu
PROPHET V. €[0,p,] Vedgee

“ex ante relaxation”
(cf. fractional matching polytope)

OCRS Proof

Proof (of the prophet inequality):

ALG: Upon arrival of edge ¢ = (u, v), if w, = x, and e is available (i.e., u and v are

available), then match edge e with prob. ; Oi]ep , Where a, = Pr|e available]

OCRS Proof

Proof (of the prophet inequality):

ALG: Upon arrival of edge ¢ = (u, v), if w, = x, and e is available (i.e., u and v are

available), then match edge e with prob. ; Oi/ep , Where a, = Pr|e available]

Analysis:

° — 1 . — . Ve — . . Ve — &
Pr|e matched] = Pr|e available] - Pr|w, = x,] e - e Pe s, =

OCRS Proof

Proof (of the prophet inequality):

ALG: Upon arrival of edge ¢ = (u, v), if w, = x, and e is available (i.e., u and v are

available), then match edge e with prob. - ;ep , Where a, = Pr|e available]

Analysis:

° — - . —_ . Ve — . . Ve — &
Pr{e matched] = Prle available] - Prlwe = xe] - 527 = @¢ " pe 575" = 3

. Ye < 1 -1 because (1) y, < p, and (2) «, = 1 — Pr|u unvailable| —

3AePe 3
Pr[v unavailable| > g(by union bound)

Y,! 1
QS

* Prluunvailable] =} ey, e o Prie’'matched] = Forconeer =5 < -

OCRS Proof

Proof (of the prophet inequality):

ALG: Upon arrival of edge ¢ = (u, v), if We = xe and e is available (i.e., u and v are

available), then match edge e with prob. , Where a, = Pr|e available]

3 Ue Pe
Analysis:
* Pr|e matched| = Pr|e available] - Pr|w, = x,] - - ;:pe = Q¢ " Pe "3 Ci]:pe = %
. 3;:296 < 3;; <1 because(1)y, <p, and (2) @, = 1 — Pr|u unvailable| —
Pr|v unavailable| > = (by union bound)
 Pr[uunvailable] =Y /..., c o Prle’'matched] = ¥,/ ce’ y3 <= :

* Andso E[ALG] = ¥, = x, > IE [maXW(M)] (by lemma) Q.E.D.

Online Matching with Vertex Arrivals
(in general graphs)

[Ezra Feldman Gravin Tang ‘20]

Matching with Vertex Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)
* Edge e has weight w, ~ D,

* Initially: w, unknown, D, known

* Upon arrival of a vertex v € I/, weights of edges to previously
arrived vertices are revealed

* ALG decides to whom vertex v is matched (if at all)

u[0,3]

U[0,3] S uoa)
O
U1

Matching with Vertex Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite) Q _______ O

* Edge e has weight w, ~ D,
e Initially: w, unknown, D, known u[o,3] =, u[0,3]
* Upon arrival of a vertex v € I/, weights of edges to previously O
arrived vertices are revealed V1

decides to whom vertex v is matched (if at all)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Vertex Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

Edge e has weight w, ~ D,
* Initially: w, unknown, D, known

Upon arrival of a vertex v € V, weights of edges to previously
arrived vertices are revealed

decides to whom vertex v is matched (if at all)

Goal: Maximize expected total weight

Benchmark (“prophet”): Expected weight of offline optimum

Matching with Vertex Arrivals
* Aweighted graph G = (V, E) (not necessarily bipartite) @

* Edge e has weight w, ~ D,
* Initially: w, unknown, D, known 16 ulo,3]
* Upon arrival of a vertex v € I/, weights of edges to previously ‘
arrived vertices are revealed V1

* ALG decides to whom vertex v is matched (if at all)

* Goal: Maximize expected total weight
 Benchmark (“prophet”): Expected weight of offline optimum

Matching with Vertex Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

* Edge e has weight w, ~ D,
* Initially: w, unknown, D, known

* Upon arrival of a vertex v € I/, weights of edges to previously
arrived vertices are revealed

* ALG decides to whom vertex v is matched (if at all)

* Goal: Maximize expected total weight
 Benchmark (“prophet”): Expected weight of offline optimum

Matching with Vertex Arrivals

* A weighted graph ¢ = (V/, E) (not necessarily bipartite)

* Edge e has weight w, ~ D,
* Initially: w, unknown, D, known

* Upon arrival of a vertex v € I/, weights of edges to previously
arrived vertices are revealed

* ALG decides to whom vertex v is matched (if at all)

* Goal: Maximize expected total weight
 Benchmark (“prophet”): Expected weight of offline optimum

Prophet Inequality

Theorem [Ezra Feldman Gravin Tang 20|

There is an algorithm for online matching with vertex arrivals in general
graphs that is 2-competitive against the prophet benchmark.

(this is best possible)

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

ye=§ foralle € E

(%) v3
u[o0,3]
IIIIIIIIIIIIIII:Q
Wy, = 2“ .:U[O 3]

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,
* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,
* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,
* Observe weights w, of new edges B,
 Sample weights W,/ for edges e’ € —B,

° u = partner of v in max-weight matching on (WBv'W—Bv)

ye=§ foralle € E

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, V’V_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

ye=§ foralle € E

Algorithm for Vertex Arrivals

U2 o U3
* Precompute: y, = Prle € OPT] ‘W—18
e Upon arrival of vertex v: Q
* B, = edges from v to former vertices; —B,, := E\B, Wa = 2 \ . w=16
* Observe weights w, of new edges B, @
* Sample weights W, for edges e’ € —B,, V1

* U := partner of v in max-weight matching on (WBv, \’/T/_Bv) Match (2, 1) with prob.

If (a) u exists, (b) u < v, (c) u is available, then ! 1!

1 2_2r<2 Y(r1) B 2

* Match v to u with probability a,,(v) = -y _ 3
~Lr<y Y(ru)

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, W_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

v 1%

@)

u3] < Ui03]
U1

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, W_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

v 1%

SN

U3l < ulo3]
V1

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, V’V_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

(%) v3

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, V’V_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

(%) v3

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]

e Upon arrival of vertex v:

* B, = edges from v to former vertices; —B,, := E\B,

Observe weights w, of new edges B,

Sample weights i, for edges e’ € —B,,

u = partner of v in max-weight matching on (WBv, V’V_Bv)

If () u exists, (b) 1 < v, (c) uis available, then

* Match v to u with probability a,,(v) =

1

2 _Zr<v Y(r,u)

ye=§ foralle € E

(%) v3

ye=§ foralle € E

Algorithm for Vertex Arrivals

[3 V3
* Precompute: y, = Prle € OPT] ‘W—06‘
e Upon arrival of vertex v:
* B, := edges from v to former vertices; —B, := E\B, w=11" Y Aat
* Observe weights w, of new edges B, @
* Sample weights W, for edges e’ € —B,, V1

* U := partner of v in max-weight matching on (WBv, \’/T/_Bv) Match (3, 1) with prob.

If (a) u exists, (b) u < v, (c) u is available, then ! _3

1 2_2r<3 Y(r1) B 5

* Match v to u with probability a,,(v) = -y _ 3
~Lr<y Y(ru)

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

° u = partner of v in max-weight matching on (WBv'W—Bv)

If () u exists, (b) 1 < v, (c) uis available, then
1

* Match v to u with probability a,,(v) = -y _ 3
~Lr<y Y(ru)

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

* u = partner of v in max-weight matching on (WBv, \’/T/_Bv) OPT = 2

If () u exists, (b) 1 < v, (c) uis available, then
1

* Match v to u with probability a,,(v) = -y _ 3
~Lr<y Y(ru)

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

* u = partner of v in max-weight matching on (WBv, \’/T/_Bv) OPT = 2

If () u exists, (b) 1 < v, (c) uis available, then
1

* Match v to u with probability a,,(v) = -y _ 3
~Lr<y Y(ru)

Note: o, (v) = 1 because), Yy = 1

Algorithm for Vertex Arrivals

* Precompute: y, = Prle € OPT]
e Upon arrival of vertex v:
* B, = edges from v to former vertices; —B,, := E\B,

* Observe weights w, of new edges B,

 Sample weights W, for edges e’ € —B,,

* u = partner of v in max-weight matching on (WBv, \’/T/_Bv) OPT = 2
f (a) u exists, (b) u < v, (c) uis avaitable, then
 Match v to u with probability « = -
2_2r<v y(r,u)

“provisional edges”

Proof Outline

‘Lemma 1. Pr|eis provisional| = Pr|e € OPT] =y,

Proof Outline

‘Lemma 1. Pr|eis provisional| = Pr|e € OPT] =y,

Lemma 2. Pr|e is matched | e is provisional| = %

Proof Outline

‘Lemma 1. Pr|eis provisional| = Pr|e € OPT] =y,

Lemma 2. Pr|e is matched | e is provisional| = %

Proof: By induction:

(1_2r<v3’(r,u)).(1) :l
2 2 =Yy (r,u) 2

1 is available a,(v) Q.E.D

Proof Outline

‘Lemma 1. Pr|eis provisional| = Pr|e € OPT] =y,

Lemma 2. Pr|e is matched | e is provisional| = %

Lemma 3. Expected value of provisional edges is E|OPT |

Proof Outline

‘Lemma 1. Pr|eis provisional| = Pr|e € OPT] =y,

Lemma 2. Pr|e is matched | e is provisional| = %

Lemma 3. Expected value of provisional edges is E|OPT |

Conclusion: ALG has a competitive ratio of 1/2.
Q.E.D.

Additional Directions

 Better understanding of random-order OCRS for matching and other problems. Recent
progress in , but not yet fully understood.

* Infinite-time horizon prophet inequalities (cf. the Stationary Prophet Inequality
Problem). Has connections to (offline) contention resolution schemes (CRS)

 Online correlated selection (OCS) as in
(and follow-up). Has some connection to OCRS. Making this connection tighter and
more explicit is an interesting direction.

 Online dependent rounding. One can do better than offline single-item CRS (1.519),

but no better than 1/(2\/? — 2) ~ 1.208. What’s the right answer? Known
techniques relate to philosopher inequality, and online edge coloring multi-graphs.

Summary

* Alternative proof for single-choice prophet inequality

e via: “online contention resolution”

* Prophet inequalities for online matching via this technique
* with edge arrivals in general graphs

e with vertex (“batched”) arrivals in general graphs

Thanks! Coffee!

