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Online Combinatorial Auctions

The basic set-up: ’ ?
» 1 buyers with valuation functions v; ~ D;, v;: 2™ — R., e &
arriving one-by-one y
* m items - @
Upon arrival of buyer i: : C‘S
* Immediately and irrevocably assign a subset X; of the (not yet)
allocated items [m]|\ (U;/_;X;) n bidders m items

Goal: Maximize E[);; v;(X;)| (a.k.a. “expected welfare”)
Benchmark (“prophet”): E[}.; v;(OPT;(v))]
\ )

Y
= items buyer i receives in optimal allocation




Hierarchy of Valuations

Unit
We will always assume monotonicity:
Itive

* Valuation function v;: 2l - R., is monotone if
e v;(S)=v;(T)forS ST

Gross
Substitutes

Submodular

We will also impose some structure, e.g.,

* Valuation function v; is unit demand if

* v;(5) = max;eg v;; Sub
additive
* Valuation function v; is subadditive if

“hierarchy of complement-

° vi(S U T) < Ui(S) + v; (T) free valuations”

[Lehman Lehman Nisan 2006]



Posted-Price Mechanism

Particularly desirable solution:

* Post (static, anonymous) item prices p; for j € [m]
* Buyer i buys set of still available items X; that maximizes

u; (X;,p) = vi(Xy) — Yjex, Pj

\ ] | J
| |

buyer i’s value for set X; sum of the prices of
the items in X;

(is simple and has nice economic properties)
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High-Level Intuition

Prices serve two purposes:

 They should be high enough
 Thisis to ensure that items are protected from being snapped away
by low-value buyers
 They should be low enough

 Thisis to ensure that high-value buyers, when they come along,
actually buy these items



High-Level Intuition

Prices serve two purposes:

* They should be

 Thisis to ensure that items are protected from being snapped away
by low-value buyers

* They should be

 Thisis to ensure that high-value buyers, when they come along,
actually buy these items

— we want prices to “balance” these two forces



Plan for Part 3

* Alternative “economic” proof of classic single-choice prophet
inequalities via “balanced prices”

* The balanced prices framework and its main extension theorem

* Proof for known valuations that extends to Bayesian setting
e Simplifies problem to the problem of finding balanced prices for
known valuations

* |n particular: Factor 2 prophet inequality / posted-price mechanism
for XOS combinatorial auctions



Outline Other Parts

Part 1: Introduction
Part 2: Online matching and contention resolution
Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Recall: The Classic Prophet Inequality



The Problem

* Given known distributions D4, D,, ..., D,, over (hon-negative) values:

* A gambler gets to see realizations v; ~ D; one-by-one, and needs to
immediately and irrevocable decide whether to accept v;

* The prophet sees the entire sequence of values v, v, ..., 1,, at once, and can
simply choose the maximum value

* Question: What’s the worst-case gap between [E[value accepted by gambler] and
[E[value accepted by prophet]? | I I
I |
| =: E[ALG]
= E|max;v;]




Prophet Inequality

Theorem [Samuel-Cahn '84]
For all distributions D, D,, ..., D,,, there is a threshold algorithm ALG;,
such that E|ALG,| = % [E|max;v;].

Threshold algorithm: set threshold/price 7, accept first v; = 7

Samuel-Cahn (from Gil Kalai’s Blog)




Proof via Balanced Prices



Economic Interpretation
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* There are n buyers with values v; ~ D;, and a single item with price p

* Buyer i has a utility of v; — p for buying the item
* |f the item is still available when it’s buyer /’s turn, she will buy if v; —p = 0

Bottom line: One-to-one correspondence between online algorithm
with threshold 7 = p and rational economic desicisions of the buyers




Economic Terminology

For (fixed) values v = (v4, ..., 1,,):
«  We will write utility; (v) (or u;(v) for shory) for buyer i’s utility

* We will write revenue(v) for the revenue
* Therevenue is p if the item is sold, 0 otherwise

* We will write welfare(v) for the welfare
* This is the value v; of the buyer that buys the item (0 if the item is not sold)

* Note that: welfare(v) = );utility;(v) + revenue(v)

Our goal: Want to show that there exists a price p such that

1
E[welfare(v)] > 2 E[max v; ]
l




An Argument for Known Valuations
- o 9

vz =15 v4 = 80 s =5

Pricep = % max v; is “balanced”:
Let v;» = max v;.
 Casel: Slome buyer i’ < i* buys the item:
« = revenue(v)=p > % max v;
e Case 2: No buyer i’ < i” buys the item:
« = Hutility;(v) =2 up(w) = v —p =% max v;

In either case:

welfare(v) = ) ;utility;(v) + revenue(v) = 1/2 - maxv;
l

Q.E.D.

(w/ compl. info)



Extension to Bayesian Setting

s 2 4 T © B8
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m vy ~ D Vo ~ Dy vz ~ D3 V4 ~ Dy Vs ~ Dsg

Let ¥ ~ D denote an independent sample
1

Consider pricep = E [pﬁ], where p? = > max D;
l
Define SOLD; (v) := item is sold to buyers 1, ..., i when values are v

Define OPT (v) := bidder that receives the item in the optimal (welfare-maximizing)
allocation for values v



Extension to Bayesian Setting

To establish a bound on the expected welfare, we will again establish bounds on the
expected revenue and the expected sum of utilities.

Revenue:

N[ N =S =

E[revenue(v)] [P - 1soLp, ()]

- E[1soLp, ()]

E[max ¥;] - E[1soLp, w)]

E[maxv;] - E[1soLp, )]



Extension to Bayesian Setting

Sum of utilities:

* To bound the sum of utilities, first consider some buyer i
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Extension to Bayesian Setting

a.k.a. “hallucination trick”

Sum of utilities:

* To bound the sum of utilities, first consider some buyer i

* Buyer i can draw an independent sample v(_lz ~ D_; and buy if
* buyer i gets the item in the optimal allocation for (v;, v(_ll?) and

* theitem has not been sold to buyers 1,..,i — 1

= Elu;(v)] 2 E[gvi —P) L pr(p, 0y = L 1. soLp;_, )]
e | ]
Y Y

— AN

only depends on v; and v(_lz only depends on vy, ..., v;_4




Extension to Bayesian Setting

a.k.a. “hallucination trick”

Sum of utilities:
* To bound the sum of utilities, first consider some buyer i
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Extension to Bayesian Setting
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Extension to Bayesian Setting

a.k.a. “hallucination trick”

Sum of utilities:
* To bound the sum of utilities, first consider some buyer i

* Buyer i can draw an independent sample v(_lz ~ D_; and buy if
* buyer i gets the item in the optimal allocation for (v;, v(_ll?) and

* theitem has not been sold to buyers 1,..,i — 1

= Elu;(v)] 2 E[(v; —p) - 10PT(v,-,v(_i?) _; " 1osoLp;_, )]
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Extension to Bayesian Setting

ere. e a.k.a. “hallucination trick”
Sum of utilities:

* To bound the sum of utilities, first consider some buyer i

* Buyer i can draw an independent sample v(_lz ~ D_; and buy if
* buyer i gets the item in the optimal allocation for (v;, v(_ll?) and

* theitem has not been sold to buyers 1,..,i — 1

= Elu;(v)] 2 E[(v; —p) - 10PT(v,-,v(_i?) _; " 1osoLp;_, )]

E
E[(vi — o) loprew,s_) =il - E[15soLp,_, )]
E

vV

[((vi — D) - Loprw,w_p =il - E[15soLp,w)]



Extension to Bayesian Setting

e Summing over all buyers i € [n], we thus obtain

EXui(w)] = Y E[(v; —p) - lopra =il - E[1-soLp,w)]
= (E[max vij] —p) - E[1.soLp, )]
l
1
=3 E[max vi| - E[1_soLp,w)]

l



Extension to Bayesian Setting

e Summing over all buyers i € [n], we thus obtain

ERiui(w)] = Y E[(vi —p) - loprw) =il - E[15soLp,@w)]
= (IE[malx vi] —p) - E[1.soLp, )]
1

— z [E[maX vi] ’ E[lﬁ SOLDn(U)]
l

Putting everything together:
E[welfare(v)] = E[);u;(v)] + E[revenue(v)]
> % E[max v;] * (E[1.soLp,w)] + El1soLp,w)])

l [ | . J

=1

Q.E.D.



Prophet Inequalities via Balanced Prices

[Weinberg Kleinberg 2012, Feldman Gravin Lucier 2015,
Dutting Feldman Kesselheim Lucier 2017]



Online Combinatorial Auctions

The basic set-up: ’ ?
» 1 buyers with valuation functions v; ~ D;, v;: 2™ — R., e &
arriving one-by-one y
* m items - @
Upon arrival of buyer i: : C‘S
* Immediately and irrevocably assign a subset X; of the (not yet)
allocated items [m]|\ (U;/_;X;) n bidders m items

Goal: Maximize E[);; v;(X;)| (a.k.a. “expected welfare”)
Benchmark (“prophet”): E[}.; v;(OPT;(v))]
\ )

Y
= items buyer i receives in optimal allocation




XOS Valuations

Definition. A valuation function v;: 2lm] _, R~ is fractionally subadditive (XOS) if
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XOS Valuations

Definition. A valuation function v;: 2lm] _, R~ is fractionally subadditive (XOS) if
there exist additive functions vf with £ € | k] such that

vi($) = max vf ($) = max Tjes vi;
Examples:
e Additive: v;(S) = Zjes Vij
 Unit demand: v;i(S) = maX;eg Vjj

* Budgetadditive: v;(S) = min{};cs v;;, B}
e Submodular: viSU{D —v;(S) =2 v;(TU{j}) —vi(T)for SCT




The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]
For any distributions D4, D,, ..., D,, over XOS valuation functions, there exist
(static, anonymous) item prices such that for the resulting allocation X4, ..., X,;:

N =

E[Y.; vi(X;)] = E[OPT]
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The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]
For any distributions D4, D,, ..., D,, over XOS valuation functions, there exist
(static, anonymous) item prices such that for the resulting allocation X4, ..., X,;:

E[Y.; vi(X;)] = E[OPT]

N

Generalizes the classic prophet inequality (and is tight).

Main technique: Balanced prices.




Balanced Prices

Definition. [Dutting Feldman Kesselheim Lucier 2017]

A valuation function v;: 21" — R.,admits balanced prices if for every set of
items U © [m] there exist item prices p; for j € U such thatforall T < U:

(1) 2Zjerpj = vi(U) — v;(U\T)
(2) XjerntPj < vi(U\T)




Balanced Prices

Definition. [Dutting Feldman Kesselheim Lucier 2017]

A valuation function v;: 21" — R.,admits balanced prices if for every set of
items U © [m] there exist item prices p; for j € U such thatforall T < U:

(1) 2Zjerpj = vi(U) — v;(U\T)
(2) XjerntPj < vi(U\T)

Known fact (implicit in [FGL 15]): XOS valuation functions admit balanced prices.
(See exercise!)
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Two conditions:
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Examples: Balanced Prices

Two conditions:

Example 2: Unit demand

vi(S) =+

(1) 2jerpj = vi(U) — v;(U\T)

(2) Ljesp; = vi(S)

0 ifS=0

1ifS+0

LR}

(VI < U) and
(VS € U)

v
v



Examples: Balanced Prices

Two conditions: (1) Xjerpj = vi(U) — v;(U\T)
(2) Ljesp; = vi(S)

(" )
<]
\ )

Example 3: Budget additive

Ui(S) — m1n{|S|, 15}

(VI < U) and
(VS € U)



Examples: Balanced Prices

Two conditions: (1) Xjerpj = vi(U) — v;(U\T)
(2) Ljesp; = vi(S)

LN}

Example 3: Budget additive

Ui(S) — m1n{|S|, 15}

(VI < U) and
(VS € U)



Examples: Balanced Prices

Two conditions: (1) Xjerpj = vi(U) — v;(U\T)
(2) Ljesp; = vi(S)

LN}

Example 3: Budget additive

Ui(S) — m1n{|S|, 15}

(VI < U) and
(VS € U)

v
v



Main Theorem

Theorem. [Ditting Feldman Kesselheim Lucier 2017]
If a class of valuations admits balanced prices, then for any distributions

D4,D-, ..., D, there exist (static, anonymous) item prices such that for the
resulting allocation X5, ..., X,;:

E[Y; vi(X;)] = E[OPT].

N =
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If a class of valuations admits balanced prices, then for any distributions

D4,D-, ..., D, there exist (static, anonymous) item prices such that for the
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Proof follows same blueprint as for single item.



Main Theorem

Theorem.

If a class of valuations admits balanced prices, then for any distributions

D4,D-, ..., D, there exist (static, anonymous) item prices such that for the
resulting allocation X5, ..., X,;:

E[Y; vi(X;)] = E[OPT].

N

Proof follows same blueprint as for single item.

Up next: How we set prices & the argument for complete information.
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How we Set the Prices
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Let U; = {j | i getsj in OPT (v)} .
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Fix ﬁli cie ﬁ?’l'
Let U; = {j | i getsj in OPT (v)} .

Forj € U; let p;'? be balanced price for item j for U;, U;.



How we Set the Prices

e 5 290 8

Z Vo Vs

HEE N EEEEE N

U 1 U3 U4

Fix 91, cie ﬁ?’l'
Let U; = {j | i getsj in OPT (v)} .

Forj € U; let p? be balanced price for item j for U;, U;.

Price foritem j: p; = % IEIA,N@[p?] :



Proof of Factor 2

(Complete Information)
let U; ={j|igetsjin OPT(v)} (foralli € [n])
Set price p; = % forj € U;. (p; = balanced price for v;, U;)

letT; ={j|j € U;soldtoi’ +# i}.
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Proof of Factor 2

(Complete Information)

Let U; = {j|igetsjin OPT(v)} (foralli € [n]) Balancedness:
Set price p; = % forj € U;. (p; = balanced price for v;, U;) (1) Xjer,pj = vi(Uy) — vy (U;\Ty)

LetT; ={j|j € U;soldtoi’ # i}. (2) 2jevar,Pj < Vi(UNT)
Then, for the allocation X4, ..., X,,, we have:

u; (X;,P) + Xjer, Dj

(Wi(U\T;) — Yjeupr; Pj) + Xjer, Pj

\Y,

1 1
(v (U;\T;) — 3 v (Ui\Ty)) + > (vi(Up) —vi(U; \ Ty))

\Y

1
= Evi(Ui)



Proof of Factor 2

(Complete Information)

Let U; = {j|igetsjin OPT(v)} (foralli € [n]) Balancedness:
Set price p; = % forj € U;.  (p; = balanced price for v;, U;) (1) 2jer; pj 2 vi(Up) — vi(U\Ty)
LetT; ={j|j € U;soldtoi’ # i}. (2) Zjevar; Py = vi(UAT)
Then, for the allocation X4, ..., X,,, we have:
Yivi(X) = XXy, p) + Xjer; D))
2 Yil(wi(U\T;) — Xjeupar; Pj) + Xjer; Pj ]

1 1
> Yi[(wi(U\T) — > v (Ui\Ty)) + E(vi(Ui) — v (U; \ Ty))]

1
= Qi Evi(Ui) Q.E.D.

(w/ compl. info)



Discussion

* Reduces the problem to finding balanced prices for fixed valuations
* Often much easier to think about this complete information problem

* The result can be generalized/strengthened in two ways:
* Prices may be adaptive (required for constant-factor for matroids)

* |nequalities can be relaxed

e Captures several known proofs such as and
(and leads to new results)



Further Results

* Prices can be computed in poly-time via LP-relaxation (rather than integral
optimum)

* Techniques also applicable for revenue maximization

* For subadditive combinatorial auctions this approach is limited to
(L(logm) approximation, but O(loglogm) possible via relaxation of balancedness

The O(loglogm) bound is attained by
(static/anonym.) item prices.




Beyond Balanced Prices



Subadditive Buyers

Theorem [Correa Cristi 2023]

For subadditive combinatorial auctions, there exists an O(1)-competitive online
algorithm against the prophet benchmark.

» For subadditive buyers “simultaneous first-price item auctions” have a constant Price of
Anarchy (with respect to Bayes-Nash equilibria) [Feldman Fu Gravin Lucier 2013]

» Can view proof as reduction to constant Price of Anarchy of “simultaneous all-pay item
auctions with random reserves”

| Open question: Via (static/anonym.) pricing? |

Cf. reduction in [Banihashem et al. “24] (but adaptive, bundle prices)




Summary

* Alternative “economic” proof of classic single-choice prophet
inequalities via “balanced prices”

* The balanced prices framework and its main extension theorem

* Proof for known valuations that extends to Bayesian setting

e Simplifies problem to the problem of finding balanced prices for
known valuations

* |n particular: Factor 2 prophet inequality / posted-price mechanism
for XOS combinatorial auctions

Thanks! Coffee!



Additional Slides



Balanced Prices for XOS Valuations

Lemma. For XOS valuation v; and set U the following prices p; for j € U

are balanced:

£ o ¥ (vf is also known as the “additive
’ let vi be SUCh that vi (U) o ZjEUvij supporting function” of v; on set U)

_ 2
* setp; = v;;




Balanced Prices for XOS Valuations

Lemma. For XOS valuation v; and set U the following prices p; for j € U

are balanced:

£ o ¥ (vf is also known as the “additive
’ let vi be SUCh that vi (U) o ZjEUvij supporting function” of v; on set U)

_ 2
* setp; = v;;

Proof: Exercise!




