Prophet Inequalities

Part 3: Online combinatorial auctions and balanced prices

Paul Dütting, Google Research duetting@google.com ADFOCS 2024 Summer School August 2024

The basic set-up:

- *n* buyers with valuation functions $v_i \sim \mathcal{D}_i$, v_i : $2^{[m]} \to \mathbb{R}_{\geq 0}$ arriving one-by-one
- \bullet m items

 n bidders m items

The basic set-up:

- *n* buyers with valuation functions $v_i \sim \mathcal{D}_i$, $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ arriving one-by-one
- m items
- Upon arrival of buyer i :
- Immediately and irrevocably assign a subset X_i of the (not yet) allocated items $[m] \setminus (\bigcup_{i' < i} X_i)$ allocated items

The basic set-up:

- *n* buyers with valuation functions $v_i \sim \mathcal{D}_i$, $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ arriving one-by-one
- m items

Upon arrival of buyer i :

• Immediately and irrevocably assign a subset X_i of the (not yet) allocated items $[m] \setminus (\bigcup_{i' < i} X_i)$

Goal: Maximize $\mathbb{E}[\sum_i v_i(X_i)]$ (a.k.a. "expected welfare")

Benchmark ("prophet"): $\mathbb{E}[\sum_i v_i(OPT_i(\boldsymbol{v}))]$

 $=$ items buyer *i* receives in optimal allocation

 n bidders m items

Hierarchy of Valuations

We will always assume monotonicity:

- Valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ is monotone if
	- $v_i(S) \le v_i(T)$ for $S \subseteq T$

We will also impose some structure, e.g.,

- Valuation function v_i is unit demand if
	- $v_i(S) = \max_{i \in S} v_{ij}$
- Valuation function v_i is subadditive if
	- $v_i(S \cup T) \le v_i(S) + v_i(T)$

"hierarchy of complementfree valuations"

[Lehman Lehman Nisan 2006]

Posted-Price Mechanism

Particularly desirable solution:

- Post (static, anonymous) item prices p_j for $j \in [m]$
- Buyer *i* buys set of still available items X_i that maximizes

$$
u_i(X_i, \mathbf{p}) = v_i(X_i) - \sum_{j \in X_i} p_j
$$

byer *i*'s value for set X_i sum of the prices of
the items in X_i

(is simple and has nice economic properties)

High-Level Intuition

Prices serve two purposes:

- They should be high enough
	- This is to ensure that items are protected from being snapped away by low-value buyers
- They should be low enough
	- This is to ensure that high-value buyers, when they come along, actually buy these items

High-Level Intuition

Prices serve two purposes:

- They should be high enough
	- This is to ensure that items are protected from being snapped away by low-value buyers
- They should be low enough
	- This is to ensure that high-value buyers, when they come along, actually buy these items
- \implies we want prices to "balance" these two forces

Plan for Part 3

- Alternative "economic" proof of classic single-choice prophet inequalities via "balanced prices"
- The balanced prices framework and its main extension theorem
	- Proof for known valuations that extends to Bayesian setting
	- Simplifies problem to the problem of finding balanced prices for known valuations
- In particular: Factor 2 prophet inequality / posted-price mechanism for XOS combinatorial auctions

Outline Other Parts

Part 1: Introduction

Part 2: Online matching and contention resolution

Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities

Recall: The Classic Prophet Inequality

The Problem

- Given known distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ over (non-negative) values:
	- A gambler gets to see realizations $v_i \sim D_i$ one-by-one, and needs to immediately and irrevocable decide whether to accept v_i
	- The prophet sees the entire sequence of values $v_1, v_2, ..., v_n$ at once, and can simply choose the maximum value
- **Question:** What's the worst-case gap between E[value accepted by gambler] and $E[$ value accepted by prophet]? $= E[ALG]$

 $= \mathbb{E}[\max_i \mathcal{V}_i]$

Prophet Inequality

Theorem [Samuel-Cahn '84]

For all distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$, there is a threshold algorithm ALG_τ such that $\mathbb{E}[ALG_{\tau}] \geq \frac{1}{2}$ 2 $\mathbb{E}[\max_i \mathcal{V}_i].$

Threshold algorithm: set threshold/price τ , accept first $v_i \geq \tau$

Samuel-Cahn (from Gil Kalai's Blog)

Proof via Balanced Prices

Economic Interpretation

- There are *n* buyers with values $v_i \sim \mathcal{D}_i$, and a single item with price p
- Buyer *i* has a utility of $v_i p$ for buying the item
	- If the item is still available when it's buyer *i*'s turn, she will buy if $v_i p \geq 0$

Bottom line: One-to-one correspondence between online algorithm with threshold $\tau = p$ and rational economic desicisions of the buyers

Economic Terminology

For (fixed) values $v = (v_1, ..., v_n)$:

- We will write utility, (v) (or $u_i(v)$ for shory) for buyer i's utility
- We will write revenue(v) for the revenue
	- The revenue is p if the item is sold, 0 otherwise
- We will write welfare (v) for the welfare
	- This is the value v_i of the buyer that buys the item (0 if the item is not sold)
- Note that: welfare $(v) = \sum_i$ utility $_i(v) +$ revenue (v)

Type equation 1 **Our goal:** Want to show that there exists a price p such that $\mathbb{E}[weltare(v)] \geq$ 1 $\frac{1}{2}$ \mathbb{E} [max v_i]

An Argument for Known Valuations

Price $p =$ $\mathbf 1$ $\overline{2}$ max ι v_i is "balanced": Let $v_{i^*} = \max_i$ ι v_i

- **Case 1:** Some buyer $i' < i^*$ buys the item:
	- \implies revenue $(v) \ge p \ge \frac{1}{2}$ 2 max ι v_i
- **Case 2:** No buyer $i' < i^*$ buys the item:
	- $\implies \sum_i$ utility_i $(v) \geq u_{i^*}(v) \geq v_{i^*} p = \frac{1}{2}$ 2 max ι v_i

In either case:

welfare $(v) = \sum_i$ utility_i $(v) +$ revenue $(v) \ge 1/2 \cdot$ max ι

! **Q.E.D.** (w/ compl. info)

Let $\widehat{v} \sim \mathcal{D}$ denote an independent sample

Consider price $p = \mathbb{E}\left[p^{\widehat{\boldsymbol{v}}}\right]$, where $p^{\widehat{\boldsymbol{v}}} = \frac{1}{2}$ $\frac{1}{2} \cdot \max_i$ \widehat{v}_i

Define $SOLD_i(v) \coloneqq$ item is sold to buyers 1, ..., *i* when values are v

Define $OPT(v) \coloneqq$ bidder that receives the item in the optimal (welfare-maximizing) allocation for values v

To establish a bound on the expected welfare, we will again establish bounds on the expected revenue and the expected sum of utilities.

Revenue:

 $\mathbb{E}[\text{revenue}(\boldsymbol{v})] = \mathbb{E}[p \cdot 1_{\text{SOLD}_n(\boldsymbol{v})}]$ $= p \cdot \mathbb{E}[1_{SOLD_n(\boldsymbol{v})}]$ = 1 $\frac{1}{2}$ $\mathbb{E}[\max_i v_i] \cdot \mathbb{E}[1_{SOLD_n(\nu)}]$ = 1 $\frac{1}{2}$ $\mathbb{E}[\max_i \hat{v}_i] \cdot \mathbb{E}[1_{SOLD_n(\nu)}]$

Sum of utilities:

• To bound the sum of utilities, first consider some buyer i

Sum of utilities:

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

 $\Rightarrow \mathbb{E}[u_i(\boldsymbol{v})] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $v_{-i}^{(i)} \sim \mathcal{D}_{-i}$ and buy if
	- buyer *i* gets the item in the optimal allocation for $(\boldsymbol{v_i}, \boldsymbol{v}_{-i}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

 $\Rightarrow \mathbb{E}[u_i(\boldsymbol{v})] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $v_{-i}^{(i)} \sim \mathcal{D}_{-i}$ and buy if
	- buyer *i* gets the item in the optimal allocation for $(\boldsymbol{v_i}, \boldsymbol{v}_{-i}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

 $\Rightarrow \mathbb{E}[u_i(\boldsymbol{v})] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

 $\Rightarrow \mathbb{E}[u_i(\boldsymbol{v})] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]$ $= \mathbb{E} [(v_i - p) \cdot 1_{OPT(v_i, \widehat{v}_{-i}) = i}] \cdot \mathbb{E} [1_{\neg \text{SOLD}_{i-1}(v)}]$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

$$
\Rightarrow \mathbb{E}[u_i(\nu)] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]
$$
\n
$$
= \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, \hat{v}_{-i}) = i}] \cdot \mathbb{E}[1_{\neg \text{SOLD}_{i-1}(v)}]
$$
\n
$$
= \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}) = i}]
$$
\nsince $v_{-i}^{(i)}$ and v_{-i} are identically distributed

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

$$
\Rightarrow \mathbb{E}[u_i(\nu)] \geq \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]
$$
\n
$$
= \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, \hat{v}_{-i}) = i}] \cdot \mathbb{E}[1_{\neg \text{SOLD}_{i-1}(v)}]
$$
\n
$$
= \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, \nu_{-i}) = i}] \qquad \geq \mathbb{E}[1_{\neg \text{SOLD}_{n}(v)}]
$$
\n
$$
\text{since } v_{-i}^{(i)} \text{ and } v_{-i} \text{ are identically distributed} \qquad \text{since } \neg \text{SOLD}_{n}(v) \Rightarrow \neg \text{SOLD}_{i-1}(v)
$$

Sum of utilities:

a.k.a. "hallucination trick"

- To bound the sum of utilities, first consider some buyer i
- Buyer *i* can draw an independent sample $\boldsymbol{v}_{-i}^{(i)} \sim \left| \mathcal{D}_{-i} \right|$ and buy if
	- buyer i gets the item in the optimal allocation for $(\boldsymbol{v}_{\boldsymbol{i}},\boldsymbol{v}_{-\boldsymbol{i}}^{(i)})$ and
	- the item has not been sold to buyers $1, \ldots, i-1$

 $\Rightarrow \mathbb{E}[u_i(\boldsymbol{v})] \ge \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}^{(i)}) = i} \cdot 1_{\neg \text{SOLD}_{i-1}(v)}]$ $= \mathbb{E} [(v_i - p) \cdot 1_{OPT(v_i, \widehat{v}_{-i}) = i}] \cdot \mathbb{E} [1_{\neg \text{SOLD}_{i-1}(v)}]$ $\geq \mathbb{E}[(v_i - p) \cdot 1_{OPT(v_i, v_{-i}) = i}] \cdot \mathbb{E}[1_{\neg \text{SOLD}_n(v)}]$

• Summing over all buyers $i \in [n]$, we thus obtain

 $\mathbb{E}[\sum_i u_i(\boldsymbol{v})] \geq \sum_i \mathbb{E}[(v_i - p) \cdot 1_{OPT(\boldsymbol{v})=i}] \cdot \mathbb{E}[1_{\neg \text{SOLD}_n(\boldsymbol{v})}]$ $=$ (E[max v_i) \boldsymbol{i} $]-p) \cdot \mathbb{E}[1_{\neg \text{SOLD}_n(v)}]$ = 1 $\frac{1}{2}$ $\mathbb{E}[\max_i v_i]$ $]\cdot \mathbb{E}[1_{\neg\, \mathsf{SOLD}_n(v)}]$

• Summing over all buyers $i \in [n]$, we thus obtain

 $\mathbb{E}[\sum_i u_i(\boldsymbol{v})] \geq \sum_i \mathbb{E}[(v_i - p) \cdot 1_{OPT(\boldsymbol{v})=i}] \cdot \mathbb{E}[1_{\neg \text{SOLD}_n(\boldsymbol{v})}]$ $=$ (E[max v_i) \boldsymbol{i} $]-p) \cdot \mathbb{E}[1_{\neg \text{SOLD}_n(v)}]$ = 1 $\frac{1}{2}$ $\mathbb{E}[\max_i v_i]$ $]\cdot \mathbb{E}[1_{\neg\, \mathsf{SOLD}_n(v)}]$

Putting everything together:

 $\geq \frac{1}{2}$ $\mathbb{E}[\max v_i] \cdot (\mathbb{E}[1_{\neg \text{SOLD}_n(v)}] + \mathbb{E}[1_{\text{SOLD}_n(v)}])$ $\mathbb{E}[\text{welfare}(\boldsymbol{\nu})] = \mathbb{E}[\sum_i u_i(\boldsymbol{\nu})] + \mathbb{E}[\text{revenue}(\boldsymbol{\nu})]$ $\frac{1}{2}$ E[max v_i \boldsymbol{i}] $= 1$ **Q.E.D.**

Prophet Inequalities via Balanced Prices

[Weinberg Kleinberg 2012, Feldman Gravin Lucier 2015, Dütting Feldman Kesselheim Lucier 2017]

The basic set-up:

- *n* buyers with valuation functions $v_i \sim \mathcal{D}_i$, $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ arriving one-by-one
- m items

Upon arrival of buyer i :

• Immediately and irrevocably assign a subset X_i of the (not yet) allocated items $[m] \setminus (\bigcup_{i' < i} X_i)$

Goal: Maximize $\mathbb{E}[\sum_i v_i(X_i)]$ (a.k.a. "expected welfare")

Benchmark ("prophet"): $\mathbb{E}[\sum_i v_i(OPT_i(\boldsymbol{v}))]$

 $=$ items buyer *i* receives in optimal allocation

 n bidders m items

XOS Valuations

Definition. A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ is fractionally subadditive (XOS) if there are $v_{ij}^{\ell} \in \mathbb{R}_{\geq 0}$ such that

 $v_i(S) = \max_{\ell} \sum_{j \in S} v_{ij}^{\ell}$.

XOS Valuations

Definition. A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ is fractionally subadditive (XOS) if there exist additive functions v^{ℓ}_i with $\ell \in [k]$ such that

$$
v_i(S) = \max_{\ell} v_i^{\ell}(S) = \max_{\ell} \sum_{j \in S} v_{ij}^{\ell}
$$

Examples:

- Additive: $v_i(S) = \sum_{j \in S} v_{ij}$
- Unit demand: $v_i(S) = \max_{i \in S} v_{ii}$
- Budget additive: $v_i(S) = \min\{\sum_{j \in S} v_{ij}, B\}$
- Submodular: $v_i(S \cup \{j\}) v_i(S) \ge v_i(T \cup \{j\}) v_i(T)$ for $S \subseteq T$
The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]

For any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ over XOS valuation functions, there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

> $\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2}$ $E[OPT]$

The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]

For any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ over XOS valuation functions, there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

> $\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2}$ $E[OPT]$

Generalizes the classic prophet inequality (and is tight).

The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]

For any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ over XOS valuation functions, there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

> $\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2}$ $E[OPT]$

Generalizes the classic prophet inequality (and is tight).

Main technique: Balanced prices.

Balanced Prices

Definition. [Dütting Feldman Kesselheim Lucier 2017] A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ admits balanced prices if for every set of items $U \subseteq [m]$ there exist item prices p_j for $j \in U$ such that for all $T \subseteq U$: (1) $\sum_{j \in T} p_j \ge v_i(U) - v_i(U \setminus T)$ (2) $\sum_{j\in U\setminus T} p_j \le v_i(U\setminus T)$

Balanced Prices

Definition. [Dütting Feldman Kesselheim Lucier 2017] A valuation function $v_i: 2^{[m]} \to \mathbb{R}_{\geq 0}$ admits balanced prices if for every set of items $U \subseteq [m]$ there exist item prices p_j for $j \in U$ such that for all $T \subseteq U$: (1) $\sum_{j \in T} p_j \geq v_i(U) - v_i(U \setminus T)$ (2) $\sum_{j\in U\setminus T} p_j \leq v_i(U\setminus T)$

Known fact (implicit in [FGL 15]): XOS valuation functions admit balanced prices. **(See exercise!)**

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

Two conditions: (1) $\sum_{i \in T} p_i \ge v_i(U) - v_i(U \setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

 $v_i(S) = |S|$ **Example 1:** Additive

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

Example 1: Additive $v_i(S) = |S|$

Two conditions: (1) $\sum_{j \in T} p_j \ge v_i(U) - v_i(U \setminus T)$ ($\forall T \subseteq U$) and
(2) $\sum_{i \in S} p_i \le v_i(S)$ ($\forall S \subseteq U$) (2) $\sum_{i \in S} p_i \leq v_i(S)$

Example 1: Additive $v_i(S) = |S|$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

Example 1: Additive

 $v_i(S) = |S|$

Two conditions: (1) $\sum_{j \in T} p_j \ge v_i(U) - v_i(U \setminus T)$ ($\forall T \subseteq U$) and
(2) $\sum_{i \in S} p_i \le v_i(S)$ ($\forall S \subseteq U$) (2) $\sum_{i \in S} p_i \leq v_i(S)$

Example 1: Additive

 $v_i(S) = |S|$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and
 (2) $\sum_{i\in S} p_i \le v_i(S)$ $(\forall S \subseteq U)$ (2) $\sum_{i \in S} p_i \leq v_i(S)$

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{i \in T} p_i \ge v_i(U) - v_i(U \setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j \in T} p_j \ge v_i(U) - v_i(U \setminus T)$ ($\forall T \subseteq U$) and
(2) $\sum_{i \in S} p_i \le v_i(S)$ ($\forall S \subseteq U$) (2) $\sum_{i \in S} p_i \leq v_i(S)$

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and
 (2) $\sum_{i\in S} p_i \le v_i(S)$ $(\forall S \subseteq U)$ (2) $\sum_{i \in S} p_i \leq v_i(S)$

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{j \in S} p_j \le v_i(S)$ (∀S $\subseteq U$)

$$
v_i(S) = \begin{cases} 0 & \text{if } S = \emptyset \\ 1 & \text{if } S \neq \emptyset \end{cases}
$$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

Example 3: Budget additive

 $v_i(S) = \min\{|S|, 1.5\}$

Two conditions: (1) $\sum_{j\in T} p_j \ge v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{i \in S} p_i \le v_i(S)$ (∀S ⊆ U)

Example 3: Budget additive

 $v_i(S) = \min\{|S|, 1.5\}$

Two conditions: (1) $\sum_{j\in T} p_j \geq v_i(U) - v_i(U\setminus T)$ $(\forall T \subseteq U)$ and (2) $\sum_{j \in S} p_j \le v_i(S)$ (∀S $\subseteq U$)

Example 3: Budget additive

 $v_i(S) = \min\{|S|, 1.5\}$

Main Theorem

Theorem. [Dütting Feldman Kesselheim Lucier 2017]

 $\sum_{i=1}^{n}$ If a class of valuations admits balanced prices, then for any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

$$
\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2} \mathbb{E}[\text{OPT}].
$$

Main Theorem

Theorem. [Dütting Feldman Kesselheim Lucier 2017]

 $\sum_{i=1}^{n}$ If a class of valuations admits balanced prices, then for any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

$$
\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2} \mathbb{E}[\text{OPT}].
$$

Proof follows same blueprint as for single item.

Main Theorem

Theorem. [Dütting Feldman Kesselheim Lucier 2017]

 $\sum_{i=1}^{n}$ If a class of valuations admits balanced prices, then for any distributions $\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_n$ there exist (static, anonymous) item prices such that for the resulting allocation $X_1, ..., X_n$:

$$
\mathbb{E}[\sum_i \nu_i(X_i)] \geq \frac{1}{2} \mathbb{E}[\text{OPT}].
$$

Proof follows same blueprint as for single item.

Up next: How we set prices & the argument for complete information.

Fix $\hat{v}_1, ..., \hat{v}_n$.

Fix $\hat{v}_1, ..., \hat{v}_n$. Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(\hat{\boldsymbol{\nu}})\}\.$

Fix $\hat{v}_1, ..., \hat{v}_n$. Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(\hat{\mathbf{\nu}})\}\.$

For $j \in U_i$ let $p_j^{\widehat{v}}$ be balanced price for item j for \widehat{v}_i , U_i .

Fix $\hat{v}_1, ..., \hat{v}_n$. Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(\hat{\mathbf{\nu}})\}\.$

For $j \in U_i$ let $p_j^{\widehat{v}}$ be balanced price for item j for \widehat{v}_i , U_i .

Price for item j : \bar{p}_j = / $\frac{1}{2}$ • $\mathbb{E}_{\widehat{\boldsymbol{\nu}} \sim \mathcal{D}}[p_j^{\widehat{\boldsymbol{\nu}}}]$.

(Complete Information)

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$ (for all $i \in [n]$) Set price $\bar{p}_j =$ $\overline{p_j}$ $\frac{\partial^2 J}{\partial z}$ for $j \in U_i$. (p_j = balanced price for v_i , U_i) Let $T_i = \{j \mid j \in U_i \text{ sold to } i' \neq i\}.$

(Complete Information)

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$ (for all $i \in [n]$) Set price $\bar{p}_j =$ $\overline{p_j}$ $\frac{\partial^2 J}{\partial z}$ for $j \in U_i$. (p_j = balanced price for v_i , U_i) Let $T_i = \{j \mid j \in U_i \text{ sold to } i' \neq i\}.$

Balancedness:

(1) $\sum_{j \in T_i} p_j \geq v_i(U_i) - v_i(U_i \setminus T_i)$ (2) $\sum_{j\in U_i\setminus T_i} p_j \leq v_i(U_i\setminus T_i)$

(Complete Information)

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$ (for all $i \in [n]$) Set price $\bar{p}_j =$ $\overline{p_j}$ $\frac{\partial^2 J}{\partial z}$ for $j \in U_i$. (p_j = balanced price for v_i , U_i) Let $T_i = \{j \mid j \in U_i \text{ sold to } i' \neq i\}.$

Then, for the allocation $X_1, ..., X_n$, we have:

 $u_i(X_i, \overline{\boldsymbol{p}}) + \sum_{i \in T_i} \overline{p}_i$

$$
\geq \qquad (v_i(U_i \backslash T_i) - \sum_{j \in U_i \backslash T_i} \overline{p}_j) + \sum_{j \in T_i} \overline{p}_j
$$
\n
$$
\geq \qquad (v_i(U_i \backslash T_i) - \frac{1}{2} v_i(U_i \backslash T_i)) + \frac{1}{2} (v_i(U_i) - v_i(U_i \backslash T_i))
$$
\n
$$
= \qquad \frac{1}{2} v_i(U_i)
$$

Balancedness:

(1) $\sum_{i \in T_i} p_i \geq v_i(U_i) - v_i(U_i \setminus T_i)$ (2) $\sum_{j\in U_i\setminus T_i} p_j \leq v_i(U_i\setminus T_i)$

(Complete Information)

Let $U_i = \{j \mid i \text{ gets } j \text{ in } OPT(v)\}$ (for all $i \in [n]$) Set price $\bar{p}_j =$ $\overline{p_j}$ $\frac{\partial^2 J}{\partial z}$ for $j \in U_i$. (p_j = balanced price for v_i , U_i) Let $T_i = \{j \mid j \in U_i \text{ sold to } i' \neq i\}.$

Then, for the allocation $X_1, ..., X_n$, we have:

Balancedness:

(1) $\sum_{j \in T_i} p_j \geq v_i(U_i) - v_i(U_i \setminus T_i)$ (2) $\sum_{i\in U_i\setminus T_i} p_i \leq v_i(U_i\setminus T_i)$

 $\sum_i \nu_i(X_i) \geq \sum_i (u_i(X_i, \overline{\boldsymbol{p}}) + \sum_{j \in T_i} \overline{p}_j)$

$$
\geq \sum_{i} [(\nu_{i}(U_{i} \setminus T_{i}) - \sum_{j \in U_{i} \setminus T_{i}} \overline{p}_{j}) + \sum_{j \in T_{i}} \overline{p}_{j}]
$$
\n
$$
\geq \sum_{i} [(\nu_{i}(U_{i} \setminus T_{i}) - \frac{1}{2} \nu_{i}(U_{i} \setminus T_{i})) + \frac{1}{2} (\nu_{i}(U_{i}) - \nu_{i}(U_{i} \setminus T_{i}))]
$$
\n
$$
= \sum_{i} \frac{1}{2} \nu_{i}(U_{i})
$$
\n**Q.E.D.**\n(w/ compl. info)

Discussion

- Reduces the problem to finding balanced prices for fixed valuations
	- Often much easier to think about this complete information problem
- The result can be generalized/strengthened in two ways:
	- Prices may be adaptive (required for constant-factor for matroids) [Feldman Svensson Zenklusen 2021]
	- Inequalities can be relaxed
- Captures several known proofs such as [Feldman Gravin Lucier 2015] and [Kleinberg Weinberg 2012] (and leads to new results)

Further Results

- Prices can be computed in poly-time via LP-relaxation (rather than integral optimum) [Dütting Feldman Kesselheim Lucier 2017]
- Techniques also applicable for revenue maximization [Cai Zhao 2017]
- For subadditive combinatorial auctions this approach is limited to $\Omega(\log m)$ approximation, but $O(\log \log m)$ possible via relaxation of balancedness [Dütting Kesselheim Lucier 2020]

The $O(\log \log m)$ bound is attained by (static/anonym.) item prices.

Beyond Balanced Prices
Subadditive Buyers

Theorem [Correa Cristi 2023]

For subadditive combinatorial auctions, there exists an $O(1)$ -competitive online algorithm against the prophet benchmark.

Ø For subadditive buyers "simultaneous first-price item auctions" have a constant Price of Anarchy (with respect to Bayes-Nash equilibria) [Feldman Fu Gravin Lucier 2013]

 \triangleright Can view proof as reduction to constant Price of Anarchy of "simultaneous all-pay item auctions with random reserves"

Open question: Via (static/anonym.) pricing?

Cf. reduction in [Banihashem et al. '24] (but adaptive, bundle prices)

Summary

- Alternative "economic" proof of classic single-choice prophet inequalities via "balanced prices"
- The balanced prices framework and its main extension theorem
	- Proof for known valuations that extends to Bayesian setting
	- Simplifies problem to the problem of finding balanced prices for known valuations
- In particular: Factor 2 prophet inequality / posted-price mechanism for XOS combinatorial auctions

Additional Slides

Balanced Prices for XOS Valuations

Lemma. For XOS valuation v_i and set U the following prices p_i for $j \in U$ are balanced:

• let v_i^{ℓ} be such that $v_i(U) = \sum_{j \in U} v_{ij}^{\ell}$

• set $p_j = v_{ij}^{\ell}$

 (v_i^{ℓ}) is also known as the "additive supporting function" of v_i on set U)

Balanced Prices for XOS Valuations

Lemma. For XOS valuation v_i and set U the following prices p_i for $j \in U$ are balanced:

• let v_i^{ℓ} be such that $v_i(U) = \sum_{j \in U} v_{ij}^{\ell}$

 (v_i^{ℓ}) is also known as the "additive supporting function" of v_i on set U)

Proof: Exercise!

• set $p_j = v_{ij}^{\ell}$