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Prophet Inequalities
Part 3: Online combinatorial auctions and balanced prices



Online Combinatorial Auctions

 

The basic set-up:

• 𝑛	buyers with valuation functions 𝑣! ∼ 𝒟!, 𝑣!: 2[#] → ℝ%&
arriving one-by-one

• 𝑚 items 

𝑛 bidders 𝑚 items
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Online Combinatorial Auctions

 

The basic set-up:

• 𝑛	buyers with valuation functions 𝑣! ∼ 𝒟!, 𝑣!: 2[#] → ℝ%&
arriving one-by-one

• 𝑚 items 

Upon arrival of buyer 𝑖:
• Immediately and irrevocably assign a subset 𝑋! of the (not yet) 

allocated items  𝑚 ∖ (⋃!!'!𝑋!)

Goal: Maximize  𝔼[∑! 𝑣!(𝑋!)]    (a.k.a. “expected welfare”) 
Benchmark (“prophet”): 𝔼[∑! 𝑣!(𝑂𝑃𝑇!(𝒗))]

𝑛 bidders 𝑚 items

= items buyer 𝑖 receives in optimal allocation



Hierarchy of Valuations

We will always assume monotonicity:

• Valuation function 𝑣!: 2[#] → ℝ%& is monotone if
• 𝑣! 𝑆 ≤ 𝑣!(𝑇) for 𝑆 ⊆ 𝑇

We will also impose some structure, e.g.,
• Valuation function 𝑣! is unit demand if
• 𝑣! 𝑆 = max)∈+ 𝑣!)

• Valuation function 𝑣! is subadditive if
• 𝑣! 𝑆 ∪ 𝑇 ≤ 𝑣! 𝑆 + 𝑣! 𝑇

[Lehman Lehman Nisan 2006]

“hierarchy of complement-
free valuations”



Posted-Price Mechanism

Particularly desirable solution: 
• Post (static, anonymous) item prices 𝑝) for 𝑗 ∈ [𝑚] 
• Buyer 𝑖 buys set of still available items 𝑋! that maximizes 

(is simple and has nice economic properties)

𝑢! 𝑋!, 𝒑 = 𝑣, 𝑋! − ∑)∈-" 𝑝)

buyer 𝑖’s value for set 𝑋! sum of the prices of 
the items in 𝑋!

$2 $3$4



High-Level Intuition

Prices serve two purposes:

• They should be high enough

• This is to ensure that items are protected from being snapped away 
by low-value buyers 

• They should be low enough 

• This is to ensure that high-value buyers, when they come along, 
actually buy these items
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⟹ we want prices to “balance” these two forces



Plan for Part 3

 

• Alternative “economic” proof of classic single-choice prophet 
inequalities via “balanced prices”

• The balanced prices framework and its main extension theorem
• Proof for known valuations that extends to Bayesian setting
• Simplifies problem to the problem of finding balanced prices for 

known valuations

• In particular: Factor 2 prophet inequality / posted-price mechanism 
for XOS combinatorial auctions



Outline Other Parts

 

Part 1: Introduction

Part 2: Online matching and contention resolution

Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Recall: The Classic Prophet Inequality 



• Given known distributions 𝒟/, 𝒟0, … , 𝒟1 over (non-negative) values: 
• A gambler gets to see realizations 𝑣! ~ 𝒟! one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣!
• The prophet sees the entire sequence of values 𝑣/, 𝑣0, … , 𝑣1 at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max!𝑣!



Theorem [Samuel-Cahn ’84] 
For all distributions 𝒟!, 𝒟", … , 𝒟#, there is a threshold algorithm 𝐴𝐿𝐺$ 
such that 𝔼 𝐴𝐿𝐺$ ≥ !

"
𝔼 max%𝑣% .

Threshold algorithm: set threshold/price 𝜏, accept first 𝑣% ≥ 𝜏

Prophet Inequality

Samuel-Cahn (from Gil Kalai’s Blog)



Proof via Balanced Prices



Economic Interpretation

• There are 𝑛 buyers with values 𝑣! ∼ 𝒟!, and a single item with price 𝑝
• Buyer 𝑖 has a utility of 𝑣! − 𝑝  for buying the item
• If the item is still available when it’s buyer i’s turn, she will buy if 𝑣! − 𝑝 ≥ 0

Bottom line: One-to-one correspondence between online algorithm 
with threshold 𝜏 = 𝑝 and rational economic desicisions of the buyers



Economic Terminology
For (fixed) values 𝒗 = 𝑣/, … , 𝑣1 :

• We will write utility!(𝒗) (or 𝑢! 𝒗  for shory) for buyer 𝑖’s utility 
• We will write revenue(𝒗) for the revenue 
• The revenue is 𝑝 if the item is sold, 0 otherwise

• We will write welfare(𝒗) for the welfare 
• This is the value 𝑣! of the buyer that buys the item (0 if the item is not sold)

• Note that: welfare(𝒗) = ∑!utility! 𝒗 + revenue(𝒗)

Type	equation	here.
Our goal: Want to show that there exists a price 𝑝 such that 

𝔼 welfare 𝑣 ≥
1
2 𝔼[max! 𝑣! ]



An Argument for Known Valuations

 
Price 𝑝 = "

#
max
!
𝑣! is “balanced”:

Let 𝑣!⋆ = max
!
𝑣! .

• Case 1: Some buyer 𝑖$ < 𝑖⋆ buys the item:
• ⟹ revenue 𝒗 ≥ 𝑝 ≥ "

#
max
!
𝑣!

• Case 2: No buyer 𝑖$ < 𝑖⋆ buys the item:
• ⟹ ∑!utility&(𝒗) ≥ 𝑢!⋆(𝒗) ≥ 𝑣!⋆ − 𝑝 =

"
#
max
!
𝑣!

In either case:  

welfare(𝒗) 	= ∑!utility&(𝒗) + 	revenue(𝒗) 	≥ 1/2 ⋅ max
!
𝑣! Q.E.D.  

(w/ compl. info)



Extension to Bayesian Setting

 

Let \𝒗 ~ 𝒟 denote an independent sample 

Consider price 𝑝 = 𝔼 𝑝A𝒗 , where  𝑝A𝒗 = /
0 ⋅ max! 𝑣̂!

Define SOLD! 𝒗 ≔ item is sold to buyers 1,… , 𝑖 when values are 𝒗

Define 𝑂𝑃𝑇(𝒗) ≔ bidder that receives the item in the optimal (welfare-maximizing) 
allocation for values 𝒗



Extension to Bayesian Setting

 

To establish a bound on the expected welfare, we will again establish bounds on the 
expected revenue and the expected sum of utilities.

Revenue:
𝔼[revenue(𝒗)] 	= 𝔼[𝑝 ⋅ 1CDEF#(𝒗)]

= 𝑝 ⋅ 𝔼[1CDEF#(𝒗)]

=
1
2
𝔼[max

!
𝑣!] ⋅ 𝔼[1CDEF#(𝒗)]

=
1
2
𝔼[max

!
𝑣̂!] ⋅ 𝔼[1CDEF#(𝒗)]
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Extension to Bayesian Setting

 

Sum of utilities:
• To bound the sum of utilities, first consider some buyer 𝑖
• Buyer 𝑖 can draw an independent sample 𝒗I!

(!) ∼ 𝒟I! and buy if 
• buyer 𝑖 gets the item in the optimal allocation for (𝒗𝒊, 𝒗I!

(!)) and

• the item has not been sold to buyers 1, . . , 𝑖 − 1

⟹ 𝔼 𝑢! 𝒗 ≥ 𝔼[ 𝑣! − 𝑝 ⋅ 1KLM(𝒗𝒊,𝒗%"" ) O !
⋅ 1¬ CDEF"%& Q ]

only depends on 𝑣! and 𝒗I!
(!)  only depends on 𝑣/, ..., 𝑣!I/  

Type	equation	here.a.k.a. “hallucination trick”
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Type	equation	here.a.k.a. “hallucination trick”

≥ 𝔼[1¬#$%&! ' ]
since ¬ SOLD( 𝑣 ⟹ ¬ SOLD!%) 𝑣



Extension to Bayesian Setting

 

Sum of utilities:
• To bound the sum of utilities, first consider some buyer 𝑖
• Buyer 𝑖 can draw an independent sample 𝒗I!

(!) ∼ 𝒟I! and buy if 
• buyer 𝑖 gets the item in the optimal allocation for (𝒗𝒊, 𝒗I!

(!)) and
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Type	equation	here.a.k.a. “hallucination trick”



Extension to Bayesian Setting

 

• Summing over all buyers 𝑖 ∈ 𝑛 , we thus obtain

𝔼[∑!𝑢! 𝒗 ] ≥ ∑! 𝔼[ 𝑣! − 𝑝 ⋅ 1KLM 𝒗 O!] ⋅ 𝔼[1¬ CDEF# Q ]

= (𝔼[max 𝑣,
!

] − 𝑝) ⋅ 𝔼[1¬ CDEF# Q ]

=
1
2
𝔼[max 𝑣,

!
] ⋅ 𝔼[1¬ CDEF# Q ]



Extension to Bayesian Setting

• Summing over all buyers 𝑖 ∈ 𝑛 , we thus obtain

Putting everything together:

⋅ (𝔼[1¬ CDEF# Q ] + 𝔼[1 CDEF# Q ]) 

𝔼[welfare(𝒗)] 	= 𝔼[∑!𝑢! 𝒗 ] 	+ 𝔼[revenue(𝒗)]

≥ /
0 𝔼[max 𝑣!!

] 

= 1

Q.E.D.  

𝔼[∑!𝑢! 𝒗 ] ≥ ∑! 𝔼[ 𝑣! − 𝑝 ⋅ 1KLM 𝒗 O!] ⋅ 𝔼[1¬ CDEF# Q ]

= (𝔼[max 𝑣,
!

] − 𝑝) ⋅ 𝔼[1¬ CDEF# Q ]

=
1
2
𝔼[max 𝑣,

!
] ⋅ 𝔼[1¬ CDEF# Q ]



Prophet Inequalities via Balanced Prices
[Weinberg Kleinberg 2012, Feldman Gravin Lucier 2015, 

Dütting Feldman Kesselheim Lucier 2017]



Online Combinatorial Auctions

 

The basic set-up:

• 𝑛	buyers with valuation functions 𝑣! ∼ 𝒟!, 𝑣!: 2[#] → ℝ%&
arriving one-by-one

• 𝑚 items 

Upon arrival of buyer 𝑖:
• Immediately and irrevocably assign a subset 𝑋! of the (not yet) 

allocated items  𝑚 ∖ (⋃!!'!𝑋!)

Goal: Maximize  𝔼[∑! 𝑣!(𝑋!)]    (a.k.a. “expected welfare”) 
Benchmark (“prophet”): 𝔼[∑! 𝑣!(𝑂𝑃𝑇!(𝒗))]

𝑛 bidders 𝑚 items

= items buyer 𝑖 receives in optimal allocation



XOS Valuations

Definition. A valuation function 𝑣!: 2[#] → ℝ%& is fractionally subadditive (XOS) if 
there are 𝑣!)ℓ ∈ ℝ%& such that

 

𝑣! 𝑆 = max
ℓ

∑)∈+ 𝑣!)ℓ .



XOS Valuations

Definition. A valuation function 𝑣!: 2[#] → ℝ%& is fractionally subadditive (XOS) if 
there exist additive functions 𝑣!ℓ with ℓ ∈ 𝑘  such that

Examples:

• Additive:  𝑣! 𝑆 = ∑)∈+ 𝑣!) 

• Unit demand:        𝑣! 𝑆 = max)∈+ 𝑣!) 

• Budget additive:    𝑣! 𝑆 = min{∑)∈+ 𝑣!), 𝐵}
• Submodular:          𝑣! 𝑆 ∪ {𝑗} − 𝑣! 𝑆 ≥ 𝑣! 𝑇 ∪ 𝑗 − 𝑣! 𝑇  for  𝑆 ⊆ 𝑇

𝑣! 𝑆 = max
ℓ
𝑣!ℓ 𝑆 = max

ℓ
∑)∈+ 𝑣!)ℓ.



The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]
For any distributions 𝒟/, 𝒟0, … , 𝒟1 over XOS valuation functions, there exist 
(static, anonymous) item prices such that for the resulting allocation 𝑋/, … , 𝑋1:  

𝔼[∑!	𝑣!(𝑋!)]	 ≥
/
0𝔼[OPT]
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Generalizes the classic prophet inequality (and is tight).



The FGL 15 Result

Definition. [Feldman Gravin Lucier 2015]
For any distributions 𝒟/, 𝒟0, … , 𝒟1 over XOS valuation functions, there exist 
(static, anonymous) item prices such that for the resulting allocation 𝑋/, … , 𝑋1:  

𝔼[∑!	𝑣!(𝑋!)]	 ≥
/
0𝔼[OPT]

Generalizes the classic prophet inequality (and is tight).

Main technique: Balanced prices.



Balanced Prices

Definition. [Dütting Feldman Kesselheim Lucier 2017]
A valuation function 𝑣!: 2[#] → ℝ%&admits balanced prices if for every set of 
items 𝑈 ⊆ [𝑚] there exist item prices 𝑝) for 𝑗 ∈ 𝑈 such that for all 𝑇 ⊆ 𝑈:

(1)  ∑)∈M 𝑝) ≥ 𝑣! 𝑈 − 𝑣!(𝑈\T)
(2)  ∑)∈Y\[𝑝) ≤ 𝑣!(𝑈\T)



Balanced Prices

Definition. [Dütting Feldman Kesselheim Lucier 2017]
A valuation function 𝑣!: 2[#] → ℝ%&admits balanced prices if for every set of 
items 𝑈 ⊆ [𝑚] there exist item prices 𝑝) for 𝑗 ∈ 𝑈 such that for all 𝑇 ⊆ 𝑈:

(1)  ∑)∈M 𝑝) ≥ 𝑣! 𝑈 − 𝑣!(𝑈\T)
(2)  ∑)∈Y\[𝑝) ≤ 𝑣!(𝑈\T)

Known fact (implicit in [FGL 15]): XOS valuation functions admit balanced prices.
(See exercise!)  



Examples: Balanced Prices
Two conditions: (1)  ∑)∈M 𝑝) ≥ 𝑣! 𝑈 − 𝑣! 𝑈\T   (∀𝑇 ⊆ 𝑈) and  
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Main Theorem
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Theorem. [Dütting Feldman Kesselheim Lucier 2017]
If a class of valuations admits balanced prices, then for any distributions 
𝒟/, 𝒟0, … , 𝒟1 there exist (static, anonymous) item prices such that for the 
resulting allocation 𝑋/, … , 𝑋1:
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/
0𝔼[OPT] .
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Up next: How we set prices & the argument for complete information.
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Q.E.D.  
(w/ compl. info)
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Discussion

• Reduces the problem to finding balanced prices for fixed valuations
• Often much easier to think about this complete information problem

• The result can be generalized/strengthened in two ways:
• Prices may be adaptive (required for constant-factor for matroids)                       

[Feldman Svensson Zenklusen 2021]
• Inequalities can be relaxed 

• Captures several known proofs such as [Feldman Gravin Lucier 2015] and 
[Kleinberg Weinberg 2012] (and leads to new results)



Further Results

• Prices can be computed in poly-time via LP-relaxation (rather than integral 
optimum) [Dütting Feldman Kesselheim Lucier 2017]

• Techniques also applicable for revenue maximization [Cai Zhao 2017]

• For subadditive combinatorial auctions this approach is limited to 
Ω(log𝑚)	approximation, but 𝑂(log log𝑚)	possible via relaxation of balancedness 
[Dütting Kesselheim Lucier 2020]

Type	equation	here.The 𝑂(log log𝑚) bound is attained by 
(static/anonym.) item prices.



Beyond Balanced Prices



Subadditive Buyers

Type	equation	here.

Theorem [Correa Cristi 2023]
For subadditive combinatorial auctions, there exists an 𝑂(1)-competitive online 
algorithm against the prophet benchmark.

Ø For subadditive buyers “simultaneous first-price item auctions” have a constant Price of 
Anarchy (with respect to Bayes-Nash equilibria) [Feldman Fu Gravin Lucier 2013]

Ø Can view proof as reduction to constant Price of Anarchy of ”simultaneous all-pay item 
auctions with random reserves”

Type	equation	here.Open question:  Via (static/anonym.) pricing?

Cf. reduction in [Banihashem et al. ‘24] (but adaptive, bundle prices)



Summary

Thanks! Coffee!

• Alternative “economic” proof of classic single-choice prophet 
inequalities via “balanced prices”

• The balanced prices framework and its main extension theorem
• Proof for known valuations that extends to Bayesian setting
• Simplifies problem to the problem of finding balanced prices for 

known valuations

• In particular: Factor 2 prophet inequality / posted-price mechanism 
for XOS combinatorial auctions



Additional Slides



Balanced Prices for XOS Valuations

Lemma. For XOS valuation 𝑣% 	and set 𝑈 the following prices 𝑝,  for 𝑗 ∈ 𝑈
are balanced: 

• let 𝑣%ℓ be such that 𝑣%(𝑈) = ∑,∈/𝑣%,ℓ 	
• set 𝑝, = 𝑣%,ℓ  

 

(𝑣!ℓ is also known as the “additive 
supporting function” of 𝑣! 	on set 𝑈) 
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(𝑣!ℓ is also known as the “additive 
supporting function” of 𝑣! 	on set 𝑈) 

Proof: Exercise!


