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Prophet Inequalities
Part 4: Data-driven prophet inequalities



• Given known distributions 𝒟!, 𝒟", … , 𝒟# over (non-negative) values: 
• A gambler gets to see realizations 𝑣$ ~ 𝒟$ one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣$
• The prophet sees the entire sequence of values 𝑣!, 𝑣", … , 𝑣# at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Prophet Inequality Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max$𝑣$



 
Working in the same prophet setting, what can we achieve when the 
underlying distributions are unknown?

A Data-Driven Approach

In particular, what can we do with limited access to the underlying 
distributions through samples?

(Pioneered in [Azar Kleinberg Weinberg 2014])



Why Cool?

 
• Unlike in the setting with known distributions, it is not clear what 

optimal algorithms for this setting would look like 

• Can we do any learning? What should we learn if we can learn 
something?

• How do the answers to these questions change with different 
amounts of information available?



Plan for Part 4

 

• A closer look at the results and techniques for the data-driven single-
choice prophet inequality problem

• Non-identical distributions

• Identical distributions

• A brief discussion of state-of-the art for data-driven combinatorial 
prophet inequality problems



Outline Other Parts

 

Part 1: Introduction

Part 2: Online matching and contention resolution

Part 3: Online combinatorial auctions and balanced prices

Part 4: Data-driven prophet inequalities



Non-Identical Distributions
[Rubinstein Wang Weinberg 2020]



• Given unknown distributions 𝒟!, 𝒟", … , 𝒟# over (non-negative) values, and 
samples 𝑠!~𝒟!, 𝑠"~𝒟", … , 𝑠#~𝒟#: 
• A gambler gets to see realizations 𝑣$ ~ 𝒟$ one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣$
• The prophet sees the entire sequence of values 𝑣!, 𝑣", … , 𝑣# at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max$𝑣$

(Single-Sample Prophet Inequality (SSPI) Problem)

samples known to gambler



Game of Googol

• An adversary determines 𝑛 pairs of (non-negative) numbers 𝑥$!; 𝑥$" for 𝑖 ∈ [𝑛]

• For each 𝑖 ∈ [𝑛], we toss a fair coin to decide between

• 𝑉$ 	= 	 𝑥$!; 𝐻$ 	= 	 𝑥$"   or

• 𝑉$ 	= 	 𝑥$"; 𝐻$ 	= 	 𝑥$!
V: “visible”, H: “hidden”



Game of Googol

• An adversary determines 𝑛 pairs of (non-negative) numbers 𝑥$!; 𝑥$" for 𝑖 ∈ [𝑛]

• For each 𝑖 ∈ [𝑛], we toss a fair coin to decide between

• 𝑉$ 	= 	 𝑥$!; 𝐻$ 	= 	 𝑥$"   or

• 𝑉$ 	= 	 𝑥$"; 𝐻$ 	= 	 𝑥$!
• A gambler gets to see 𝑉!, … , 𝑉#, then observes the 𝐻$ one-by-one, and needs to 

immediately and irrevocably decide whether to accept 𝐻$ 

• The prophet gets to see 𝐻!, … , 𝐻# at once, and chooses the maximum value

V: “visible”, H: “hidden”



Game of Googol

• An adversary determines 𝑛 pairs of (non-negative) numbers 𝑥$!; 𝑥$" for 𝑖 ∈ [𝑛]

• For each 𝑖 ∈ [𝑛], we toss a fair coin to decide between

• 𝑉$ 	= 	 𝑥$!; 𝐻$ 	= 	 𝑥$"   or

• 𝑉$ 	= 	 𝑥$"; 𝐻$ 	= 	 𝑥$!
• A gambler gets to see 𝑉!, … , 𝑉#, then observes the 𝐻$ one-by-one, and needs to 

immediately and irrevocably decide whether to accept 𝐻$ 

• The prophet gets to see 𝐻!, … , 𝐻# at once, and chooses the maximum value

• Compare: 𝔼[value	accepted by gambler]	to 𝔼[value	accepted by prophet]                       

V: “visible”, H: “hidden”

(where the expectation is over the random coin tosses)



Example

𝑥!! = 2;  𝑥!" = 3
𝑥"! = 9;  𝑥"" = 1

𝑥%! = 6;  𝑥%" = 7

randomly assign 
𝑥!", 𝑥!#	to 𝑉!, 𝐻!

𝑉! = 2;  𝐻! = 3
𝐻" = 9;  𝑉" = 1

𝐻" = 6;  𝑉" = 7



Example

𝑉! = 2 𝑉" = 1 𝑉% = 7

𝑖 = 1 𝑖 = 2 𝑖 = 3



Example

𝐻! = 3 𝑉" = 1 𝑉% = 7

𝑖 = 1 𝑖 = 2 𝑖 = 3



Example

𝐻! = 3 𝑉" = 1 𝑉% = 7

𝑖 = 1 𝑖 = 2 𝑖 = 3
reject



Example

𝐻! = 3 𝐻" = 9 𝑉% = 7

𝑖 = 1 𝑖 = 2 𝑖 = 3
reject



Example

𝐻! = 3 𝐻" = 9 𝑉% = 7

𝑖 = 1 𝑖 = 2 𝑖 = 3
rejectreject



Example

𝐻! = 3 𝐻" = 9 𝐻% = 6

𝑖 = 1 𝑖 = 2 𝑖 = 3
rejectreject



Example

𝐻! = 3 𝐻" = 9 𝐻% = 6

𝑖 = 1 𝑖 = 2 𝑖 = 3
rejectreject accept



Example

𝐻! = 3 𝐻" = 9 𝐻% = 6

𝑖 = 1 𝑖 = 2 𝑖 = 3
rejectreject accept

ALG = 6    vs.   OPT = 9



Reduction
Observation:  If we have a guarantee for the Game of Googol, that is for any 
(adversarially) chosen set of 𝑛 pairs of numbers we get:

then we also get an 𝛼-competitive Single-Sample Prophet Inequality (SSPI).

𝔼 𝐴𝐿𝐺& ≥
1
𝛼
⋅ 𝔼 max$𝐻$

.

The reduction:
Ø The sequence 𝑣!, … , 𝑣# that is revealed online plays the role of 𝐻!, . . , 𝐻#
Ø The independent samples 𝑠!, … , 𝑠# play the role of 𝑉!, . . , 𝑉#



The Result

Theorem [Rubinstein Wang Weinberg 2020] 

In the Game of Googol, setting a threshold of 𝜏 = max$	𝑉$ and accepting the first 
𝐻$ such that 𝐻$ ≥ 𝜏 ensures that 

𝔼 𝐴𝐿𝐺& ≥
1
2
𝔼 max$𝐻$ .

(i.e., we can achieve the optimal factor 2 of the original prophet inequality problem with a 
single sample from each distribution!)



Analysis: Notation

• Recall: We have fixed 𝑥$,( for 𝑖 ∈ 𝑛, 𝑗 ∈ 1,2  (numbers chosen by adversary)
w.l.o.g. assume that the 𝑥!,# are all distinct



Analysis: Notation

• Recall: We have fixed 𝑥$,( for 𝑖 ∈ 𝑛, 𝑗 ∈ 1,2  (numbers chosen by adversary)

• Let’s sort the 𝑥$,( so that:  𝑊! > 𝑊" > … > 𝑊"#

• Define: pivotal index 𝑗⋆ ∈ {1, . . , 𝑛 + 1}: 

• Going left to right in the 𝑊$ sequence, this is the first time we see the second 
number of a pair 

w.l.o.g. assume that the 𝑥!,# are all distinct

Note: Irrespective of 
the coin tosses, 

𝑂𝑃𝑇 = 𝑊# for some 
𝑗 ≤ 𝑗⋆



Analysis: Notation

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑗⋆ = 3

• Recall: We have fixed 𝑥$,( for 𝑖 ∈ 𝑛, 𝑗 ∈ 1,2  (numbers chosen by adversary)

• Let’s sort the 𝑥$,( so that:  𝑊! > 𝑊" > … > 𝑊"#

• Define: pivotal index 𝑗⋆ ∈ {1, . . , 𝑛 + 1}: 

• Going left to right in the 𝑊$ sequence, this is the first time we see the second 
number of a pair 

w.l.o.g. assume that the 𝑥!,# are all distinct

Note: Irrespective of 
the coin tosses, 

𝑂𝑃𝑇 = 𝑊# for some 
𝑗 ≤ 𝑗⋆



Analysis: Formula for OPT

Lemma [Rubinstein, Wang, Weinberg 2020]

It holds that 

𝔼 𝑂𝑃𝑇 = Z
(2!

(⋆3!
𝑊(
2(

+
𝑊(⋆

2(⋆3!
.

= max
!
𝐻!



Analysis: Formula for OPT

Lemma [Rubinstein, Wang, Weinberg 2020]

It holds that 

𝔼 𝑂𝑃𝑇 = Z
(2!

(⋆3!
𝑊(
2(

+
𝑊(⋆

2(⋆3!
.

Note: It suffices to show that

(1) For 𝑗 ≤ 𝑗⋆ − 1:

(2) For 𝑗 = 𝑗⋆:

Pr 𝑂𝑃𝑇 = 𝑊( = 1/2(

Pr 𝑂𝑃𝑇 = 𝑊( = 1/2(3!

= max
!
𝐻!



Proof: Formula for OPT

= 𝑊"

= 𝑊#

= 𝑊+

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Formula for OPT

= 𝑊" hidden * * * * * ½
= 𝑊#

= 𝑊+

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Formula for OPT

= 𝑊" hidden * * * * * ½
= 𝑊# visible hidden * * * * ½ ⋅ ½
= 𝑊+

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Formula for OPT

= 𝑊" hidden * * * * * ½
= 𝑊# visible hidden * * * * ½ ⋅ ½
= 𝑊+ visible visible hidden * * * ½ ⋅ ½

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Analysis: Lower Bound for ALG

Lemma [Rubinstein, Wang, Weinberg 2020]

It holds that 

𝔼 𝐴𝐿𝐺& ≥ Z
(2!

(⋆3"
𝑊(
2(4!

+
𝑊(⋆3!

2(⋆3!
.



Analysis: Lower Bound for ALG

Lemma [Rubinstein, Wang, Weinberg 2020]

It holds that 

𝔼 𝐴𝐿𝐺& ≥ Z
(2!

(⋆3"
𝑊(
2(4!

+
𝑊(⋆3!

2(⋆3!
.

𝔼 𝑂𝑃𝑇 = D
,-"

,⋆."
𝑊,
2,

+
𝑊,⋆

2,⋆."

Recall: Comparison:

1. For 𝑗 ≤ 𝑗⋆ − 2:  Get 𝑊, w.p. "
#%&'

 instead of "
#%

 

2. For 𝑗 = 𝑗⋆ − 1:  Get 𝑊, w.p. "
#%

 (as before)

3. For 𝑗 = 𝑗⋆: Get 𝑊, w.p. 0 instead of "
#%('



Proof: Lower Bound for ALG

= 𝑊" hidden * * * * * ½
= 𝑊# visible hidden * * * * ½ ⋅ ½
= 𝑊+ visible visible hidden * * * ½ ⋅ ½

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Lower Bound for ALG

= 𝑊" hidden * * * * * ½
= 𝑊# visible hidden * * * * ½ ⋅ ½
= 𝑊+ visible visible hidden * * * ½ ⋅ ½

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Lower Bound for ALG

= 𝑊" visible * * * * * ½
= 𝑊# hidden visible * * * * ½ ⋅ ½
= 𝑊+ hidden hidden visible * * * ½ ⋅ ½

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

𝑂𝑃𝑇 sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3



Proof: Lower Bound for ALG

= 0 visible * * * * * ½
= 𝑊" hidden visible * * * * ½ ⋅ ½
≥ 𝑊# hidden hidden visible * * * ½ ⋅ ½

𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟒 𝑾𝟓 𝑾𝟔

9 7 6 3 2 1

sequences for which this is the case Pr[these	sequences]

𝑗⋆ = 3

𝐴𝐿𝐺/



Putting Everything Together
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Technique: Deferred Decisions

• What we did in the analysis is to defer the decision whether a certain 
number is a value or sample (i..e., whether it is 𝐻(idden) or 𝑉(isible)) until 
we reached its position 

• Upon reaching a position we flipped a fair coin 

• Coin flips for 𝑗 < 𝑗⋆ are independent, outcome on 𝑗⋆ is deterministic given 
previous coin tosses



Summary

• To obtain the optimal factor 2 for known distributions, we only need a single 
sample from each distribution (!) 

• The Game of Googol reduction, and the deferred decisions technique are 
useful more generally



Identical Distributions
[Correa Dütting Schewior Fischer 2019, Rubinstein Wang Weinberg 2020]

(and lots of follow-up work)



• Given an unknown distribution 𝒟 over (non-negative) values and limited access 
to 𝒟 through 𝑘 samples 𝑠!~𝒟,… , 𝑠9~𝒟: 
• A gambler gets to see realizations 𝑣$ ~𝒟 one-by-one, and needs to 

immediately and irrevocable decide whether to accept 𝑣$
• The prophet sees the entire sequence of values 𝑣!, 𝑣", … , 𝑣# at once, and can 

simply choose the maximum value
• Question: What’s the worst-case gap between 𝔼[value accepted by gambler] and 
𝔼[value accepted by prophet]? 

The Problem

=: 𝔼 𝐴𝐿𝐺
= 𝔼 max$𝑣$

samples known to gambler



Solution for Known Distribution

Theorem [Hill Kertz ’82, Correa-Foncea-Hoeksma-Oosterwijk-Vredeveld ’17] 
For every known distribution 𝒟, and 𝑛 draws 𝑣! ~𝒟 there exists an algorithm 𝐴𝐿𝐺
such that

𝔼 𝐴𝐿𝐺 ≥ 0.745 ⋅ 𝔼 max!𝑣! ,
and this is best possible.

Ø There is a sequence of increasing “quantiles” 𝑞" ≤ 𝑞# ≤ … ≤ 𝑞1                 
(independent of the distribution)

Ø The algorithm sets a sequence of decreasing thresholds 𝜏" ≥ 𝜏# ≥ ⋯ ≥ 𝜏1 where 
Pr 𝑣! ≥ 𝜏! = 𝑞!, and accepts the first 𝑣! ≥ 𝜏!



Question

Which fraction of 𝔼 max!𝑣! can we achieve 
with 𝑘 samples?



A Baseline

Proposition [Correa Dütting Schewior Fischer 2019] 

There exists an algorithm ALG that requires no samples, and achieves 

𝔼 𝐴𝐿𝐺 ≥
1
𝑒
𝔼 max$𝑣$ .



A Baseline

Proposition [Correa Dütting Schewior Fischer 2019] 

There exists an algorithm ALG that requires no samples, and achieves 

𝔼 𝐴𝐿𝐺 ≥
1
𝑒
𝔼 max$𝑣$ .

Proof: Simple reduction to Secretary Problem.

Algorithm: Skip the first ≈ 𝑛/𝑒 values, accept the first value in the remainder that is 
larger than the max in this prefix.



Main Result

Theorem [Correa Dütting Schewior Fischer 2019] 

For any 𝛿 > 0 and any algorithm ALG without samples, there exists a distribution 𝒟 
such that

𝔼 𝐴𝐿𝐺 ≤
1
𝑒
+ 𝛿 𝔼 max$𝑣$ .



Main Result

(continues to hold if ALG has access to 𝑜(𝑛) samples)

Theorem [Correa Dütting Schewior Fischer 2019] 
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Proof Strategy

• Establish the existence of an infinite-size subset of the natural numbers on 
which the given algorithm is (essentially) rank-based

• Define a distribution on a finite subset of this set

• Argue that if we could get !: >
!
;, then we would get a better algorithm for 

the Secretary Problem
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Ramsey:
There exists an 
infinite-size 
monochromatic 
induced subgraph

Make this  
(infinite-size) 
set 𝑆"
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Establishing the Property

For all steps 𝑖 ∈ [𝑛] there exists a probability 𝑝$ ∈ [0,1] such that for all distinct 
values 𝑣!, … , 𝑣$ ∈ 𝑆 seen until then,  

Pr 𝐴𝐿𝐺 accepts 𝑣$ | 𝑣$ = max{𝑣!, … , 𝑣$} ∈ [𝑝$ − 𝜖, 𝑝$ + 𝜖] .

For 𝑖 → 𝑖 + 1: Same argument as (𝑖	 = 1) → (𝑖 = 2) except that we 
construct a hypergraph and use the hypergraph-version of 
Ramsey’s theorem

Q.E.D.



Hard Instance

• Let 𝑤!, … , 𝑤#" , 𝑢 ∈ 𝑆 be such that 𝑢 ≥ 𝑛% ⋅ max 𝑤!, … , 𝑤#"
• Define distribution 𝒟 such that

𝑣$ =
𝑢 with probability !##

𝑤( with probability !#" (1 −
!
##) (∀ 𝑗 = 1,… , 𝑛%)

(this completes the proof sketch 
for the main result)
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Linear Number of Samples

Theorem [Correa Dütting Schewior Fischer 2019]

There exists an algorithm 𝐴𝐿𝐺 that requires 𝑛 − 1 samples, and ensures that 

𝔼 𝐴𝐿𝐺 ≥ 1 −
1
𝑒
⋅ 𝔼 max$𝑣$

(in the paper: nearly tight impossibility of ln 2 ≈ 	0.693)

(in particular: unlike in the case of non-identical distributions, a single sample from 
each distribution is not sufficient to match the best-possible guarantee for a known 
distribution)
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Warm-Up: Quadratic Number of Samples

Algorithm:
• Use 𝑛 − 1 fresh samples 𝑠!

($), … , 𝑠#3!
($)  for each step 𝑖

• Set max{𝑠!
($), … , 𝑠#3!

$ } as threshold in step 𝑖 

Analysis:

𝔼 𝐴𝐿𝐺 = Z
$2!

#

1 −
1
𝑛

$3!
⋅
1
𝑛
⋅ 𝔼 𝑣$ | 𝑣$ ≥ max{𝑠!

($), … , 𝑠#3!
($) }

= 𝔼 max{𝑣!, … , 𝑣#}→ 1 −
1
𝑒 Q.E.D.

(with 𝑂 𝑛,  samples)



Fresh Looking Samples

Algorithm’:
• At each time step 𝑖, select a uniform random subsample 𝒮$ of size 𝑛 − 1 of
• 𝑛 − 1 original samples 𝑠!, … , s#3!
• all values 𝑣!, … , 𝑣$3! seen so far

• Set max 𝒮$ as threshold in step i



Key Lemma

Lemma [Correa Dütting Schewior Fischer 2019]

Conditioned on arriving at step 𝑖, the distribution of 𝒮$ (as a set) is the one of 
𝑛 − 1 fresh samples,

Proof (of theorem): Analogous to previous argument. Q.E.D.



Additional Results

Theorem [Correa Dütting Schewior Fischer 2019]

For every 𝜖 > 0, there exists an algorithm 𝐴𝐿𝐺 that requires access to 𝑂A(𝑛") 
samples, and ensures that 
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Additional Results

Theorem [Correa Dütting Schewior Fischer 2019]

For every 𝜖 > 0, there exists an algorithm 𝐴𝐿𝐺 that requires access to 𝑂A(𝑛") 
samples, and ensures that 

𝔼 𝐴𝐿𝐺 ≥ (0.745 − 𝜖) ⋅ 𝔼 max$𝑣$

(improved to 𝑂2(𝑛) [Rubinstein Wang Weinberg ‘20])

(i.e., a constant number of samples per step 𝑖 ∈ [𝑛] is sufficient to recover the optimal 
guarantee for a known distribution)



Summary



Follow-Up Work
• [Kaplan Naor Raz 2020]: Improved bounds for 𝑘	 < 	𝑛 − 1	samples, same bound of 1 −
1/𝑒 for 𝑘	 = 	𝑛 − 1	samples

• [Correa Cristi Epstein Soto 2020] Game of Googol (with random order) yields improved 
bound of 0.635 with 𝑘	 = 	𝑛	samples

• [Correa Dütting Schewior Fischer Ziliotto 2021] Choose sets 𝒮# of varying size; optimal 
choice yields improved bounds, tight for 𝑘 ≤ 𝛽 ⋅ 	𝑛 samples and 𝛽 ≤ 1/(𝑒 − 1) ≈ 0.58, 
improved bound of 0.649 for 𝑘	 = 	𝑛	samples  

• [Correa Epstein Cristi Soto 2024] LP approach that finds optimal ordinal algorithm, 
yields 0.671 with 𝑘	 = 	𝑛	samples



Beyond Single Item



Two Main Techniques

• Reduction to order-oblivious secretary problem
    [Azar Kleinberg and Weinberg 2014]

• Greedy plus deferred decisions  
    [Korula Pal ‘09, Rubinstein Wang Weinberg ’20, Caramanis et al. 2022,     
    Dütting Kesselheim Lucier Reiffenhauser Singla 2024]



Overview of Results
Setting Guarantee

k-uniform matroid
≤ 1 − 𝑂 *

-

+*
 [Azar Kleinberg Weinberg ‘14]

Transversal matroid ≤ 16   [Azar Kleinberg Weinberg ‘14]
≤ 8 [Caramanis et el. ‘22]

Graphic matroid ≤ 8   [Azar Kleinberg Weinberg ‘14]
≤ 4   [Caramanis et al. ‘22]

Laminar matroid ≤ 12 ⋅ 3  [Azar Kleinberg Weinberg ‘14]
≤ 6 ⋅ 3 [Caramanis et al. ‘22]

General matching (edge arrivals) ≤ 16 [Caramanis et el. ‘22]
≤ 11.66 [Kaplan Naor Raz ‘22]

General matching (vertex arrivals) ≤ 8 [Caramanis et el. ‘22]
≤ 5.83 [Kaplan Naor Raz ‘22]

Budget-Additive Combinatorial Auctions ≤ 24 [Caramanis et el. ‘22]

XOS Combinatorial Auctions ≤ 567 [DüXng Kesselheim Lucier Reiffenhauser Singla ‘24]



Discussion

• Almost all problems that admit 𝑂 1 -approximation in prophet model, 
also admit 𝑂(1)-approximation with a single sample

    (but some evidence that single-sample prophet may be as hard as order- 
    oblivious secretary problem) [Caramanis et al. ‘22]

• Some, but not all of the aforementioned results also correspond to 
truthful (price-based) mechanisms

Open questions: Single-
sample 𝑂(1)-approx. for 
subadditive CAs? Truthful 
𝑂(1)-approx for XOS CAs 
with polylog samples?



Summary

Thanks! You made it :)

• A closer look at the results and techniques for the data-driven single-
choice prophet inequality problem

• Non-identical distributions

• Identical distributions

• A brief discussion of state-of-the art for data-driven combinatorial 
prophet inequality problems
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