Auction Design: Max Revenue

How to sell a used car?
- negotiate
- market research
- listed price (to see what it's worth)
- run an auction
- advertise

Given:
- 1 item
- n buyers, \(v_i \sim F_i \)
- Sell item to max revenue

Mechanism:

- Bidders w/ values \(v_i \) submit \(x_i \)
- Mechanism allocates item
- Payments

Bayesian Nash Equil (BNE)
- Strategies: \(\{v_i\} \rightarrow \{x_i\} \)
- Common prior \(v_i \sim F_i \)
- Outcomes \(x_i, F_i(v_i) \)
- Interim outcomes \(x_i(v_i) = E_{F_i}\left[x_i | v_i \right] \)
- Interim utility \(u_i(v_i) = v_i x_i(v_i) - p_i(v_i) \)

Example A: 2nd price auction
2 bidders \(v_i \sim U[0,1] \)

Mechanism: solicit bids \(b_i \)
- if \(b_i > b_j \), \(v_i \) wins and pays \(b_j \)
- else \(b_j > b_i \), \(v_j \) wins

Equilibrium: what is \(v_i \)'s best response to \(b_j \)?

\[
\begin{align*}
& b_i > b_j : v_i \leftarrow b_j \\
& b_i < b_j : v_i \leftarrow b_i \\
& \text{assume } v_i > b_i \\
& \text{assume } v_j < b_j
\end{align*}
\]

* A truthful dominant strategy equil.

Example B: 1st price auction

Mechanism: solicit bids \(b_i \)
- if \(b_i > b_j \), \(v_i \) wins and pays \(b_j \)
- else \(b_j > b_i \), \(v_j \) wins

Equilibrium: Guess and check, \(v_i = v_f \)
- if \(\text{I bid } b \), \(F_i[v_i] = E_{F_i}\left[v_i | b > v_i \right] = F_i[b > v_i] = P_i[v_i < b] = 2b - v_i > v_f \)
- best response: given \(v_f \), pick \(b^* = \arg \max (v_f - b^*\) \)

\[
\begin{align*}
& b^* = \arg \max (v_f - b^*) \\
& = \arg \max (2b^* (v_f - b^*)) \\
& = v_f/2
\end{align*}
\]

Question: \(E_{v_i, v_f} [\text{Rev(A)}] = 1/3 \equiv E_{v_i, v_f} [\text{Rev(B)}] = 1/3 \)

Optimal Revenue? Example C.

2nd price auction w/reserve \(r > v \): if higher bid \(> r \), win + pay \(max(r, 2^{nd} \text{ highest bid}) \)

Revenue: label bidders \(t_i \) s.t. \(u_i > v_2 \)

\[
\begin{align*}
\text{case 1: } & r \geq v_i > v_2 \quad r^2 \\
\text{case 2: } & v_i > v_2 \geq r \quad \left(1-r^2 \right) \\
\text{case 3: } & v_i \geq r > v_2 \quad 2(1-r)r
\end{align*}
\]

\[
\begin{align*}
\text{optimal at } r &= 1/2 \\
\text{rev} &= \frac{5}{12}
\end{align*}
\]

Bayesian assumption: \(v_i \sim F_i \), \(F_i \) is common knowledge.

Example. 1 buyer, \(v_i \sim U[0,1] \)

Optimal posted price?

\[
\begin{align*}
\text{rev}(p) &= p \cdot F_i[v_i \geq p] = p \cdot (1-p) \\
\text{or}\text{p}^* &= \arg \max p(1-p) = \arg \max (p - p^2) \\
&= \frac{1}{2} \\
\text{rev} &= p \cdot (1-p) = 1/4
\end{align*}
\]

def BNE: \(v_x \) is an \(x \)

\[v_i x_i(v_i) - p_i(v_i) \geq v_i x_i(2) - p_i(2) \]

(assume \(sc \) is empty)
A mechanism is direct if \(b_i = \text{vals}_i \). The Revelation Principle: Any outcome \((x_i, p_i)\) implemented by some mechanism in an equilibrium can be implemented by an incentive-compatible direct mechanism.

Proof (Sketch): Given a mechanism, strategies \(\xi \), direct mechanism inputs \(v + \text{feats} = \xi(v) \) to original mechanism.

Characterization Theorem: \((x_i, p_i)\) are the BNE of a mechanism if and only if:

1. **Monotonicity:** \(x_i(v_i) \) monotone non-decreasing.
2. **Payment Identity:** \(p_i(v_i) = v_i x_i(v_i) - \sum_{i'} x_i(v_i')d_{i'} \)

Proof: (i) \(\Rightarrow \) BNE:

\[
\begin{align*}
\text{Surplus: } & v x_i(v_i) \\
\text{Payment: } & by \xi \\
\text{Utility: } & surplus - payment
\end{align*}
\]

Q: Could agent with value \(v \) benefit by impersonating an agent of value \(v' \)?

BNE \(\Rightarrow \) (i) \& (ii): Follow incentive constraints

\[
\begin{align*}
\forall v \in (v(v_i') - p(v_i') \geq v x_i(v_i') - p(v_i')) \\
\forall v(x(v_i') - p(v_i') \geq v_i x_i(v_i') - p(v(v_i))
\end{align*}
\]

Consequence (Revenue Equivalence):

Auctions w/same alloc in BNE have the same revenue.

Example: 1st price auction: 2 bidders, \(v_i \in [0, 1] \)

- Guess \(\xi(v)\) is monotone in \(v \) \(\Rightarrow \) same alloc as 2nd price auction.
- \(p(v) = p[v \text{ wins in 2nd price}] \)
 \(= E[2nd \text{ price payment} | v] \)
 \(= E[v \text{ wins in } 2nd \text{ price}] \times E[2nd \text{ highest value} | v \text{ is highest}] \)
 \(\Rightarrow \xi(v) = E[2nd \text{ highest value} | v \text{ is highest}] = \frac{v}{2} \)

Since \(\frac{v}{2} \) is monotone in \(v \), it must be a BNE.
\[\text{Since } \frac{v}{2} \text{ is monotone in } v, \text{ it must be a BNE.} \]

This time: optimizing BNE, Myerson's virtual val

Recall Characterization Thm.

\[(x,p) \text{ implementable in BNE of some mech.} \]

\[\Downarrow \]

monotonicity \(x_i(v_i) \) monotone non-decreasing
payment identity \(p_i(v_i) = v_i x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_o \)

Lemma: [Myerson '81]

\[E [p_i(v_i)] = E [\Phi_i(v_i) x_i(v_i)] \]

where \(\Phi_i(v_i) = v_i - \frac{1-F(v_i)}{f(v_i)} \) is the virtual value.

Approach:
- calculate virtual values \(\Phi_i \)
- choose \(x \) to max \(E [\Phi_i(v_i) x_i(v_i)] \)
- check that \(x \) is monotone
- use payment identity to calc. \(p \)

Example \(A^1 \) buyer, \(v \sim U[0,1] \)

\[\Phi(v) = v - \frac{1-v}{1} = 2v-1 \]

\[\begin{aligned}
\text{Example } E \text{ n buyers, } v_i \sim U[0,1] \\
\Phi_i(v_i) &= 2v_i - 1 \\
\det & \max_x \sum_i \Phi_i(v_i) x_i(v_i) \}
\end{aligned} \]

allocate to highest \(v_i \) if \(v_i \geq 1/2 \)

\[\Rightarrow 2^\text{nd price auction} \]

w/ reserve \(= 1/2 \)

Pf. (of Myerson's Lemma)

\[E[p_i(v)] = E[v x_i(v) - \int_0^{v_i} x_i(z) dz] \]

\[= \int_0^1 \left(v x(v) - \int_0^v x_i(z) dz \right) f(v) dv \]

\[= \int_0^1 v x(v) f(v) dv - \int_0^1 \int_0^v \frac{1}{2} x_i(z) dz f(v) dv \]

recall integration by parts: \(\int_a^b h dz g = [h a - b] - \int_a^b g dh \)

\[= \int_0^1 v x(v) f(v) dv - \int_0^1 \left(\int_0^v x_i(z) dz \left[F(v) - 1 \right] \right) \left[\frac{v}{2} - \int_0^v (cF(v)-1) x(v) dv \right] \]

\[= \int_0^1 x(v) (v f(v) + (F(v) - 1)) dv \]

\[= \int_0^1 x(v) \left(v - \frac{1-F(v)}{F(v)} \right) f(v) dv \]
\[E \left[(v - \frac{1 - F(v)}{rC}) \times C(v) \right] \]