Algorithms for perturbation resilient problems

Instructor: Yury Makarychev, TTIC
Practice

Need to solve combinatorial optimization and clustering problems
Theory

Many of these problems are NP-hard and cannot be solved exactly in polynomial time.

Traditional approach

• Don’t make any assumptions about the input.
• Design an approximation algorithm for the worst case.

Recall: an algorithm has an α-approximation if

\[ALG \geq OPT/\alpha \] for a maximization problem
\[ALG \leq \alpha OPT \] for a minimization problem
Beyond-Worst-Case Analysis

• Real-life instances appear to be much easier than worst-case instances.

• Heuristics used in practice often get much better approximation than it is theoretically possible for worst-case instances.

➤ Why is it the case?

➤ Create good models for real-life instances.

➤ Design algorithms that solve instances from these models.
Two Approaches to Modelling Real-life Instances

Assume that an instance satisfies certain structural properties:

• Perturbation Resilience
• Assumptions of the graph, weights, etc

Generative models. Assume that an instance is generated in a certain way:

• Random models: e.g. G is a $G(n, p)$ graph
• Semirandom models: random + adversarial choices
Perturbation Resilience

Bilu and Linial ‘10
Warm up

Cluster the following data set.
Warm up

Cluster the following data set.
Warm up

Cluster the following data set in 3 groups.
Warm up

Cluster the following data set in 3 groups.
Warm up

Cluster the following data set in 3 groups.
“Clustering is difficult only when it does not matter.”

Daniely, Linial, Saks
When do solutions matter?

Bilu and Linial ‘10:

Optimal solutions matter when they are unique and stand out among other solutions.
When do solutions matter?

Bilu and Linial ‘10:

Optimal solutions matter when they are unique and stand out among other solutions.

An instance of a problem is perturbation resilient if the optimal solution remains the same when we perturb the instance.
Cluster the following data set in 4 groups.
Cluster the following data set in 3 groups.
Consider an instance \(\mathcal{I} \) of an optimization or clustering problem. Assume that it has a number of parameters

\[
p_1, \ldots, p_m > 0
\]

The parameters may be edge, vertex, or constraint weights, or distances between points.

\(\mathcal{I}' \) is a \(\gamma \)-perturbation of \(\mathcal{I} \) if it can be obtained from \(\mathcal{I} \) by “perturbing the parameters” — multiplying each \(p_i \) by a number from \(1 \) to \(\gamma \).

\[
p_i \leq p_i' \leq \gamma \cdot p_i
\]
Perturbation-resilience

[Bilu and Linial ‘10] An instance I of an optimization or clustering problem is γ-perturbation-resilient if the optimal solution remains the same when we perturb the instance:

every γ-perturbation I' has the same optimal solution as I

(the value/cost of the solution may be different)
Perturbation-resilience

Every γ-perturbation J' has the same optimal solution as J.

- Empirical evidence shows: the optimal solution often “stands out” among all other solutions [Bilu, Linial]
- In ML, we want to find the “true” solution.
 - Make many somewhat arbitrary choices; e.g. choose one similarity function among several options
 - If the instance is not p.r., the optimal solution will be different from the true solution.
Weak perturbation-resilience

[Makarychev, M, Vijayaraghavan ‘14]
An instance I of an optimization or clustering problem is γ-weakly perturbation-resilient if the optimal solution for every γ-perturbation I' of I is “close” to the optimal solution for I.
Goal: Exact algorithms

- Design exact algorithms for \(\gamma \)-perturbation resilient instances.
- Design an algorithm that finds a solution “close” to an optimal solution for weakly \(\gamma \)-perturbation resilient instances.
- We want \(\gamma \) to be small.
k-means and k-median

Given a set of points X, distance $d(\cdot,\cdot)$ on X, and k

Partition X into k clusters C_1, \ldots, C_k and find a “center” c_i in each C_i so as to minimize

\[
\sum_{i=1}^{k} \sum_{u \in C_i} d(u, c_i) \quad (k\text{-median})
\]

\[
\sum_{i=1}^{k} \sum_{u \in C_i} d(u, c_i)^2 \quad (k\text{-means})
\]
Results
Results (clustering)

$\gamma \geq 3$	k-center, k-means, k-median	[Awasthi, Blum, Sheffet `12]
$\gamma \geq 1 + \sqrt{2}$	k-center, k-means, k-median	[Balcan, Liang `13]
$\gamma \geq 2$	sym. /asym. k-center	[Balcan, Haghtalab, White `16]
$\gamma \geq 2$	k-means, k-median	[Angelidakis, Makarychev, M `17]
Results (optimization)

<table>
<thead>
<tr>
<th>Equation</th>
<th>Problem</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma \geq c n$</td>
<td>Max Cut</td>
<td>[Bilu, Linial `10]</td>
</tr>
<tr>
<td>$\gamma \geq c \sqrt{n}$</td>
<td>Max Cut</td>
<td>[Bilu, Daniely, Linial, Saks `13]</td>
</tr>
<tr>
<td>$\gamma \geq c \sqrt{\log n \log \log n}$</td>
<td>Max Cut</td>
<td>[Makarychev, M, Vijayaraghavan `13]</td>
</tr>
<tr>
<td>$\gamma \geq 2 - 2/k$</td>
<td>Multiway</td>
<td>[AMM `17]</td>
</tr>
</tbody>
</table>
Results (optimization)

Our algorithms are robust.

• Find the optimal solution, if the instance is p.r.
• Find an optimal solution or detects that the instance is not p.r., otherwise.
• Never output an incorrect answer.

Solve weakly p.r. instances.
Algorithm for Clustering Problems
Plan [AMM `17]

i. γ-perturbation resilience \Rightarrow γ-center proximity

ii. 2-center proximity \Rightarrow each cluster is a subtree of the MST

iii. use single-linkage + DP to find C_1, \ldots, C_k
Center proximity property

[Awasthi, Blum, Sheffet `12] A clustering C_1, \ldots, C_k with centers c_1, \ldots, c_k satisfies the center proximity property if for every $p \in C_i$:

$$d(p, c_j) > \gamma d(p, c_i)$$
Perturbation resilience \Rightarrow center proximity

Perturbation resilience: the optimal clustering doesn’t change when we perturb the distances.

$$d(u, v)/\gamma \leq d'(u, v) \leq d(u, v)$$

[ABS `12] $d'(\cdot; \cdot)$ doesn’t have to be a metric

[AMM `17] $d'(\cdot; \cdot)$ is a metric

Metric perturbation resilience is a more natural notion.
Perturbation resilience \Rightarrow center proximity [ABS `12, AMM `17]

Assume center proximity doesn’t hold.
Then $d(p, c_j) \leq \gamma d(p, c_i)$.

Assume center proximity doesn’t hold.

- Let $d'(p, c_j) = d(p, c_i) \geq \gamma^{-1} d(p, c_j)$.
- Don’t change other distances.
- Consider the shortest-path closure.

Perturbation resilience \Rightarrow center proximity \cite{ABS12, AMM17}

This is a γ-perturbation.
Perturbation resilience \Rightarrow center proximity [ABS '12, AMM '17]

Distances inside clusters C_i and C_j don’t change.
Consider $u, v \in C_i$.

$$d'(u,v) = \min \left(d(u,v), \right.$$
$$\left. d(u,p) + d'(p,c_j) + d(c_j,v) \right)$$
Distances inside clusters C_i and C_j don’t change.
Consider $u, v \in C_i$.

$$d'(u, v) = \min \left(d(u, v), \right.$$
$$\left. d(u, p) + d'(p, c_j) + d(c_j, v) \right)$$
Perturbation resilience \Rightarrow center proximity [ABS `12, AMM `17]

Since the instance is γ-p.r., C_1, \ldots, C_k must be the unique optimal solution for distance d'.

Still, c_i and c_j are optimal centers for C_i and C_j.

\[d'(p, c_i) = d'(p, c_j) \Rightarrow \text{can move } p \text{ from } C_i \text{ to } C_j \]
Each cluster is a subtree of MST

[ABS `12] 2-center proximity \Rightarrow

every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i.

![Diagram showing each cluster as a subtree of MST with points u, v, and c_i connected appropriately.](image-url)
Each cluster is a subtree of MST

[ABS `12] 2-center proximity ⇒

every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i.
Dynamic programming algorithm

Root MST at some r. $T(u)$ is the subtree rooted at u.

$\text{cost}_u(j, c)$: the cost of partitioning $T(u)$
- into j clusters (subtrees)
- so that c is the center of the cluster containing u.
Dynamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, u has 2 children u_1 and u_2.

$T(u)$
Dynamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, u has 2 children u_1 and u_2.
Dynamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, u has 2 children u_1 and u_2.
Dynamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, u has 2 children u_1 and u_2.
Dynamic programming algorithm

\(u, u_1, u_2 \) lie in the same cluster
\[
\text{cost}_u(j, c) = d(u, c) + \text{cost}_{u_1}(j_1, c) + \text{cost}_{u_2}(j_2, c)
\]
where \(j_1 + j_2 = j + 1 \)

\(u, u_1, u_2 \) lie in different clusters
\[
\text{cost}_u(j, c) = d(u, c) + \text{cost}_{u_1}(j_1, c_1) + \text{cost}_{u_2}(j_2, c_2)
\]
where \(j_1 + j_2 = j - 1, c_1 \in T(u_1), c_2 \in T(u_2) \)

\(u, u_1 \) lie in the same clusters, \(u_2 \) in a different
\[
\text{cost}_u(j, c) = d(u, c) + \text{cost}_{u_1}(j_1, c) + \text{cost}_{u_2}(j_1, c_2)
\]
where \(j_1 + j_2 = j, c_2 \in T(u_2) \)
Multiway Cut

Given

• a graph $G = (V, E, w)$
• a set of terminals t_1, \ldots, t_k

Find a partition of V into sets S_1, \ldots, S_k that minimizes the weight of cut edges s.t. $t_i \in S_i$.
Algorithms for Max Cut and Multiway Cut [MMV `13]

Write an SDP or LP relaxation for the problem. Show that it is integral if the instance is γ-p.r.

```
solve the relaxation
if the SDP/LP solution is integral
    return the solution
else
    return that the instance is not $\gamma$-p.r.
```

The algorithm is robust: it never returns an incorrect answer.
Multiway Cut

Write the relaxation for Multiway Cut by Călinescu, Karloff, and Rabani [CKR '98]

To get an α-approximation, we would design a rounding scheme with

$$\Pr[(u, v) \text{ is cut}] \leq \alpha d(u, v)$$

Then

$$\mathbb{E}[\text{weight of cut edges}] \leq \alpha \sum_{(u,v) \in E} w_{uv}d(u, v)$$
Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges, we would design a rounding scheme with

$$\Pr[(u, v) \text{ is not cut}] \geq \beta (1 - d(u, v))$$

Then

$$\mathbb{E}[\text{wt. of uncut edges}] \geq \beta \sum_{(u, v) \in E} w_{uv} (1 - d(u, v))$$
General approach to solving p.r.
instances of graph partitioning

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

\[\Pr[(u, v) \text{ is cut}] \leq \alpha d(u, v) \]
\[\Pr[(u, v) \text{ is not cut}] \geq \beta (1 - d(u, v)) \]

or

\[\Pr[(u, v) \text{ is cut}] \geq \beta d(u, v) \]
\[\Pr[(u, v) \text{ is not cut}] \leq \alpha (1 - d(u, v)) \]

Then the relaxation for γ-p.r. is integral, when \(\gamma \geq \alpha / \beta \)
Solving Max Cut [MMV `13]

Use the Goemans–Williamson SDP relaxation with ℓ_2^2-triangle inequalities.

Design a rounding procedure with

$$\frac{\alpha}{\beta} = O\left(\sqrt{\log n \log \log n}\right),$$

which is a combination of two algorithms:

• the algorithm for Sparsest Cut with Nonuniform Demands by Arora, Lee, and Naor `08,
• the algorithm for Min Uncut by Agarwal, Charikar, Makarychev, MM `05
Solving Multiway Cut [AMM `17]

Rounding procedures for Multiway Cut by
• Sharma and Vondrák `14
• Buchbinder, Schwartz, and Weizman `17
are highly non-trivial.

We need a rounding procedure only for LP solutions that are almost integral.

Design a simple rounding procedure with
\[\frac{\alpha}{\beta} = 2 - \frac{2}{k}. \]
Summary

• Algorithms for 2-perturbation-resilient instances of problems with a natural center-based objective: k-means, k-median, facility location.

• Robust algorithms for $O\left(\sqrt{\log n \log \log n}\right)$-p.r. instanced of Max Cut and $(2 - \frac{2}{k})$-p.r. instances of Multiway Cut.

• Negative results for p.r. instances of Max Cut, Multiway Cut, Max k-Cut, Multi Cut, Set Cover, Vertex Cover, Min 2-Horn Deletion.