Socially Fair Clustering

Instructor: Yury Makarychev, TTIC
Fairness in Facility Location

Choose locations for stores/hospitals/fire stations/etc so as to minimize the average distance from people to these facilities.

+ fair for minority groups
Fair clustering

Given:
• a set of points X and a distance function d on X.
• a list of groups $G_1, \ldots, G_\ell \subset X$

Centers and clustering:
A set of centers $\{c_1, \ldots, c_k\}$ defines the Voronoi clustering: cluster C_i consists of the points that are closer to c_i than to other centers

Cost function:
Let
\[
\text{cost}(j, C) = \frac{1}{|G_j|} \sum_{u \in G_j} d(u, C)^p.
\]
\[
\text{cost}(C) = \max_{1 \leq j \leq \ell} \text{cost}(j, C).
\]
Known Results for k-medians and k-means

k-medians:

$\frac{2}{3}$

Charikar, Guha, Tardos, Shmoys ‘02

2.675

Byrka, Pensyl, Rybicki, Srinivasan, Trinh ‘14

k-means:

6.357

Ahmadian, Norouzi-Fard, Svensson, Ward ‘17
Known Results

In the context of socially fair clustering, the problem was introduced by

- Abbasi, Bhaskara, and Venkatasubramanian (2021) for \(p = 1, 2 \)
- Ghadiri, Samadi, and Vempala (2021) for \(p = 2 \)

They gave

- an \(O(\ell) \) approximation algorithm
- a matching integrality gap of \(\Omega(\ell) \)
- a bicriteria approximation algorithm

Anthony, Goyal, Gupta, and Nagarajan (2010) studied the problem in the context of “robust clustering” and gave an \(O(\log n + \log \ell) \) approximation algorithm for \(p = 1 \).
Known Results

Bhattacharya, Chalermsook, Mehlhorn, and Neumann (2014): The problem doesn’t admit a better than \(O\left(\frac{\log \ell}{\log \log \ell}\right) \) approximation unless \(NP \subset \bigcap DTIME(2^{n^\delta}) \).

M, Vakilian (2021): There is an \(O\left(\frac{\log \ell}{\log \log \ell}\right) \) approximation algorithm for every \(p \) (the constant in \(O(\cdot) \) depends on \(p \)).
Our Setting

Original setting:

\[
\text{cost}(j, C) = \frac{1}{|G_j|} \sum_{u \in G_j} d(u, C)^p
\]

More general setting:

\[
\text{cost}(j, C) = \sum_{u \in X} w_j(u) \cdot d(u, C)^p
\]

In particular, we may let

\[
w_j(u) = \frac{1}{|G_j|} \quad \text{if} \quad u \in G_j \quad \text{and} \quad ... = 0, \quad \text{otherwise}
\]
Basic LP Relaxation

LP variables

\[x_{uv} \] is the indicator variable of the event that \(u \) is assigned to center \(v \)

\[y_v \] is the indicator variable of the event that \(v \) is a center
\[y_a = y_b = y_c = y_d = 1 \]
\[y_u = y_v = \cdots = 0 \]

\[x_{ua} = x_{vb} = \cdots = 1 \]
\[x_{ub} = x_{uc} = x_{ud} = 0 \]
minimize z

s.t.

$z \geq \sum_{uv} w_j(u) d(u, v) \cdot x_{uv}$ for all $j = 1, \ldots, \ell$

$\sum_v x_{uv} = 1$ every u is assigned to some center

$\sum_v y_v \leq k$ there are at most k centers

$x_{uv} \leq y_v$ u is assigned to center v, only if v is a center

$x_{uv}, y_v \geq 0$