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APSP
algorithm

All-Pairs Shortest Paths

n by n

distance
matrix

Input: A weighted undirected graph G=(V,E), 
where |E|=m and |V|=n.

Output: An n × n distance matrix.

mn time
n2 space



  An estimated distanceδ’(u,v) 
 is ofstretch t  iff

δ(u,v )≤ δ’(u,v) ≤ t · δ(u,v( 

 An estimated distance δ’(u,v) 
is of surplus t iff 

δ(u,v) ≤ δ’(u,v) ≤ δ(u,v) + t

Approximate Shortest Paths

Let δ(u,v) be the distance from u to v.

Multiplicative
error

Additive
error



Multiplicative and additive spanners

Let G=(V, E) be a weighted undirected graph 
on n vertices. A subgraph G’=(V, E’) is a 

t-spanner of G iff for every u,v∈V we have 

δG’(u,v)  ≤  t δG(u,v).

Let G=(V, E) be a unweighted undirected graph 
on n vertices. A subgraph G’=(V, E’) is an 

additive t-spanner of G iff for every u,v∈V we have 

δG’(u,v)  ≤  δG(u,v) + t.



Compact data
structure
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n 1+1/k space

Approximate Distance Oracles

O(1) query time
 stretch 2k−1

Stretch-Space tradeoff is 
essentially optimal!

n by n

distance
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Weighted
undirected graph

u,v δ’(u,v(



1. All-pairs almost shortest paths (unweighted)

b. An O(n5/2)-time surplus-2 algorithm (ACIM’96)
c. Additive 2-spanners with O(n3/2) edges.
d. An O(n3/2m1/2)-time surplus-2 algorithm (DHZ’96)

2. Multiplicative spanners (weighted graphs)

b. (2k−1)-spanners with n1+1/k edges (ADDJS’93)
c. Linear time construction (BS’03)

3. Approximate distance oracles (weighted graphs)

b. Stretch=2k−1  query time=O(1)  space=O(kn1+1/k)  (TZ’01)

5. Spanners with sublinear distance errors (unweighted)

b. Additive error O(d1/(k−1)) with O(kn1+1/k) edges  (TZ’05)



All-Pairs Almost Shortest Paths
unweighted, undirected graphs

folklore mn0
AuthorsTimeSurplus
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”n2−1/km1/k2(k−1)
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1) Add each vertex v to A, independently, with 
probability n−1/2. (Elements of A are “centers”.)

2) From every center v∈A, find a tree of 
shortest paths from v and add its edges to E’.

3) For every non-center v∉A:

a) If v has a neighbor u∈A, 
then add the single edge (u,v) to E’.

b) Otherwise, add all the edges 
incident to v to E’.

4) Solve the APSP problem on the 
subgraph G’=(V, E’).

O(n5/2)-time surplus-2 algorithm
unweighted, undirected graphs

O(n)

O(m|A|)
= O(n5/2)

O(m)

O(n|E’|)
= O(n5/2)



Number of edges in E’
• The expected # of edges added to E’ in 2) is O(n3/2).

• The expected # of edges added to E’ in 3) is also O(n3/2).

Consider a vertex v of degree d

Hence, the expected number of edges
incident to v added to E’ is at most 

d(1−n−1/2)d + 1   ≤   n1/2

If one of the neighbors of v is 
placed in A, then E’ will contain 

only one edge incident on v.
v



The surplus-2 algorithm
Correctness – Case 1

Case 1: No vertex on a shortest path from u to v 
     has a neighboring center.

All the edges on the path are in E’.

We find a shortest path from u to v.

u v



The surplus-2 algorithm
Correctness – Case 2

Case 2: At least one vertex on a shortest path 
     from u to v has a neighboring center.

We find a path from u to v of surplus at most 2

u vw

 δ(u,w)+1  δ(w,v)+1
w’



Additive 2-spanners

Every unweighted undirected graph 
G=(V, E) on n vertices has a subgraph G’=

(V, E’) with O(n3/2) edges such that for 
every u,v∈V we have δG’(u,v) ≤ δG(u,v) + 2.



1) Add each vertex v to A, independently, with 
probability (n/m)1/2. (Elements of A are “centers”.)

2) From every center v∈A, find distances to all other
vertices in the graph. (Do not add edges to E’.)

3) For every non-center v∉A:

a) If v has a neighbor u∈A, 
then add the single edge (u,v) to E’.

b) Otherwise, add all the edges incident to v to E’.

4) For every non-center vertex v∉A: 

a) Construct a set F(v)={ (v,w) | w∈A } of weighted 
edges. The weight of an edge (v,w) is δ(w,v). 

b) Find distances from v to all other vertices in the 
weighted graph G’(v)=(V, E’ ∪F(v)).

O(n3/2m1/2)-time surplus-2 algorithm
unweighted, undirected graphs



O(n3/2m1/2)-time surplus-2 algorithm
Correctness – Case 2

Case 2: At least one vertex on a shortest path 
     from u to v has a neighboring center.

Consider the last vertex with a neighboring center.

We find a path from u to v of surplus at most 2

u vw

 δ(u,w)+1
w’



All-Pairs Almost Shortest Paths
weighted undirected graphs

Dijkstra ’59mn1

ReferenceTime Stretch

”n23

”n7/37/3

Cohen-Zwick ’97n3/2m1/22

Some log factors ignores



Spanners

Given an arbitrary dense graph, can we 
always find a relatively sparse subgraph that 

approximates all distances fairly well?



Spanners [PU’89,PS’89]

Let G=(V,E)  be a weighted undirected graph.

A subgraph G’=(V,E’) of G is said to be a t-spanner
of G  iff δG’ (u,v) ≤ t δG (u,v) for every u,v ∈V.

Theorem: 

Every weighted undirected graph has a 
(2k−1) -spanner of size O(n1+1/k).  [ADDJS’93] 

Furthermore, such spanners can be constructed 
deterministically in linear time.  [BS’03] [RTZ’05]

The size-stretch trade-off is optimal if there are graphs
with Ω(n1+1/k) edges and girth 2k+2, as conjectured by 
Erdös and others.



A simple spanner construction algorithm
[Althöfer, Das, Dobkin, Joseph, Soares ‘93]

• Consider the edges of the graph in 
non-decreasing order of weight. 

• Add each edge to the spanner if it 
does not close a cycle of size at most 2k. 

• The resulting graph is a (2k−1)-spanner.

• The resulting graph has girth  ≥ 2k. Hence
the number of edges in it is at most n1+1/k.



If |cycle|≤2k, then red edge can be removed. 



Linear time spanner construction [BS’03]

• The algorithm is composed of k iterations.

• At each iteration some edges are added to 
the spanner and some edges and vertices are 
removed from the graph.

• At the end of the i-th iteration we have a 
collection of about n1−i/k trees of depth at 
most i that contain all the remaining 
vertices of the graph. 



Tree properties

• The edges of the trees are 
spanner edges.

• The weights of the edges 
along every leaf-root path are 
non-increasing.

• For every surviving edge (u,v) 
we have w(u,v) ≥ w(u,p(u)), 
where p(u) is the parent of u. 

i

w1

w3

w2

w4

w1 ≥ w2 ≥ w3

w4 ≥ w2



Notation

Ai – roots of trees of the i-th iteration
T(v) – the tree rooted at v  

T(v)

u

v

E(u,T(v)) – the edges connecting u and T(v).
e(u,T(v)) – the lightest edge from E(u,T(v)).
w(u,T(v)) – the weight of e(u,T(v)) (or  ∞). 



The i-th iteration
Each vertex v∈Ai-1 is added to Ai with probability n−1/k.

In the last iteration Ak ← ∅.

u

v1

Let v1,v2,… be the vertices of Ai-1 such that
w(u,T(v1)) ≤ w(u,T(v2)) ≤ …

v2 vr∈Ai

Let r=r(u) be the minimal index for which vr∈Ai.

If there is no such index, let r(u)= |Ai−1|.



The i-th iteration (cont.)

u

v1

For every vertex u that belongs 
to a tree whose root is in Ai-1−Ai:

v2

For every 1 ≤ j ≤ r :
Add e(u,T(vi)) to the spanner.
Remove E(u,T(vi)) from the graph

Remove edges that connect 
vertices in the same tree.

Remove vertices that have 
no remaining edges.

vr∈Ai



How many edges 
are added to the spanner?

u

v1 v2 vr∈Ai

E[r(u)] ≤ n1/k

Hence, the expected number of edges added to the 
spanner in each iteration is at most n1+1/k.



What is the stretch?

i−1

Let e be an edge deleted in 
the i-th iteration.

The spanner contains a 
path of at most 2(i−1)+1 

edges between the 
endpoints of e.

e
The edges of the path are 

not heavier than e

Hence, stretch ≤ 2k−1



Compact data
structure
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Approximate Distance Oracles (TZ’01)

O(1) query time
 stretch 2k−1

Stretch-Space tradeoff is 
essentially optimal!
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Approximate Distance Oracles [TZ’01]
A hierarchy of centers

A0←V ; Ak ←∅ 

Ai ←sample(Ai−1,n−1/k) 



Bunches

1 1( ) { | ( , ) ( , )}i i i
i

B v w A A w v A vδ δ+ +← ∈ − <U

A0 =
A1 =
A2 =

v

p1(v)

p2(v)



Lemma: E[|B(v)|] ≤ kn1/k

Proof: |B(v)∩Ai| is stochastically 

dominated by a geometric random 
variable with parameter p=n−1/k.



The data structure

Keep for every vertex v∈V:

• The centers p1(v), p2(v),…, pk-1(v)

• A hash table holding B(v)

For every w∈V, we can check, in

constant time, whether w∈B(v), 

and if so, what is δ(v,w).



Query answering algorithm

  Algorithm distk(u,v)

  w←u , i←0

  while w∉B(v)

  {   i ←i+1

      (u,v) ←(v,u)

       w ←pi(u)      }

  return δ(u,w)+ δ(w,v)



Query answering algorithm

u v

w1=p1(v)∈A1

w2=p2(u)∈A2

w3=p3(v)∈A3



u v

wi−1=pi−1(v)∈Ai−1

wi=pi(u)∈Ai

Analysis

∆

(i−1)∆
i∆i∆

(i+1)∆
Claim 1:

δ(u,wi) ≤ iΔ , i even

δ(v,wi) ≤ iΔ , i odd

Claim 2:

δ(u,wi) + δ(wi,v)
 ≤ (2i+1)Δ
≤ (2k−1)Δ



Where are the spanners?

Define clusters, the “duals” of bunches.

For every u∈V, put in the spanner a 
tree of shortest paths from u to all the 

vertices in the cluster of u.



Clusters A0 =
A1 =
A2 =

1 1( ) { | ( , ) ( , ) } ,i i iC w v V w v A v w A Aδ δ + +← ∈ < ∈ −
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Additive Spanners
Let G=(V,E)  be a unweighted undirected graph.

A subgraph G’=(V, E’) of G is said to be an additive t-spanner
 of G  iff δG’ (u,v) ≤ δG (u,v) +t for every u,v ∈V.

Theorem: Every unweighted undirected graph has 
an additive 2-spanner of size O(n3/2). [ACIM ’96] [DHZ ’96]

Theorem: Every unweighted undirected graph has 
an additive 6-spanner of size O(n4/3). [BKMP ’04]

Major open problem

Do all graphs have additive spanners with 
only O(n1+ε) edges, for every ε>0 ?



Spanners with sublinear surplus

Theorem: 

For every k>1, every undirected graph G=(V,E) 
on n vertices has a subgraph G’=(V,E’) with O(n1+1/k)
edges such that for every u,v∈V, if δG(u,v)=d, 

then δG’(u,v)=d+O(d1−1/(k−1)).

d d + O(d1−1/(k−1))

Extends and simplifies a result of Elkin and Peleg (2001)



All sorts of spanners
A subgraph G’=(V,E’) of G is said to be a functional
f-spanner if G  iff δG’ (u,v) ≤ f(δG (u,v)) for every u,v ∈V.

referencef(d)size

[EP ’01](1+ε)d + β(ε,δ)βn1+δ

[BKMP ’04]d + 6n4/3

[ACIM ’96] [DHZ ’96]d + 2n3/2

[TZ ’05]d + O(d 1−1/(k−1) ) n1+1/k

[ADDJS ’93](2k−1 )dn1+1/k



The construction of the 
approximate distance oracles, 
when applied to unweighted 

graphs, produces spanners with 
sublinear surplus!

We present a slightly modified 
construction with a slightly 

simpler analysis.



Balls

v

p1(v)

p2(v)

A0 =
A1 =
A2 =

1 1( ) { | ( , ) ( , )} ,i i iBall u v V u v u A u A Aδ δ + += ∈ < ∈ −
1 1[ ] ( ) { ( )} ,i i iBall u Ball u p u u A A+ += ∪ ∈ −



Spanners with sublinear surplus

For every u∈V, add to the spanner
a shortest paths tree of Ball[u].

Select a hierarchy of centers A0 ⊃A1⊃…⊃Ak−1.



The path-finding strategy

Let Δ be an integer parameter.

Suppose we are at u∈Ai and want to go to v.

If the first xi = Δi−Δi−1 edges of a shortest path 
from u to v are in the spanner, then use them.
Otherwise, head for the (i+1)-center ui+1 nearest to u.

u∈Ai v

ui+1∈Ai+1

xi

xi

► The distance to ui+1 is at most xi.  (As u’∉Ball(u).)

’u



The path-finding strategy

u∈Ai v

ui+1∈Ai+1

xi

xi

’u

We either reach v, or at least make 
xi = Δi−Δi−1 steps in the right direction.

Or, make at most xi = Δi−Δi−1 steps, possibly in a 
wrong direction, but reach a center of level i+1.

If i=k−1, we will be able to reach v.



The path-finding strategy

u0 v

xi−1

ui

x1

x0

xi−2

x
i  = Δ i−Δ i−1

Δi−1

After at most Δi steps:

either we reach v

or distance to v 

decreased by 
Δi −2Δi−1

’u



The path-finding strategy

Surplus

 2Δi−1 

Stretch

1

2
1

2 2

i

i i −

∆ = +
∆ − ∆ ∆ −

The surplus is incurred only once!

22
(1 )

2
'( , ) ( , ) 2 ku v u vδ δ −⋅

−
+

∆
∆+≤

After at most Δi steps:

either we reach v

or distance to v 

decreased by 
Δi −2Δi−1



Sublinear surplus

22
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