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All-Pairs Shortest Paths

APSP
algorithm
§ mn time

n’ space

n by n
distance
matrix

Input: A weighted undirected graph G=(V,E),

where |E|=m and |V|=n.

Output: An n X n distance matrix.




Approximate Shortest Paths

Let O(u,v) be the distance from u to v.

An estimated distance
Multiplicative is ofstretch ¢ iff

o (O(u,v )< <t-O(u,v

An estimated distance
is of surplus 7 iff

O(u,v) < < O(u,v) +t

Additive
error



Multiplicative and additive spanners

Let G=(V, E) be a weighted undirected graph
on n vertices. A subgraph G'=(V, E’) 1s a
t-spanner of G iff for every u,vL1}/ we have
O (u,v) < t O, (u,v).

Let G=(V, E£) be a unweighted undirected graph
on n vertices. A subgraph G =(V, E’) 1s an
additive 7-spanner of G iff for every u,vL1}) we have

BG,(M,V) = 6G(M,V) T L.



Approximate Distance Oracles
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1. All-pairs almost shortest paths (unweighted)

b. An O(n>?)-time surplus-2 algorithm (ACIM’96)
c. Additive 2-spanners with O(7°?) edges.
d. An O(n*?m'?)-time surplus-2 algorithm (DHZ’96)

2. Multiplicative spanners (weighted graphs)

b. (2k—1)-spanners with n'""* edges (ADDJS’93)
c. Linear time construction (BS’03)

3. Approximate distance oracles (weighted graphs)
b. Stretch=2k-1 query time=0(1) space=O(kn'"""*) (TZ’01)
5. Spanners with sublinear distance errors (unweighted)

b. Additive error O(d"* ™) with O(kn'* %) edges (TZ’05)



All-Pairs Shortest Paths

unweighted, undirected graphs
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O(n>?)-time surplus-2 algorithm
unweighted, undirected graphs

1) Add each vertex v to 4, independently, with O (n)
probability n 2. (Elements of 4 are “centers™.)

2) From every center v[ 14, find a tree of O(m|A |)
shortest paths from v and add its edges to £”. = (O(n°'?)

3) For every non-center v[IA4:
a) If v has aneighbor ul14, O
: m
then add the single edge (u,v) to £, ( )

b) Otherwise, add all the edges
incident to v to £ O(n|E ’

)

4) Solve the APSP problem on the — O(n5/2)
subgraph G'=(V, E").



Number of edges 1n E”

* The expected # of edges added to £’ 1n 2) 1s O(#n*?).
» The expected # of edges added to £’ 1n 3) 1s also O(n*?).

Consider a vertex v of degree d

If one of the neighbors of v 1s

placed in A4, then £’ will contain v’
only one edge incident on v. o o
Hence, the expected number of edges ‘

incident to v added to £ 1s at most

d(l_n—l/Z)d + 1 S nl/Z



The surplus-2 algorithm

Correctness — Case 1

Case 1: No vertex on a shortest path from u to v
has a neighboring center.

O—0 O0—O0—"0—"0——"C—=_ -0
u

v

All the edges on the path are in £

We find a shortest path from u to v.



The surplus-2 algorithm

Correctness — Case 2

Case 2: At least one vertex on a shortest path
from u to v has a neighboring center.

O(u,w)+1 o(w,v)+1

u V

We find a path from u to v of surplus at most 2



Additive 2-spanners

Every unweighted undirected graph
G=(V, E) on n vertices has a subgraph G =
(V, E’) with O(n*?) edges such that for

every u,v[1V we have O, (u,v) < 0. (u,v) + 2.



)
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3)

4)

O(n’”m'*)-time surplus-2 algorithm
unweighted, undirected graphs

Add each vertex v to 4, independently, with
probability (n/m)'?. (Elements of 4 are “centers™.)

From every center v[ 14, find distances to all other
vertices 1n the graph. (Do not add edges to £.)

For every non-center v[LIA:

a) If v has a neighbor ull4,
then add the single edge (u,v) to £

b) Otherwise, add all the edges incident to v to £
For every non-center vertex vl A:

a) Construct a set F(v)={ (v,w) | w14 } of weighted
edges. The weight of an edge (v,w) 1s d(w,v).

b) Find distances from v to all other vertices in the
weighted graph G’(v)=(V, E’ LF(v)).



O(n’?m'*)-time surplus-2 algorithm
Correctness — Case 2

Case 2: At least one vertex on a shortest path
from u to v has a neighboring center.

O(u,w)+1 W

1 W N
@/@uuul\/\/\/@

u w V

Consider the vertex with a neighboring center.

We find a path from u to v of surplus at most 2



All-Pairs Almost Shortest Paths
weighted undirected graphs

Time Reference
1 mn Dijkstra ’59
2 n32ml’2 Cohen-Zwick *97
7/3 n'’
3 n?

Some log factors 1gnores




Spanners

Given an arbitrary dense graph, can we
always find a relatively sparse subgraph that
approximates all distances fairly well?



SPANNETS [PU’89,PS89)

Let G=(V,E) be a weighted undirected graph.

A subgraph G'=(V,E’) of G is said to be a 7-spanner
of G iffo..(u,v) <to,(uv) for every u,v L1V.

Theorem:

Every weighted undirected graph has a
(2k—1)-spanner of size O(n'"*). [ADDJS 93]

Furthermore, such spanners can be constructed
deterministically in linear time. [BS’03] [RTZ’05]

The size-stretch trade-off 1s optimal 1f there are graphs
with Q(n'"F) edges and girth 2k+2, as conjectured by
Erdos and others.



A simple spanner construction algorithm
[ Althofer, Das, Dobkin, Joseph, Soares ‘93]

» Consider the edges of the graph 1n
non-decreasing order of weight.

* Add each edge to the spanner 1f it
does not close a cycle of size at most 2k.

* The resulting graph 1s a (2k—1)-spanner.

* The resulting graph has girth = 2%. Hence
the number of edges in 1t 1s at most n'*'%,




If [cycle|<2k, then red edge can be removed.



Linear time spanner construction [BS 03]

* The algorithm 1s composed of k iterations.

* At each iteration some edges are added to
the spanner and some edges and vertices are
removed from the graph.

At the end of the i-th iteration we have a

collection of about n!™* trees of depth at

most 7 that contain all the remaining
vertices of the graph.



Tree properties

* The edges of the trees are
spanner edges.

* The weights of the edges
along every leaf-root path are
non-increasing.

[

* For every surviving edge (u,v)
we have w(u,v) = w(u,p(u)),
where p(u) 1s the parent of u.




Notation

A, —roots of trees of the i-th 1teration
1(v) — the tree rooted at v

A/\/\A/\

E(u,T(v)) — the edges connecting u and 7(v).
u e(u,7(v)) — the lightest edge from E(u,7(v)).

w(u,T(v)) — the weight of e(u,7(v)) (or o0).




The i-th 1teration

Each vertex v[I4_, 1s added to A, with probability n~"*.

In the last iteration 4, — L.

ALAK

Letv,,v,,... be the vertices of 4., such that
w(u,T(v,)) < w(u,T(v,)) < ...

Let r=r(u) be the minimal index for which v [14..

[ there 1s no such index, let r(u)=|A4,_,|.



The i-th 1iteration (cont.)
v A,

v,

L \ S /] ] /
N el —— —
For every vertex u that belongs Remove edges that connect
to a tree whose rootisin A, —A: vertices 1n the same tree.

Forevery | <j<r:
Add e(u,T(v,)) to the spanner.
Remove E(u,7(v,)) from the graph

Remove vertices that have
no remaining edges.



How many edges
are added to the spanner?

E[r(u)] =n'™

Hence, the expected number of edges added to the
spanner in each iteration is at most n'*'%,



What 1s the stretch?

Let e be an edge deleted 1n
the i-th 1teration.

The spanner contains a

path of at most 2(i—1)+1 i—1

edges between the
endpoints of e.

The edges of the path are '
not heavier than e e\/

Hence, stretch < 2k—1



Approximate Distance Oracles (TZ’01)

“\(??g% n by n
Q\@ distance
matrix

Weighted }N&’ Compact data
undirected graph 4 }”b structure
g€
%

Stretch-Space tradeoffis € 4y

Y

O(1) query time 0 (u,(
stretch 2i-1



Approximate Distance Oracles [TZ’01]

A,«V;A, L
A —sample(4,_,,n7*)



Bunches

NIFNEN
|

B(v) <« |J {wOA4. -4, |0(w,v)<d(4,,,v)}




Lemma: E[|B(v)|] < kn'*

Proof: |B(v)n A 1s stochastically

dominated by a geometric random
variable with parameter p=n=""*,



The data structure

Keep for every vertex vLIV:

 The centers p,(v), p,(V)yeees P, (V)
* A hash table holding B(v)

For every wllV, we can check, in
, Whether wl1B(v),
and if so, what is O(v,w).




Query answering algorithm

Algorithm dist, (u,v)
Weu,i0
while wllB(v)
{ i —it]
(u,v) < (v,u)
wo—p(u) }

| return O(,w)+ 004,y




Query answering algorithm

wy=p,(v)4,




Analysis

w=p(u)A,
Claim 1:

6(u,wl.) <IiA o i €ven
o(v,w,) <IA, iodd

w,_=p,,(v)UA,_,

5O

Claim 2: A

6(u ,Wi) + 6(”’,’9")

< (2it1)A
<(k-1)A u

(i-1)A




Where are the spanners?

Define clusters, the “duals” of bunches.

For every u

V, put 1n the spanner a

tree of shortest paths from u to all the
vertices 1n the cluster of wu.



Clusters

C(w) « {VDV|5(W,V)<5(AI-+1,V)} , wlld, -4,



Bunches and clusters

wlUB(v) < vUC(w)

C(W) < {V V ‘5(W,V)<5(Ai+1,V)} ’
if W Ai _Ai+1

B(V) « U {W Ai _Ai+1 ‘5(W,V)< J(Ai+19v)}



Additive Spanners

Let G=(V,E) be a unweighted undirected graph.

A subgraph G'=(V, E’) of G 1s said to be an additive 7-spanner
of G iffo..(u,v) <o, (u,v) +t for every u,v LIV.

Theorem: Every unweighted undirected graph has
an additive 2-spanner of size O(n??). [ACIM °96] [DHZ *96]

Theorem: Every unweighted undirected graph has
an additive 6-spanner of size O(n*?). [BKIMP *04]

Major open problem

Do all graphs have additive spanners with
only O(n'*¢) edges, for every €>0 ?




Spanners with sublinear surplus

Theorem:

For every i>1, every undirected graph G=(V,E)
on n vertices has a subgraph G’=(V,E”) with O(n'"¥)

edges such that for every u, vV, 1f 0 .(u,v)=d,
then o ..(1,v)=d+O(d'""*™D),

d - d_|_0(d1—1/(k—1))

Extends and simplifies a result of Elkin and Peleg (2001)



All sorts of spanners

A subgraph G’'=(V,E’) of G 1s said to be a functional
f-spanner if G iff o, (u,v) <f(0. (u,v)) for every u,v L1V.

S1Z€ 1(d) reference
n'*lk (2k-1)d [ADDIJS 93]

n3? d+2 [ACIM *96] [DHZ *96]
743 d+6 [BKMP *04]
pn'*e (I+e)d + B(g,0) [EP *01]

pltlk d + O(d '7V&D) [TZ °05]




The construction of the
approximate distance oracles,
when applied to unweighted
graphs, produces spanners with
sublinear surplus!

We present a slightly modified
construction with a slightly
simpler analysis.



Ball(u) ={v0V [0(u,v)<0(u,4,)} , ulA -4,
Ball[u] = Ball(u) O {p.,,(u)} , ullA - A,



Spanners with sublinear surplus

Select a hierarchy of centers 4, L14,[]...[14, .

For every ul1V, add to the spanner
a shortest paths tree of Ball|u].



The path-finding strategy

Suppose we are at u[ 14, and want to go to v.
Let A be an integer parameter.
I the first x, = A’=A’""" edges of a shortest path

from u to v are in the spanner, then use them.
Otherwise, head for the (i+1)-center u,, nearest to u.

» The distance to u,,, 1s at most x. (As u’[IBall(u).)

u., 14

i+1

i+1




The path-finding strategy

We either reach v, or at least make
x,= A'=A""! steps 1n the right direction.
Or, make at most x,= A'=A""! steps, possibly in a
wrong direction, but reach a center of level i+1.

If i=k—1, we will be able to reach v.

u., 14

i+1 i+1

u DAZ. u %




The path-finding strategy

After at most A’ steps:

either we reach v

T« or distance to v

decreased by
AT =2 A7




The path-finding strategy

After at most A’ steps:

either we reach v = Surplus
2Ai—1
or distance to v Stretch
—> AN - 2
decreased by A oA T Ay
AP =2 AP

The surplus 1s incurred only once!

0'(u,v) < (1+ Y[D(u,v) + 207

A-2



Sublinear surplus

2
D(u,v) + 207
A_2) (u,v)

o(u,v)=d , A= @z’”(k_l) +2E

|

O'u,v) < d+0(d"™+

O0'(u,v) < (I+



