
Approximating
distances in graphs

Uri Zwick
Tel Aviv University

The 6th Max-Planck Advanced Course on the
Foundations of Computer Science (ADFOCS)

APSP
algorithm

All-Pairs Shortest Paths

n by n

distance
matrix

Input: A weighted undirected graph G=(V,E),
where |E|=m and |V|=n.

Output: An n × n distance matrix.

mn time
n2 space

 An estimated distanceδ’(u,v)
 is ofstretch t iff

δ(u,v)≤ δ’(u,v) ≤ t · δ(u,v(

 An estimated distance δ’(u,v)
is of surplus t iff

δ(u,v) ≤ δ’(u,v) ≤ δ(u,v) + t

Approximate Shortest Paths

Let δ(u,v) be the distance from u to v.

Multiplicative
error

Additive
error

Multiplicative and additive spanners

Let G=(V, E) be a weighted undirected graph
on n vertices. A subgraph G’=(V, E’) is a

t-spanner of G iff for every u,v∈V we have

δG’(u,v) ≤ t δG(u,v).

Let G=(V, E) be a unweighted undirected graph
on n vertices. A subgraph G’=(V, E’) is an

additive t-spanner of G iff for every u,v∈V we have

δG’(u,v) ≤ δG(u,v) + t.

Compact data
structure

APS
P

alg
ori

thm

mn 1/k time
n 1+1/k space

Approximate Distance Oracles

O(1) query time
 stretch 2k−1

Stretch-Space tradeoff is
essentially optimal!

n by n

distance
matrix

mn t
ime

n
2 sp

ace

Weighted
undirected graph

u,v δ’(u,v(

1. All-pairs almost shortest paths (unweighted)

b. An O(n5/2)-time surplus-2 algorithm (ACIM’96)
c. Additive 2-spanners with O(n3/2) edges.
d. An O(n3/2m1/2)-time surplus-2 algorithm (DHZ’96)

2. Multiplicative spanners (weighted graphs)

b. (2k−1)-spanners with n1+1/k edges (ADDJS’93)
c. Linear time construction (BS’03)

3. Approximate distance oracles (weighted graphs)

b. Stretch=2k−1 query time=O(1) space=O(kn1+1/k) (TZ’01)

5. Spanners with sublinear distance errors (unweighted)

b. Additive error O(d1/(k−1)) with O(kn1+1/k) edges (TZ’05)

All-Pairs Almost Shortest Paths
unweighted, undirected graphs

folklore mn0
AuthorsTimeSurplus

”n2+1/(3k−4)2(k−1)

”n2−1/km1/k2(k−1)

Aingworth-Chekuri-
Indyk-Motwani ’96n5/22

” n7/32

Dor-Halperin-Zwick ’96 n3/2m1/22

1) Add each vertex v to A, independently, with
probability n−1/2. (Elements of A are “centers”.)

2) From every center v∈A, find a tree of
shortest paths from v and add its edges to E’.

3) For every non-center v∉A:

a) If v has a neighbor u∈A,
then add the single edge (u,v) to E’.

b) Otherwise, add all the edges
incident to v to E’.

4) Solve the APSP problem on the
subgraph G’=(V, E’).

O(n5/2)-time surplus-2 algorithm
unweighted, undirected graphs

O(n)

O(m|A|)
= O(n5/2)

O(m)

O(n|E’|)
= O(n5/2)

Number of edges in E’
• The expected # of edges added to E’ in 2) is O(n3/2).

• The expected # of edges added to E’ in 3) is also O(n3/2).

Consider a vertex v of degree d

Hence, the expected number of edges
incident to v added to E’ is at most

d(1−n−1/2)d + 1 ≤ n1/2

If one of the neighbors of v is
placed in A, then E’ will contain

only one edge incident on v.
v

The surplus-2 algorithm
Correctness – Case 1

Case 1: No vertex on a shortest path from u to v
 has a neighboring center.

All the edges on the path are in E’.

We find a shortest path from u to v.

u v

The surplus-2 algorithm
Correctness – Case 2

Case 2: At least one vertex on a shortest path
 from u to v has a neighboring center.

We find a path from u to v of surplus at most 2

u vw

 δ(u,w)+1 δ(w,v)+1
w’

Additive 2-spanners

Every unweighted undirected graph
G=(V, E) on n vertices has a subgraph G’=

(V, E’) with O(n3/2) edges such that for
every u,v∈V we have δG’(u,v) ≤ δG(u,v) + 2.

1) Add each vertex v to A, independently, with
probability (n/m)1/2. (Elements of A are “centers”.)

2) From every center v∈A, find distances to all other
vertices in the graph. (Do not add edges to E’.)

3) For every non-center v∉A:

a) If v has a neighbor u∈A,
then add the single edge (u,v) to E’.

b) Otherwise, add all the edges incident to v to E’.

4) For every non-center vertex v∉A:

a) Construct a set F(v)={ (v,w) | w∈A } of weighted
edges. The weight of an edge (v,w) is δ(w,v).

b) Find distances from v to all other vertices in the
weighted graph G’(v)=(V, E’ ∪F(v)).

O(n3/2m1/2)-time surplus-2 algorithm
unweighted, undirected graphs

O(n3/2m1/2)-time surplus-2 algorithm
Correctness – Case 2

Case 2: At least one vertex on a shortest path
 from u to v has a neighboring center.

Consider the last vertex with a neighboring center.

We find a path from u to v of surplus at most 2

u vw

 δ(u,w)+1
w’

All-Pairs Almost Shortest Paths
weighted undirected graphs

Dijkstra ’59mn1

ReferenceTime Stretch

”n23

”n7/37/3

Cohen-Zwick ’97n3/2m1/22

Some log factors ignores

Spanners

Given an arbitrary dense graph, can we
always find a relatively sparse subgraph that

approximates all distances fairly well?

Spanners [PU’89,PS’89]

Let G=(V,E) be a weighted undirected graph.

A subgraph G’=(V,E’) of G is said to be a t-spanner
of G iff δG’ (u,v) ≤ t δG (u,v) for every u,v ∈V.

Theorem:

Every weighted undirected graph has a
(2k−1) -spanner of size O(n1+1/k). [ADDJS’93]

Furthermore, such spanners can be constructed
deterministically in linear time. [BS’03] [RTZ’05]

The size-stretch trade-off is optimal if there are graphs
with Ω(n1+1/k) edges and girth 2k+2, as conjectured by
Erdös and others.

A simple spanner construction algorithm
[Althöfer, Das, Dobkin, Joseph, Soares ‘93]

• Consider the edges of the graph in
non-decreasing order of weight.

• Add each edge to the spanner if it
does not close a cycle of size at most 2k.

• The resulting graph is a (2k−1)-spanner.

• The resulting graph has girth ≥ 2k. Hence
the number of edges in it is at most n1+1/k.

If |cycle|≤2k, then red edge can be removed.

Linear time spanner construction [BS’03]

• The algorithm is composed of k iterations.

• At each iteration some edges are added to
the spanner and some edges and vertices are
removed from the graph.

• At the end of the i-th iteration we have a
collection of about n1−i/k trees of depth at
most i that contain all the remaining
vertices of the graph.

Tree properties

• The edges of the trees are
spanner edges.

• The weights of the edges
along every leaf-root path are
non-increasing.

• For every surviving edge (u,v)
we have w(u,v) ≥ w(u,p(u)),
where p(u) is the parent of u.

i

w1

w3

w2

w4

w1 ≥ w2 ≥ w3

w4 ≥ w2

Notation

Ai – roots of trees of the i-th iteration
T(v) – the tree rooted at v

T(v)

u

v

E(u,T(v)) – the edges connecting u and T(v).
e(u,T(v)) – the lightest edge from E(u,T(v)).
w(u,T(v)) – the weight of e(u,T(v)) (or ∞).

The i-th iteration
Each vertex v∈Ai-1 is added to Ai with probability n−1/k.

In the last iteration Ak ← ∅.

u

v1

Let v1,v2,… be the vertices of Ai-1 such that
w(u,T(v1)) ≤ w(u,T(v2)) ≤ …

v2 vr∈Ai

Let r=r(u) be the minimal index for which vr∈Ai.

If there is no such index, let r(u)= |Ai−1|.

The i-th iteration (cont.)

u

v1

For every vertex u that belongs
to a tree whose root is in Ai-1−Ai:

v2

For every 1 ≤ j ≤ r :
Add e(u,T(vi)) to the spanner.
Remove E(u,T(vi)) from the graph

Remove edges that connect
vertices in the same tree.

Remove vertices that have
no remaining edges.

vr∈Ai

How many edges
are added to the spanner?

u

v1 v2 vr∈Ai

E[r(u)] ≤ n1/k

Hence, the expected number of edges added to the
spanner in each iteration is at most n1+1/k.

What is the stretch?

i−1

Let e be an edge deleted in
the i-th iteration.

The spanner contains a
path of at most 2(i−1)+1

edges between the
endpoints of e.

e
The edges of the path are

not heavier than e

Hence, stretch ≤ 2k−1

Compact data
structure

APS
P

alg
ori

thm

mn 1/k time
n 1+1/k space

Approximate Distance Oracles (TZ’01)

O(1) query time
 stretch 2k−1

Stretch-Space tradeoff is
essentially optimal!

n by n

distance
matrix

mn t
ime

n
2 sp

ace

Weighted
undirected graph

u,v δ’(u,v(

Approximate Distance Oracles [TZ’01]
A hierarchy of centers

A0←V ; Ak ←∅

Ai ←sample(Ai−1,n−1/k)

Bunches

1 1() { | (,) (,)}i i i
i

B v w A A w v A vδ δ+ +← ∈ − <U

A0 =
A1 =
A2 =

v

p1(v)

p2(v)

Lemma: E[|B(v)|] ≤ kn1/k

Proof: |B(v)∩Ai| is stochastically

dominated by a geometric random
variable with parameter p=n−1/k.

The data structure

Keep for every vertex v∈V:

• The centers p1(v), p2(v),…, pk-1(v)

• A hash table holding B(v)

For every w∈V, we can check, in

constant time, whether w∈B(v),

and if so, what is δ(v,w).

Query answering algorithm

 Algorithm distk(u,v)

 w←u , i←0

 while w∉B(v)

 { i ←i+1

 (u,v) ←(v,u)

 w ←pi(u) }

 return δ(u,w)+ δ(w,v)

Query answering algorithm

u v

w1=p1(v)∈A1

w2=p2(u)∈A2

w3=p3(v)∈A3

u v

wi−1=pi−1(v)∈Ai−1

wi=pi(u)∈Ai

Analysis

∆

(i−1)∆
i∆i∆

(i+1)∆
Claim 1:

δ(u,wi) ≤ iΔ , i even

δ(v,wi) ≤ iΔ , i odd

Claim 2:

δ(u,wi) + δ(wi,v)
 ≤ (2i+1)Δ
≤ (2k−1)Δ

Where are the spanners?

Define clusters, the “duals” of bunches.

For every u∈V, put in the spanner a
tree of shortest paths from u to all the

vertices in the cluster of u.

Clusters A0 =
A1 =
A2 =

1 1() { | (,) (,) } ,i i iC w v V w v A v w A Aδ δ + +← ∈ < ∈ −

w

BunchesBunches andand clustersclusters

1

1

1

1

() { | (,) (,)} ,

() { | (,) (

() (

, }

)

)i i

i

i
i

i i

C w v V w v A v

if w

w

B v w A A w v A

B

A A

v v C w

v

δ

δ δ

δ

+ +

+

+

∈ ⇔ ∈

← ∈ −

∈ <

<

←
∈ −

U

Additive Spanners
Let G=(V,E) be a unweighted undirected graph.

A subgraph G’=(V, E’) of G is said to be an additive t-spanner
 of G iff δG’ (u,v) ≤ δG (u,v) +t for every u,v ∈V.

Theorem: Every unweighted undirected graph has
an additive 2-spanner of size O(n3/2). [ACIM ’96] [DHZ ’96]

Theorem: Every unweighted undirected graph has
an additive 6-spanner of size O(n4/3). [BKMP ’04]

Major open problem

Do all graphs have additive spanners with
only O(n1+ε) edges, for every ε>0 ?

Spanners with sublinear surplus

Theorem:

For every k>1, every undirected graph G=(V,E)
on n vertices has a subgraph G’=(V,E’) with O(n1+1/k)
edges such that for every u,v∈V, if δG(u,v)=d,

then δG’(u,v)=d+O(d1−1/(k−1)).

d d + O(d1−1/(k−1))

Extends and simplifies a result of Elkin and Peleg (2001)

All sorts of spanners
A subgraph G’=(V,E’) of G is said to be a functional
f-spanner if G iff δG’ (u,v) ≤ f(δG (u,v)) for every u,v ∈V.

referencef(d)size

[EP ’01](1+ε)d + β(ε,δ)βn1+δ

[BKMP ’04]d + 6n4/3

[ACIM ’96] [DHZ ’96]d + 2n3/2

[TZ ’05]d + O(d 1−1/(k−1)) n1+1/k

[ADDJS ’93](2k−1)dn1+1/k

The construction of the
approximate distance oracles,
when applied to unweighted

graphs, produces spanners with
sublinear surplus!

We present a slightly modified
construction with a slightly

simpler analysis.

Balls

v

p1(v)

p2(v)

A0 =
A1 =
A2 =

1 1() { | (,) (,)} ,i i iBall u v V u v u A u A Aδ δ + += ∈ < ∈ −
1 1[] () { ()} ,i i iBall u Ball u p u u A A+ += ∪ ∈ −

Spanners with sublinear surplus

For every u∈V, add to the spanner
a shortest paths tree of Ball[u].

Select a hierarchy of centers A0 ⊃A1⊃…⊃Ak−1.

The path-finding strategy

Let Δ be an integer parameter.

Suppose we are at u∈Ai and want to go to v.

If the first xi = Δi−Δi−1 edges of a shortest path
from u to v are in the spanner, then use them.
Otherwise, head for the (i+1)-center ui+1 nearest to u.

u∈Ai v

ui+1∈Ai+1

xi

xi

► The distance to ui+1 is at most xi. (As u’∉Ball(u).)

’u

The path-finding strategy

u∈Ai v

ui+1∈Ai+1

xi

xi

’u

We either reach v, or at least make
xi = Δi−Δi−1 steps in the right direction.

Or, make at most xi = Δi−Δi−1 steps, possibly in a
wrong direction, but reach a center of level i+1.

If i=k−1, we will be able to reach v.

The path-finding strategy

u0 v

xi−1

ui

x1

x0

xi−2

x
i = Δ i−Δ i−1

Δi−1

After at most Δi steps:

either we reach v

or distance to v

decreased by
Δi −2Δi−1

’u

The path-finding strategy

Surplus

 2Δi−1

Stretch

1

2
1

2 2

i

i i −

∆ = +
∆ − ∆ ∆ −

The surplus is incurred only once!

22
(1)

2
'(,) (,) 2 ku v u vδ δ −⋅

−
+

∆
∆+≤

After at most Δi steps:

either we reach v

or distance to v

decreased by
Δi −2Δi−1

Sublinear surplus

22
(1)

2
'(,) (,) 2 ku v u vδ δ −⋅

−
+

∆
∆+≤

1/(1)(,) , 2ku v d dδ − = ∆ = + 

1
11'(,) ()kd O du vδ −−+≤

