Topological Data Analysis - I

Afra Zomorodian
Department of Computer Science
Dartmouth College
September 3, 2007
Acquisition

- Vision: Images (2D)
- GIS: Terrains (3D)
- Graphics: Surfaces (3D)
- Medicine: MRI (Volumetric 3D)
Simulation

- **Folding @ Home**
 - ~1M CPUs, ~200K active
 - ~200 Tflops sustained performance
 - [Kasson et al. ‘06]
Abstract Spaces

- Spaces with motion
- Each point in abstract space is a snapshot

- Robotics: Configuration spaces (nD)

- Biology: Conformation spaces (nD)
A Thought Exercise

- Example: 1×10^6 points in 100 dimensions
- How to compress?
 - Gzip?
 - Zip?
 - Better?
- Arbitrary compression not possible
- Knowledge: Points are on a circle
 - Fit a circle, parameterize it
 - Store angles ($\approx 100x$ compression)
 - Run Gzip
- Insight: Knowledge of structure allows compression
- Topology deals with structure
Computational Topology

• My view

• Input: Point Cloud Data
 – Massive
 – Discrete
 – Nonuniformly Sampled
 – Noisy
 – Embedded in \mathbb{R}^d, sometimes $d >> 3$

• Mission: What is its shape?
Plan

• Today:
 ☻ Motivation
 – Topology
 – Simplicial Complexes
 – Invariants
 – Homology
 – Algebraic Complexes

• Tomorrow
 – Geometric Complexes
 – Persistent Homology
 – The Persistence Algorithm
 – Application to Natural Images
Outline

😊 Motivation

• Topology
 – Topological Space
 – Manifolds
 – Erlanger Programm
 – Classification
• Simplicial Complexes
• Invariants
• Homology
• Algebraic Complexes
Topological Space

- **X**: set of points

- **Open set**: subset of X

- **Topology**: set of open sets $T \subseteq 2^X$ such that
 1. If $S_1, S_2 \in T$, then $S_1 \cap S_2 \in T$
 2. If $\{S_j \mid j \in T\}$, then $\bigcup_{j \in J} S_j \in T$
 3. $\emptyset, X \in T$

- $\mathbb{X} = (X, T)$ is a topological space

- Note: different topologies possible

- **Metric space**: open sets defined by metric
Homeomorphism

- Topological spaces X, Y
- Map $f : X \rightarrow Y$
- f is continuous, 1-1, onto (bijective)
- f^{-1} also continuous

- f is a homeomorphism
- X is homeomorphic to Y
- $X \approx Y$
- X and Y have same topological type
Examples

- Closed interval
- Circle S^1
- Figure 8
- Annulus
- Ball B^2
- Sphere S^2
- Cube

- interval $\not\approx S^1$
- $S^1 \not\approx$ Figure 8
- $S^1 \not\approx$ Annulus
- Annulus $\not\approx B^2$
- $S^2 \approx$ Cube

Captures
- boundary
- junctions
- holes
- dimension

- Continuous \Rightarrow no gluing
- Continuous$^{-1}$ \Rightarrow no tearing
- Stretching allowed!
Erlanger Programm 1872

- Christian Felix Klein (1849-1925)
- Unifying definition:
 1. Transform space in a fixed way
 2. Observe properties that do not change

- Transformations
 - Rigid motions: translations & rotations
 - Homeomorphism: stretch, but do not tear or sew

- Rigid motions \Rightarrow Euclidean Geometry
- Homeomorphisms \Rightarrow Topology
Geometry vs. Topology

• Euclidean geometry
 – What does a space look like?
 – Quantitative
 – Local
 – Low-level
 – Fine

• Topology
 – How is a space connected?
 – Qualitative
 – Global
 – High-level
 – Coarse
The Homeomorphism Problem

- **Given**: topological spaces X and Y
- **Question**: Are they homeomorphic?

- Much coarser than geometry
 - Cannot capture singular points (edges, corners)
 - Cannot capture size
 - Classification system
Manifolds

- Given X
- Every point $x \in X$ has neighborhood $\approx \mathbb{R}^d$
- (X is separable and Hausdorff)
- X is a d-manifold (d-dimensional)
- X has some points with nbhd $\approx H^d = \{ x \in \mathbb{R}^d | x_1 \geq 0 \}$
- X is a d-manifold with boundary
- Boundary ∂X are those points
Compact 2-Manifolds

- $d = 1$: one manifold
 - S^1

- $d = 2$: orientable
 - S^2
 - Torus
 - Double Torus
 - Triple Torus
 - \cdots

- $d = 2$: non-orientable
 - Projective Plane \mathbb{P}^2
 - Klein Bottle
 - \cdots
Manifold Classification

- Compact manifolds
 - closed
 - bounded
- $d = 1$: Easy
- $d = 2$: Done [Late 1800’s]
- $d \geq 4$: Undecidable [Markov 1958]
 - Dehn’s Word Problem 1912
 - [Adyan 1955]
- $d = 3$: Very hard
 - The Poincaré Conjecture 1904
 - Thurston’s Geometrization Program 1982: piece-wise uniform geometry
 - Ricci flow with surgery [Perelman ’03]
Outline

😊 Motivation

😊 Topology
 • Simplicial Complexes
 – Geometric Definition
 – Combinatorial Definition
 • Invariants
 • Homology
 • Algebraic Complexes
Simplices

- **Simplex**: convex hull of affinely independent points
 - 0-simplex: vertex
 - 1-simplex: edge
 - 2-simplex: triangle
 - 3-simplex: tetrahedron
 - k-simplex: k + 1 points

- **Face** of simplex σ: defined by subset of vertices
- **Simplicial complex**: glue simplices along shared faces
Simplicial Complex

- Every face of a simplex in a complex is in the complex
- Non-empty intersection of two simplices is a face of each of them
Abstract Simplicial Complex

• Set of sets \mathcal{S} such that if $A \in \mathcal{S}$, so is every subset of A

• $\mathcal{S} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c\}, \{b, c\}, \{d\}, \{c, d\}, \{e\}, \{d, e\}, \{f\}, \{e, f\}, \{g\}, \{d, g\}, \{e, g\}, \{d, e, g\}, \{h\}, \{d, h\}, \{e, h\}, \{g, h\}, \{d, g, h\}, \{d, e, h\}, \{e, g, h\}, \{d, e, g, h\}, \{i\}, \{h, i\}, \{j\}, \{i, j\}, \{k\}, \{i, k\}, \{j, k\}, \{i, j, k\}, \{l\}, \{k, l\}, \{m\}, \{a, m\}, \{b, m\}, \{l, m\}\}

Abstract Simplicial Complex

Geometric Visualization
Vertex Scheme

Geometric
Outline

😊 Motivation
😊 Topology
😊 Simplicial Complexes

• Invariants
 – Definition
 – The Euler Characteristic
 – Homotopy

• Homology

• Algebraic Complexes
Invariants

• The Homeomorphism problem is hard
• How about a partial answer?

• **Topological invariant**: a map f that assigns the *same* object to spaces of the *same* topological type

 $X \approx Y \Rightarrow f(X) = f(Y)$

 $f(X) \neq f(Y) \Rightarrow X \not\approx Y$ (contrapositive)

 $f(X) = f(Y) \Rightarrow$ nothing

• **Spectrum**

 – trivial: $f(X) = \text{one object, for all } X$

 – complete: $f(X) = f(Y) \Rightarrow X \approx Y$
The Euler Characteristic

- Given: (abstract) simplicial complex K
- s_i: # of i-simplices in K
- Euler characteristic $\xi(K)$:

$$\xi(K) = \sum_{i=0}^{\dim K} (-1)^i s_i$$

$\xi($torus$) = 9 - 27 + 18 = 0$
The Euler Characteristic

- Invariant, so complex does not matter
- $\xi(\text{sphere}) = 2$
 - $\xi(\text{tetrahedron}) = 4 - 6 + 4 = 2$
 - $\xi(\text{cube}) = 8 - 12 + 6 = 2$
 - $\xi(\text{disk } \cup \text{ point}) = 1 - 0 + 1 = 2$

- $\xi(\text{g-torus}) = 2 - 2g$, genus g
- $\xi(\text{gP}^2) = 2 - g$
Homotopy

- Given: Family of maps \(f_t : X \to Y, \ t \in [0,1] \)
- Define \(F : X \times [0,1] \to Y, \ F(x,t) = f_t(x) \)

![Diagram showing homotopy]

- If \(F \) is continuous, \(f_t \) is a **homotopy**
- \(f_0, f_1 : X \to Y \) are **homotopic** via \(f_t \)
- \(f_0 \approx f_1 \)
Homotopy Equivalence

- Given: $f: X \rightarrow Y$
- Suppose $\exists g: Y \rightarrow X$ such that
 - $f \circ g \simeq 1_Y$
 - $g \circ f \simeq 1_X$
- f is a homotopy equivalence
- X and Y are homotopy equivalent $X \simeq Y$
- Comparison
 - Homeomorphism: $g \circ f = 1_X$, $f \circ g = 1_Y$
 - Homotopy: $g \circ f \simeq 1_X$, $f \circ g \simeq 1_Y$
- (Theorem) $X \simeq Y \Rightarrow X \simeq Y$
- Contractible: homotopy equivalent to a point
Outline

😊 Motivation
😊 Topology
😊 Simplicial Complexes
😊 Invariants
 • Homology
 – Intuition
 – Homology Groups
 – Computation
 – Euler-Poincaré
 • Algebraic Complexes
Intuition
Overview

- **Algebraic topology**: algebraic images of topological spaces
- **Homology**
 - How cells of dimension n attach to cells of dimension $n - 1$
 - Images are groups, modules, and vector spaces
- **Simplicial homology**: cells are simplices

Plan:
- *chains*: like paths, maybe disconnected
- *cycles*: like loops, but a loop can have multiple components
- *boundary*: a cycle that bounds
Chains

• Given: Simplicial complex K

• k-chain:
 – list of k-simplices in K
 – formal sum $\sum_i n_i \sigma_i$, where $n_i \in \{0, 1\}$ and $\sigma_i \in K$

• Field \mathbb{Z}_2
 – $0 + 0 = 0$
 – $0 + 1 = 1 + 0 = 1$
 – $1 + 1 = 0$

• Chain vector space C_k: vector space spanned by k-simplices in K

• rank $C_k = s_k$, number of k-simplices in K
Boundary Operator

- $\partial_k : C_k \rightarrow C_{k-1}$
- homomorphism (linear)
- $\sigma = [v_0, ..., v_k]$
- $\partial_k \sigma = \sum_i [v_0, ..., v_i', ..., v_k]$, where v_i' indicates that v_i is deleted from the sequence
- $\partial_1 ab = a + b$
- $\partial_2 abc = ab + bc + ac$
- $\partial_1 \partial_2 abc = a + b + b + c + a + c = 0$
- (Theorem) $\partial_{k-1} \partial_k = 0$ for all k
Cycles

- Let c be a k-chain
- If c has no boundary, it is a k-cycle
- $\partial_k c = 0$, so $c \in \ker \partial_k$
- $Z_k = \ker \partial_k$ is a subspace of C_k

- $\partial_1(ab + bc + ac) = a + b + b + c + a + c = 0$
 so 1-chain $ab + bc + ac$ is a 1-cycle
Boundaries

- Let \(b \) be a \(k \)-chain
- If \(b \) bounds something, it is a \(k \)-boundary
- \(\exists d \in C_{k+1} \) such that \(b = \partial_{k+1} d \)
- \(B_k = \text{im} \partial_{k+1} \) is a subspace of \(C_k \)

- \(\partial_2(abc) = ab + bc + ac \), so \(ab + bc + ac \) is a 1-boundary

- \(\partial_k b = \partial_k \partial_{k+1} d = 0 \), so \(b \) is also a \(k \)-cycle!
- All boundaries are cycles
- \(B_k \subseteq Z_k \subseteq C_k \)
Homology Group

- The **kth homology vector space** (group) is
 \[H_k = \frac{Z_k}{B_k} = \ker \partial_k / \text{im} \partial_{k+1} \]
- **(Theorem)** \(X \cong Y \Rightarrow H_k(X) \cong H_k(Y) \)
- If \(z_1 = z_2 + b \), where \(b \in B_k \), \(z_1 \) and \(z_2 \) are homologous,
 \(z_1 \sim z_2 \)
Betti Numbers

- H_k is a vector space
- kth Betti number $\beta_k = \text{rank } H_k$

 $= \text{rank } Z_k - \text{rank } B_k$

- Enrico Betti (1823 – 1892)
- Geometric interpretation in \mathbb{R}^3
 - β_0 is number of components
 - β_1 is rank of a basis for tunnels
 - β_2 is number of voids

1, 2, 1
Computation

- ∂_k is linear, so it has a matrix M_k in terms of bases for C_k and C_{k-1}
- $Z_k = \ker \partial_k$, so compute $\dim(\text{null}(M_k))$
- $B_k = \text{im} \partial_{k+1}$, so compute $\dim(\text{range}(M_{k+1}))$

- Two Gaussian eliminations, so $O(m^3)$, $m = |K|$
- Same running time for any field

- Over \mathbb{Z}, reduction algorithm and matrix entries can get large
- Common source of misunderstanding
Euler-Poincaré

• Recall $\xi(K) = \sum_i (-1)^i s_i$
• $s_i = \# k$-simplices in K
• $s_i = \text{rank } C_i$
• Rewrite: $\xi(K) = \sum_i (-1)^i \text{rank } C_i$

• (Theorem) $\xi(K) = \sum_i (-1)^i \text{rank } H_i = \sum_i (-1)^i \beta_i$

• Sphere: $2 = 1 - 0 + 1$
• Torus: $0 = 1 - 2 + 1$
Outline

😊 Motivation
😊 Topology
😊 Simplicial Complexes
😊 Invariants
😊 Homology

• Algebraic Complexes
 – Coverings
 – The Nerve
 – Čech complex
 – Vietoris-Rips Complex
Topology of Points
Topology of Points

- Topological space X
- Underlying space

- Given: set of sample points M from X

- Question: How can we recover the topology of X from M?

- Problem: M has no interesting topology.
Open Covering
Open Covering

- **Cover** $\mathcal{U} = \{U_i\}_{i \in I}$
 - U_i, open
 - $M \subseteq \bigcup_{i \in I} U_i$

- **Idea**: The cover approximates the underlying space \mathbb{X}

- **Question**: What is the topology of \mathcal{U}?

- **Problem**: \mathcal{U} is an infinite point set
The Nerve
The Nerve

- X: topological space
- $\mathcal{U} = \bigcup_{i \in I} U_i$: open cover of X

- The nerve N of \mathcal{U} is
 - $\emptyset \in N$
 - If $\bigcap_{j \in J} U_j \neq \emptyset$ for $J \subseteq I$, then $J \in N$

- Dual structure
- (Abstract) Simplicial complex
The Nerve Lemma

- **(Lemma [Leray])**
 If sets in the cover are contractible, and their finite unions are contractible, then $N \simeq \mathcal{U}$.

- *The cover should not introduce or eliminate topological structure*

- Idea: Use “nice” sets for covering
 - contractible
 - convex

- Dual (abstract) simplicial complex will be our representation
Cech Complex
Cech Complex

- **Set**: Ball of radius ε
 \[B_\varepsilon(x) = \{ y \mid d(x, y) < \varepsilon \} \]
- **Cover**: B_ε at every point in M
- **Cech complex** is nerve of the union of ε-balls

\[C_\varepsilon(M) = \left\{ \text{conv } T \mid T \subseteq M, \bigcup_{m \in T} B_\varepsilon(m) \neq \emptyset \right\} \]

- Cover satisfies Nerve Lemma
- Eduard Cech (1893 – 1960)
Vietoris-Rips Complex
Vietoris-Rips Complex

1. Construct ε-graph
2. Expand by add a simplex whenever all its faces are in the complex
 • Note: We expand by dimension

$$V_{c}(M) = \{\text{conv } T \mid T \subseteq M, d(x, y) < \varepsilon, \forall x, y \in T\}$$

• $V_{2\varepsilon}(M) \supseteq C_{\varepsilon}(M)$
• Not homotopic to union of balls
• Leopold Vietoris (1891 – 2002)
• Eliyahu Rips (1948 –)
Plan

😊 Today:
 – Motivation
 – Topology
 – Simplicial Complexes
 – Invariants
 – Homology
 – Algebraic Complexes

• Tomorrow
 – Geometric Complexes
 – Persistent Homology
 – The Persistence Algorithm
 – Application to Natural Images