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Metrics

A metric space M = (V, d) consists of a set of points V and a function d : V × V → R≥0 satisfying the
properties:

• (Symmetry) d(x, y) = d(y, x) for all x, y ∈ V .
• (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ V .

The definition above is often called a semi-metric, and a metric space is also required to satisfy the property
that d(x, y) = 0 ⇐⇒ x = y. However, we will blur the distinction between semi-metrics and metrics.

Diameter. The diameter of a metric is maxx,y∈V d(x, y).

Ball. The ball B(x, r) := {y ∈ V | d(x, y) ≤ r. The open ball B◦(x, r) := {y ∈ V | d(x, y) < r.

r-net. A set of points N ⊆ V which is:

• (r-packing) d(x, y) ≥ r for all x, y ∈ N , and
• (r-covering) for x ∈ V , there exists y ∈ N such that d(x, y) ≤ r.

One can build an r-net using a simple greedy algorithm.

Distortion

Distortion. Given metrics M = (V, d) and M′ = (V ′, d′), and a map f : M→ M′,

• the expansion of f is maxx,y∈V
d′(f(x),f(y))

d(x,y) .

• the contraction of f is maxx,y∈V
d(x,y)

d′(f(x),f(y)) .
• the distortion of f is

expansion × contraction = max
x,y∈V

d′(f(x), f(y))
d(x, y)

× max
x,y∈V

d(x, y)
d′(f(x), f(y))

.

If distortion(f) ≤ D, we write this as M ↪
D−→ M′. When we write M1 ↪

≥D−−→ M2, this is a lower bound
statement: every map f : V → V ′ has distortion at least D.

This naturally extends to the case when G is a family of metrics or graphs, then M ↪
D−→ G implies that

there exists M′ ∈ G such that M ↪
D−→ M′; similarly, M ↪

≥D−−→ G implies that for all M′ ∈ G, it holds that
M ↪

D−→ M′. If M ↪
1−→ M′, then we say that M isometrically embeds into M′; or just that M embeds into M′.

Metric Families

`p Spaces. For 1 ≤ p < ∞, the metric space `p consists of all infinite sequences x = (xi)i≤0 in RN for
which

∑
i |xi|p is finite; the distance is given by |x − y|p := (

∑
i |xi − yi|p)1/p. The space `∞ is the set of

bounded infinite sequences x, with the distance |x− y|∞ = maxi(|xi − yi|). Often we will deal with `mp for
some finite m, when these sequences x just represent points in m-dimensional space Rm; the distances are
defined in the same way as above.
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We say a metric M is an `p-metric (or it belongs to `p) if there is an isometric embedding of M into `p.

Tree-Metric. A metric M = (V, d) is a tree metric if there exists a tree T = (V ∪S,E) with edge-weights,
such that the shortest-path distance in T according to these edge-weights (denoted by dT ) agrees with d on
all pairs in V × V—in other words, dT (x, y) = d(x, y) for all x, y ∈ V .

Given a class G of graphs, one can define a G-metric in the same way as above. E.g., we will often talk about
planar graph metrics.

k-HST. A k-Hierarchical well-Separated Tree is rooted (weighted) tree with the following properties: (a) it
is a balanced tree—all the leaves are at the same depth, (b) given any node x in the tree, all the children
edges of x have the same length lx, and the length of the edge from x to its parent node px (if any) has
length k × lx. Hence, if the length of the root’s children edges is L, and the height of the tree is h, then the
edge lengths on any root-leaf path are (L,L/k, L/k2, . . . , L/kh−1).

root r

L

L/k

L/k2

Figure 1: A k-HST with height 3.

Distributions over trees. Given a metric space M = (V, δ) on |V | = n points, let T be the set of trees
T = (V,ET ) on the with vertex set V with edge lengths ` : ET → R such that each edge e = {u, v} ∈ ET
has length `({u, v}) ≥ δ(u, v)—i.e., trees whose distances dominate those in M.

A probability distribution D on this set of “dominating” trees T is said to α-approximate the metric M if
for every u, v ∈ V ,

ET←D[dT (u, v)] ≤ α · δ(u, v). (1)

I.e., for any two points, the expected distance in a random tree (drawn from this distribution) is at most α
times what it was in (V, δ).

Other Useful Definitions

Padded Decomposition. A metric M = (V, d) is said to admit an α-padded decomposition if there
exists a randomized procedure that takes as input a parameter ∆ > 0, and outputs a (random) partition
V1, V2, . . . , Vk of the set V with the following properties:

• each set Vi has diameter at most ∆,
• for any ρ > 0, the probability Pr[B(x, ρ) split by partitioning] ≤ α · ρ∆ .

Note that this probability is taken over the randomness of the padded decomposition procedure. (The ball
B(x, ρ) is split by the partitioning if it is not contained within any single “cluster” Vi.)
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Tree Cover. Given a metric M = (V, d), an (α, k)-tree cover is a collection of trees T = {T1, T2, . . . , Tk}
such that for any pair of nodes x, y ∈ V , there exists a tree Tj ∈ T with

d(x, y) ≤ dTj (x, y) ≤ α · d(x, y).

Neighborhood Cover. Given a metric M = (V, d), an (α, r, t)-neigborhood cover is a collection S =
{S1, S2, . . .} of subsets Si ⊆ V of points such that (a) for each point x ∈ V , there is a subset Sj that contains
the r-ball B(x, r) = {x′ ∈ V | d(x, x′) ≤ r}, (b) each point x ∈ V is contained in at most t of the subsets in
S, and (c) each subset Si has diameter at most O(αr).

Graphs

Outerplanar Graphs. These are planar graph such that there exists a face containing all the vertices;
often this face is drawn as the outer face, hence the name. Equivalently, these are the graphs that exclude
K2,3 and K4 as minors.

Figure 2: An outerplanar graph.

Series-Parallel Graphs. An (s, t)-series-parallel graph G is either (a) a single edge (s, t), or (b) the
graph obtained by taking an (s1, t1)-series-parallel graph and an (s2, t2)-series-parallel graph and identifying
s1 = s2 = s and t1 = t2 = t (this is called a parallel composition, or (c) the graph obtained by taking an
(s1, t1)-series-parallel graph and an (s2, t2)-series-parallel graph and identifying t1 = s2 and setting s1 = s
and t2 = t (this is called a series composition. A series-parallel graph G is a graph that contains vertices s
and t such that G is an (s, t)-series-parallel graph.

Equivalently, take any planar graph that excludes K4 as a minor: each 2-node-connected component of this
is a series-parallel graph.
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Figure 3: Parallel and Series compositions.

Expander Graphs. A (d, α)-expander graph on n vertices is a d-regular graph Gn = (Vn, En) such that
for every set S ⊆ Vn with |S| ≤ n/2, the number of edges in ∂S (i.e., with one endpoint in S and the other
in V \ S is at least α|S|.
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We are interested in families of graphs (for infinitely many values of n) where both the degree d and the
“expansion parameter” α are constants (independent of the size n). In this case, we just refer to the graphs
as constant-degree expander graphs.

One can show (by a probabilistic construction) that there exist constant degree expander graphs; explicit
constructions are known as well. For more details, see the survey by Linial, Hoory and Wigderson.

Diamond Graphs. Let the graph G1 be a single edge, and for each i ≥ 1, let Gi be obtained by taking
Gi−1 and replacing each edge by an (s, t)-series-parallel graphs consisting of two paths of length 2 (see figure
below).
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