Metrics

A metric space $\mathrm{M}=(V, d)$ consists of a set of points V and a function $d: V \times V \rightarrow \mathbb{R}_{\geq 0}$ satisfying the properties:

- (Symmetry) $d(x, y)=d(y, x)$ for all $x, y \in V$.
- (Triangle inequality) $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in V$.

The definition above is often called a semi-metric, and a metric space is also required to satisfy the property that $d(x, y)=0 \Longleftrightarrow x=y$. However, we will blur the distinction between semi-metrics and metrics.

Diameter. The diameter of a metric is $\max _{x, y \in V} d(x, y)$.
Ball. The ball $\mathbf{B}(x, r):=\left\{y \in V \mid d(x, y) \leq r\right.$. The open ball $\mathbf{B}^{\circ}(x, r):=\{y \in V \mid d(x, y)<r$.
r-net. A set of points $N \subseteq V$ which is:

- (r-packing) $d(x, y) \geq r$ for all $x, y \in N$, and
- (r-covering) for $x \in V$, there exists $y \in N$ such that $d(x, y) \leq r$.

One can build an r-net using a simple greedy algorithm.

Distortion

Distortion. Given metrics $\mathrm{M}=(V, d)$ and $\mathrm{M}^{\prime}=\left(V^{\prime}, d^{\prime}\right)$, and a map $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$,

- the expansion of f is $\max _{x, y \in V} \frac{d^{\prime}(f(x), f(y))}{d(x, y)}$.
- the contraction of f is $\max _{x, y \in V} \frac{d(x, y)}{d^{\prime}(f(x), f(y))}$.
- the distortion of f is

$$
\text { expansion } \times \text { contraction }=\max _{x, y \in V} \frac{d^{\prime}(f(x), f(y))}{d(x, y)} \times \max _{x, y \in V} \frac{d(x, y)}{d^{\prime}(f(x), f(y))}
$$

If distortion $(f) \leq D$, we write this as $\mathrm{M} \quad \stackrel{D}{\longrightarrow} \mathrm{M}^{\prime}$. When we write $\mathrm{M}_{1} \xrightarrow{\geq D} \mathrm{M}_{2}$, this is a lower bound statement: every map $f: V \rightarrow V^{\prime}$ has distortion at least D.
This naturally extends to the case when \mathcal{G} is a family of metrics or graphs, then $\mathrm{M} \xrightarrow{D} \mathcal{G}$ implies that there exists $\mathrm{M}^{\prime} \in \mathcal{G}$ such that $\mathrm{M} \xrightarrow{D} \mathrm{M}^{\prime}$; similarly, $\mathrm{M} \xrightarrow{\geq D} \mathcal{G}$ implies that for all $\mathrm{M}^{\prime} \in \mathcal{G}$, it holds that $\mathrm{M} \stackrel{D}{\longrightarrow} \mathrm{M}^{\prime}$. If $\mathrm{M} \stackrel{1}{\hookrightarrow} \mathrm{M}^{\prime}$, then we say that M isometrically embeds into M^{\prime}; or just that M embeds into M^{\prime}.

Metric Families

ℓ_{p} Spaces. For $1 \leq p<\infty$, the metric space ℓ_{p} consists of all infinite sequences $x=\left(x_{i}\right)_{i \leq 0}$ in $\mathbb{R}^{\mathbb{N}}$ for which $\sum_{i}\left|x_{i}\right|^{p}$ is finite; the distance is given by $|x-y|_{p}:=\left(\sum_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$. The space ℓ_{∞} is the set of bounded infinite sequences x, with the distance $|x-y|_{\infty}=\max _{i}\left(\left|x_{i}-y_{i}\right|\right)$. Often we will deal with ℓ_{p}^{m} for some finite m, when these sequences x just represent points in m-dimensional space \mathbb{R}^{m}; the distances are defined in the same way as above.

We say a metric M is an ℓ_{p}-metric (or it belongs to ℓ_{p}) if there is an isometric embedding of M into ℓ_{p}.
Tree-Metric. A metric $\mathrm{M}=(V, d)$ is a tree metric if there exists a tree $T=(V \cup S, E)$ with edge-weights, such that the shortest-path distance in T according to these edge-weights (denoted by d_{T}) agrees with d on all pairs in $V \times V$-in other words, $d_{T}(x, y)=d(x, y)$ for all $x, y \in V$.
Given a class \mathcal{G} of graphs, one can define a \mathcal{G}-metric in the same way as above. E.g., we will often talk about planar graph metrics.
k-HST. A k-Hierarchical well-Separated Tree is rooted (weighted) tree with the following properties: (a) it is a balanced tree - all the leaves are at the same depth, (b) given any node x in the tree, all the children edges of x have the same length l_{x}, and the length of the edge from x to its parent node p_{x} (if any) has length $k \times l_{x}$. Hence, if the length of the root's children edges is L, and the height of the tree is h, then the edge lengths on any root-leaf path are $\left(L, L / k, L / k^{2}, \ldots, L / k^{h-1}\right)$.

Figure 1: A k-HST with height 3.

Distributions over trees. Given a metric space $\mathrm{M}=(V, \delta)$ on $|V|=n$ points, let \mathcal{T} be the set of trees $T=\left(V, E_{T}\right)$ on the with vertex set V with edge lengths $\ell: E_{T} \rightarrow \mathbb{R}$ such that each edge $e=\{u, v\} \in E_{T}$ has length $\ell(\{u, v\}) \geq \delta(u, v)$-i.e., trees whose distances dominate those in M .

A probability distribution \mathcal{D} on this set of "dominating" trees \mathcal{T} is said to α-approximate the metric \mathcal{M} if for every $u, v \in V$,

$$
\begin{equation*}
\mathbf{E}_{T \leftarrow \mathcal{D}}\left[d_{T}(u, v)\right] \leq \alpha \cdot \delta(u, v) \tag{1}
\end{equation*}
$$

I.e., for any two points, the expected distance in a random tree (drawn from this distribution) is at most α times what it was in (V, δ).

Other Useful Definitions

Padded Decomposition. A metric $\mathrm{M}=(V, d)$ is said to admit an α-padded decomposition if there exists a randomized procedure that takes as input a parameter $\Delta>0$, and outputs a (random) partition $V_{1}, V_{2}, \ldots, V_{k}$ of the set V with the following properties:

- each set V_{i} has diameter at most Δ,
- for any $\rho>0$, the probability $\operatorname{Pr}[\mathbf{B}(x, \rho)$ split by partitioning $] \leq \alpha \cdot \frac{\rho}{\Delta}$.

Note that this probability is taken over the randomness of the padded decomposition procedure. (The ball $\mathbf{B}(x, \rho)$ is split by the partitioning if it is not contained within any single "cluster" V_{i}.)

Tree Cover. Given a metric $\mathrm{M}=(V, d)$, an (α, k)-tree cover is a collection of trees $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{k}\right\}$ such that for any pair of nodes $x, y \in V$, there exists a tree $T_{j} \in \mathcal{T}$ with

$$
d(x, y) \leq d_{T_{j}}(x, y) \leq \alpha \cdot d(x, y)
$$

Neighborhood Cover. Given a metric $\mathrm{M}=(V, d)$, an (α, r, t)-neigborhood cover is a collection $\mathcal{S}=$ $\left\{S_{1}, S_{2}, \ldots\right\}$ of subsets $S_{i} \subseteq V$ of points such that (a) for each point $x \in V$, there is a subset S_{j} that contains the r-ball $B(x, r)=\left\{x^{\prime} \in V \mid d\left(x, x^{\prime}\right) \leq r\right\}$, (b) each point $x \in V$ is contained in at most t of the subsets in \mathcal{S}, and (c) each subset S_{i} has diameter at most $O(\alpha r)$.

Graphs

Outerplanar Graphs. These are planar graph such that there exists a face containing all the vertices; often this face is drawn as the outer face, hence the name. Equivalently, these are the graphs that exclude $K_{2,3}$ and K_{4} as minors.

Figure 2: An outerplanar graph.

Series-Parallel Graphs. An (s, t)-series-parallel graph G is either (a) a single edge (s, t), or (b) the graph obtained by taking an (s_{1}, t_{1})-series-parallel graph and an $\left(s_{2}, t_{2}\right)$-series-parallel graph and identifying $s_{1}=s_{2}=s$ and $t_{1}=t_{2}=t$ (this is called a parallel composition, or (c) the graph obtained by taking an $\left(s_{1}, t_{1}\right)$-series-parallel graph and an $\left(s_{2}, t_{2}\right)$-series-parallel graph and identifying $t_{1}=s_{2}$ and setting $s_{1}=s$ and $t_{2}=t$ (this is called a series composition. A series-parallel graph G is a graph that contains vertices s and t such that G is an (s, t)-series-parallel graph.

Equivalently, take any planar graph that excludes K_{4} as a minor: each 2-node-connected component of this is a series-parallel graph.

Figure 3: Parallel and Series compositions.

Expander Graphs. A (d, α)-expander graph on n vertices is a d-regular graph $G_{n}=\left(V_{n}, E_{n}\right)$ such that for every set $S \subseteq V_{n}$ with $|S| \leq n / 2$, the number of edges in ∂S (i.e., with one endpoint in S and the other in $V \backslash S$ is at least $\alpha|S|$.

We are interested in families of graphs (for infinitely many values of n) where both the degree d and the "expansion parameter" α are constants (independent of the size n). In this case, we just refer to the graphs as constant-degree expander graphs.
One can show (by a probabilistic construction) that there exist constant degree expander graphs; explicit constructions are known as well. For more details, see the survey by Linial, Hoory and Wigderson.

Diamond Graphs. Let the graph G_{1} be a single edge, and for each $i \geq 1$, let G_{i} be obtained by taking G_{i-1} and replacing each edge by an (s, t)-series-parallel graphs consisting of two paths of length 2 (see figure below).

