Cost-Sharing mechanisms for Network Design

Stefano Leonardi

Sapienza Universitá di Roma

ADFOCS 2008, August 18 - 22, MPI Saarbrücken

Talk Outline

Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Part I Introduction to cost-sharing mechanisms

Part II The Facility location problem

Part III The Steiner forest problem

Part IV Novel Linear Programming Relaxation for Steiner forest

Part V Lower bounds for cross-monotonic cost-sharing methods

Part VI Summary and conclusions

• Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Cost-Sharing Mechanisms

Talk Outline

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

The ingredients:

- A service provider.
- A set *U* of potential users (agents, customers).
- Each user $j \in U$ has a (private) utility u_j (the price j is willing to pay to receive the service).
- A cost-function c: c(Q) is the cost for servicing a set $Q \subseteq U$. c(Q) is usually given by the solution to an optimization problem.

Talk Outline

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
 Evample: Multicast
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

The ingredients:

- A service provider.
- A set U of potential users (agents, customers).
- Each user $j \in U$ has a (private) utility u_j (the price j is willing to pay to receive the service).
- A cost-function c: c(Q) is the cost for servicing a set $Q \subseteq U$. c(Q) is usually given by the solution to an optimization problem.

Cost-Sharing Mechanism:

- **Receive bids** b_j from all users $j \in U$.
- Select recipients $Q \subseteq U$ using bids.
- Distribute service cost c(Q) among users in Q: Determine payment p_j for each $j \in Q$.

Example: Multicast Transmission

• Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms

Example: Multicast

Transmission

- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

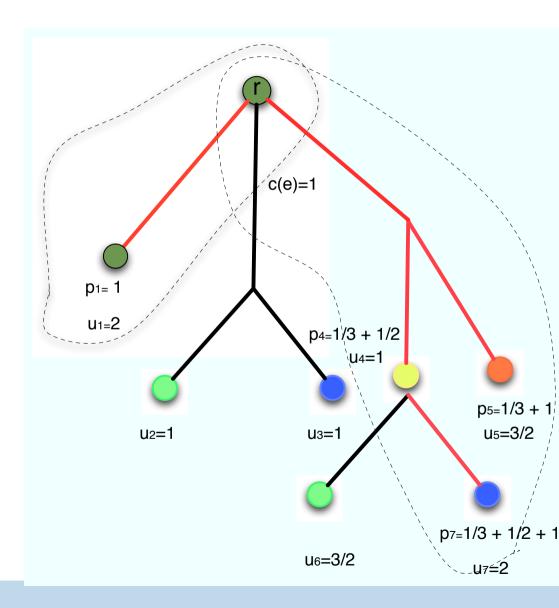
Facility location

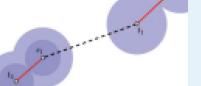
Steiner Forests

Steiner Forest CS-Mechanism

Shapley cost shares

- Select a subset Q and a tree T spanning Q
- Share the cost of every edge of T evenly between the players served by the edge
- All players in Q should bid more than the individual cost-share





Talk Outline

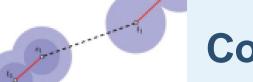
- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Benefit of user j is $u_j - p_j$ if $j \in Q$, and 0 otherwise.



Talk Outline

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

Example: Multicast

Transmission

Metric Facility location

LP formulation

- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism

Example: Multicast
 Transmission

- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Benefit of user j is u_j - p_j if j ∈ Q, and 0 otherwise.
Users may lie about their utilities to increase benefit.

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

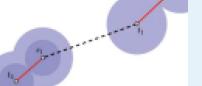
Steiner Forest CS-Mechanism

Benefit of user j is $u_j - p_j$ if $j \in Q$, and 0 otherwise.

Users may lie about their utilities to increase benefit.

Objectives:

- Strategyproofness: Dominant strategy for each user is to bid true utility.
- Group-Strategyproofness: Same holds even if users collaborate. No side payments between users.
- Cost Recovery or Budget Balance: $\sum_{j \in Q} p_j \ge c(Q)$.
- **Competitiveness:** $\sum_{j \in Q} p_j \leq \operatorname{opt}_Q$.



Talk Outline

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

• Example: Multicast

Transmission

Metric Facility location

LP formulation

- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism

Example: Multicast
 Transmission

- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Finding such cost-shares and a cost-function is hard if underlying problem is hard.

• Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast

Transmission

- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Finding such cost-shares and a cost-function is hard if underlying problem is hard.
- Finding such cost-shares may be impossible if we want to ensure strategyproofness (later in this talk)

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Finding such cost-shares and a cost-function is hard if underlying problem is hard.
- Finding such cost-shares may be impossible if we want to ensure strategyproofness (later in this talk)
- Relax budget balance condition: β -budget balance: $\frac{1}{\beta}c(Q) \leq \sum_{j \in Q} p_j \leq \text{opt}_Q, \quad \beta \geq 1$

Talk Outline

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

• Example: Multicast

Transmission

Metric Facility location

LP formulation

- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location

Proof of strategyproofness

 The mechanism is not group-strategyproof

 A different set of cost shares is needed

Cross-Monotonicity

Moulin–Shenker Mechanism

Example: Multicast
 Transmission

- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Primal-dual approximation algorithms construct a feasible dual together with an integral solution to the problem.

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Primal-dual approximation algorithms construct a feasible dual together with an integral solution to the problem.
- Approximation guarantee obtained by relating the cost of the integral solution to a feasible dual.

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Primal-dual approximation algorithms construct a feasible dual together with an integral solution to the problem.
- Approximation guarantee obtained by relating the cost of the integral solution to a feasible dual.
- Dual variables often have a natural interpretation as costs to be distributed between players.

• Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Primal-dual approximation algorithms construct a feasible dual together with an integral solution to the problem.
- Approximation guarantee obtained by relating the cost of the integral solution to a feasible dual.
- Dual variables often have a natural interpretation as costs to be distributed between players.
- Weak duality implies competitiveness.

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

- Primal-dual approximation algorithms construct a feasible dual together with an integral solution to the problem.
- Approximation guarantee obtained by relating the cost of the integral solution to a feasible dual.
- Dual variables often have a natural interpretation as costs to be distributed between players.
- Weak duality implies competitiveness.
- Approximation ratio β implies β -budget balance.

Metric Facility location

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Input:

- undirected graph G = (V, E)
- non-negative edge costs $c: E \to \mathbb{R}^+$
- set of facilities $F \subseteq V$
- facility *i* has facility opening cost f_i
- set of demand points $D \subseteq V$
- c_{ij}: cost of connecting demand point *j* to facility *i*.
 Connection cost satisfy triangle inequality
- Goal: Compute
- set $F' \subseteq F$ of opened facilities; and
- function $\phi: \mathcal{D} \to \mathcal{F}'$ assigning demand points to opened facilities that minimizes

$$\sum_{i \in F'} f_i + \sum_{j \in \mathcal{D}} c_{\phi(j)j}$$

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast Transmission

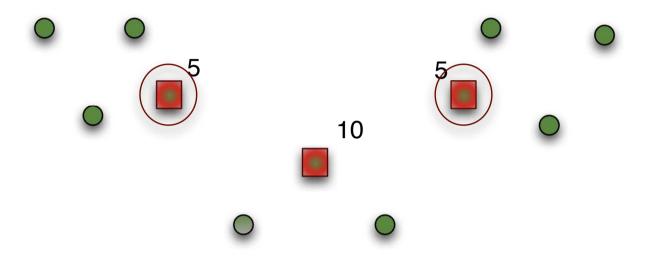
• Metric Facility location

- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism



Two facilities of cost 5 are openend

LP formulation

• Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location

LP formulation

- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

min	$\sum_{i \in F, j \in D} c$	$_{ij}x_{ij}$	$f + \sum_{i \in F} f_i y_i$	
s.t.	$\sum_{i \in F} x_{ij}$	\geq	1	$j \in D$
	$y_i - x_{ij}$	\geq	0	$i \in F, j \in D$
	x_{ij}	\in	$\{0,1\}$	$i \in F, j \in D$
	y_i	\in	$\{0,1\}$	$i \in F$

• $y_i = 1$ if facility *i* is opened;

• $x_{ij} = 1$ if demand j connected to facility i.

LP relaxation:

• Talk Outline

Cost-Sharing Mechanisms						
 Cost-Sharing Mechanisms 						
Example: Multicast						
Transmission						
 Metric Facility location 						
LP formulation						
 A 3-approximation algorithm 						
A 3-approximation algorithm						
Example of execution of the						
algorithm						
Proof of 3 approximation.						
 Strategyproof mechanism for 						
facility location						
 Proof of strategyproofness 						
The mechanism is not						
group-strategyproof						
 A different set of cost shares 						
is needed						
Cross-Monotonicity						
 Moulin–Shenker Mechanism 						
Example: Multicast						

Transmission • Example: Multicast Transmission

• Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

min	$\sum_{i \in F, j \in D} c_i$		$+\sum_{i\in\mathcal{F}} f$	$f_i y_i$		
s.t.	$\sum_{i \in F} x_{ij}$	\geq	1		$j \in$	D
	$y_i - x_{ij}$ x_{ij}	\geq	0		$i \in$	$F, j \in D$ $F, j \in D$
	-	\geq			$i \in$	F
DualProg	ram : max	$j \in L$)			
	s.t.		$\sum eta_{ij}$			$i \in F, j \in D$ $i \in F$
		уe		\geq	0	$j \in D$
			eta_{ij}	\geq	0	$i \in F, j \in D$

Stefano Leonardi, August 18, 2008

Cost Sharing Mechanisms for Network Design - p. 12/75

A 3-approximation algorithm

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation

• A 3-approximation algorithm

- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast
 Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

At time 0, set all $\alpha_j = 0$ and $\beta_{ij} = 0$ and declare all demands unconnected.

While there is an unconnected demand:

- **Raise uniformly all** α_j 's of unconnected demands
- If $\alpha_j = c_{ij}$, declare demand *j* tight with facility *i*
- For a tight constraint ij, raise both α_j and β_{ij}
- If $\sum_{i} \beta_{ij} = f_i$ at time t_i , declare:
 - Facility *i* temporarily opened at time t_i ;
- All unconnected demands *j* that are tight with *i* connected;
 [Jain and Vazirani, 1999][Mettu and Plaxton, 2000]

A 3-approximation algorithm

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm

A 3-approximation algorithm

- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Opening facilities:

Demand points contribute to more permanently opened facilities. Not enough money for all of them.

- Facility *i* temporarily opened at time t_i ;
- Declare facility *i* permanently opened if there is no permanently opened facility within distance $2t_i$.

Open all permanently opened facilities.

Connect each demand to the nearest opened facility.

Example of execution of the algorithm

• Talk Outline

Cost-Sharing Mechanisms

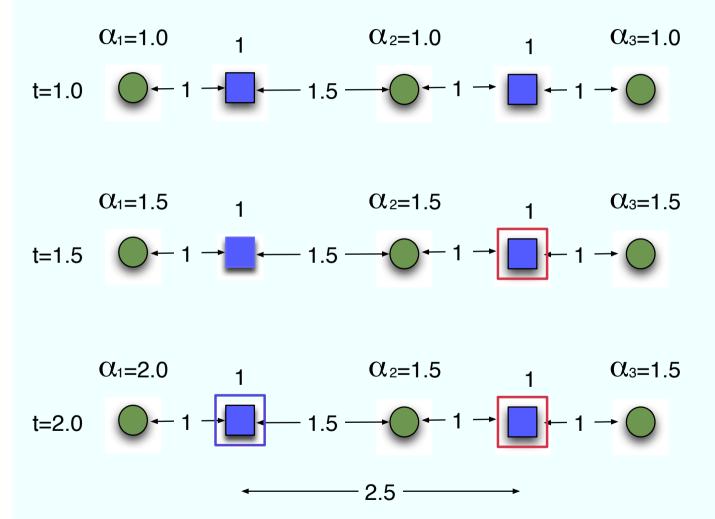
- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm

• Example of execution of the algorithm

- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests



Proof of 3 approximation.

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm

• Proof of 3 approximation.

- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Demands connected to opened facilities

- $\alpha_j = c_{ij} + \beta_{ij}$ for demands connected to opened facility *i*.
- α_j pays for connection cost c_{ij} and contribute with β_{ij} to f_i .
- Since other opened facilities are at distance $> t_i$, α_j does not pay for opening any other facility.

Demands connected to temporarily opened facilities

■ Demand *j* connected to temporarily opened facility *i*. There exists an opened facility *i'* with $c_{ii'} \leq 2t_i$.

Since $c_{ji} \leq \alpha_j$ and $t_i \leq \alpha_j$, $c_{ji'} \leq c_{ji} + c_{ii'} \leq 3\alpha_j$

Strategyproof mechanism for facility location

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast
 Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- If some city's cost share goes beyond its bid, then discard the city from all further considerations.
- If for some closed facility i, the total offer it gets is equal to the opening cost, then the facility i is opened, and every city j that has a non-zero offer to i is connected to i.
- If some unconnected city j's cost share is equal to its connection cost to an already opened facility i, then connect city j to facility i.

[Devanur, Mihail, Vazirani, 2003]

Proof of strategyproofness

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location

Proof of strategyproofness

- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Truthfulness follows from bid independence:

- Lowering the bid might result in early discard: payoff=0
- Raising the bid might result in paying more than the bid: payoff<0</p>

Primal dual algorithms that monotonically increase dual variables often result in truthful cost-sharing mechanism.

Excercise: Derive a truthful mechanism for set cover.

The mechanism is not group-strategyproof

Talk Outline

- Cost-Sharing Mechanisms
- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness

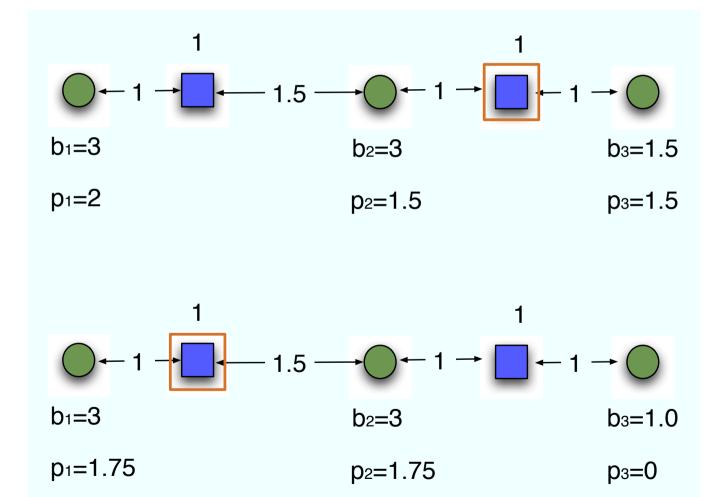
• The mechanism is not

group-strategyproof

- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests



A different set of cost shares is needed

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Needs a more equitable notion of cost-sharing

- Intuitively, The cost share of all other players should increase if one player leaves the game
- This would prevent coalitions to manipulate the game by pushing some of the members out of the game
- Observe that the only players of the coalitions that will misreport utilities are those with 0 payoff!
- We do not allow side payments, i.e., transfer utility between members of the coalition

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Cost-Sharing Method:

- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Cost-Sharing Method:

- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:

• Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

- Moulin–Shenker Mechanism
- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Cost-Sharing Method:

- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:

 $\forall Q' \subseteq Q, \ \forall j \in Q' : \quad \xi_{Q'}(j) \ge \xi_Q(j).$

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission

 Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Cost-Sharing Method:

- Given: Set $Q \subseteq U$ of users.
- Compute: Cost-shares $\xi_Q(j)$ for each $j \in Q$ such that competitiveness and β -budget balance hold.

 ξ is cross-monotonic if each individual cost-share does not increase as additional players join the game:

 $\forall Q' \subseteq Q, \ \forall j \in Q' : \quad \xi_{Q'}(j) \ge \xi_Q(j).$

Theorem [Moulin, Shenker '97]: The Moulin–Shenker Mechanism is group-strategyproof, and satisfies cost recovery and competitiveness.

Moulin–Shenker Mechanism

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

Moulin–Shenker Mechanism

- Example: Multicast
 Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Moulin–Shenker mechanism: Use cross-monotonic cost-sharing method to obtain group-strategyproof mechanisms.

Moulin–Shenker Mechanism

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity

Moulin–Shenker Mechanism

 Example: Multicast Transmission

- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Moulin–Shenker mechanism: Use cross-monotonic cost-sharing method to obtain group-strategyproof mechanisms.

Moulin-Shenker Mechanism:

- 1. Initialize: $Q \leftarrow U$.
- 2. If for each user $j \in Q$: $\xi_Q(j) \leq b_j$ then stop.
- 3. Otherwise, remove from Q all users with $\xi_Q(j) > b_j$ and repeat.

Moulin–Shenker Mechanism

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed

Cross-Monotonicity

Moulin–Shenker Mechanism

 Example: Multicast Transmission

- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Designing a cost-sharing mechanism that is group-strategyproof, satisfies competitiveness and (approximate) budget balance.

 \Downarrow reduces to

Designing a cross-monotonic cost-sharing method ξ that satisfies competitiveness and (approximate) budget balance.

Example: Multicast Transmission

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast
- Transmission • Example: Multicast
- Transmission
- Example: Multicast Transmission

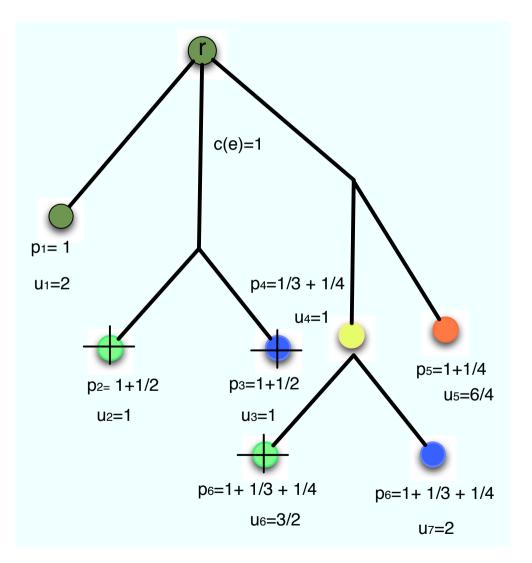
Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Moulin Mechanism for Shapley Cost Shares

- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley is budget-balance, i.e. recovers the whole cost



Example: Multicast Transmission

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission

Example: Multicast

- Transmission
- Example: Multicast
 Transmission

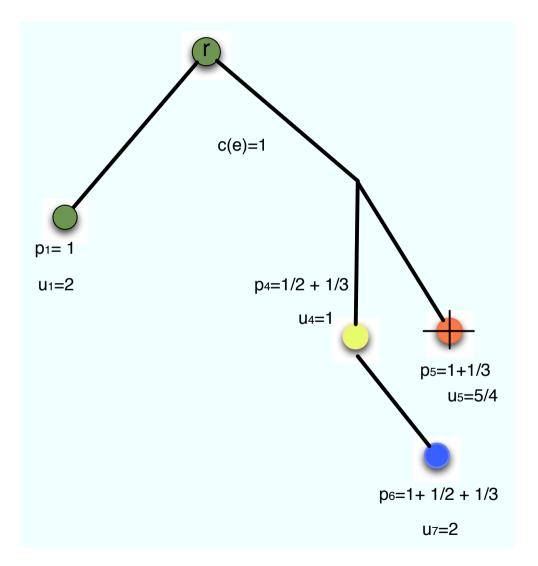
Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Moulin Mechanism for Shapley Cost Shares

- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley id budget-balance, i.e. recovers the whole cost



Example: Multicast Transmission

Talk Outline

Cost-Sharing Mechanisms

- Cost-Sharing Mechanisms
- Example: Multicast
- Transmission Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

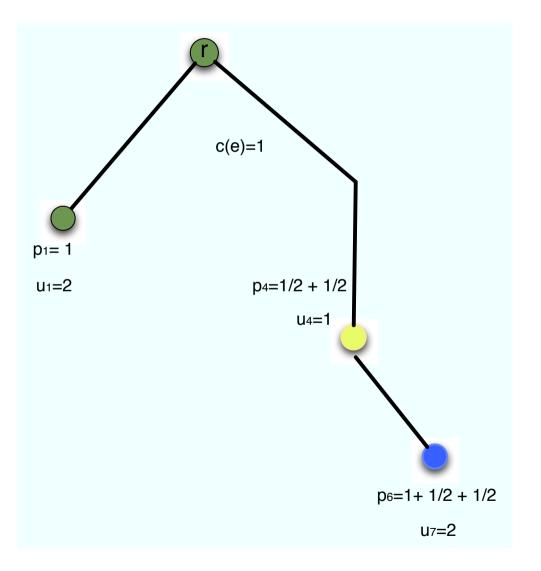
Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Moulin Mechanism for Shapley Cost Shares

- Shapley is a cross-monotonic cost sharing method for Multicast transmission -Submodular function optimization
- Shapley id budget-balance, i.e. recovers the whole cost



Known Results - Upper Bounds

Talk Outline

Cost-Sharing Me	echanisms
-----------------	-----------

- Cost-Sharing Mechanisms
- Example: Multicast Transmission
- Metric Facility location
- LP formulation
- A 3-approximation algorithm
- A 3-approximation algorithm
- Example of execution of the algorithm
- Proof of 3 approximation.
- Strategyproof mechanism for facility location
- Proof of strategyproofness
- The mechanism is not group-strategyproof
- A different set of cost shares is needed
- Cross-Monotonicity
- Moulin–Shenker Mechanism
- Example: Multicast Transmission
- Example: Multicast
 Transmission
- Example: Multicast Transmission

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Authors	Problem	eta
[Moulin, Shenker '01]	submodular cost	1
[Jain, Vazirani '01]	MST	1
	Steiner tree and TSP	2
[Devanur, Mihail, Vazirani '03]	set cover	$\log n$
(strategyproof only)	facility location	1.61
[Pal, Tardos '03]	facility location	3
	SRoB	15
[Leonardi, Schäfer '03], [Gupta et al. '03]	SRoB	4
[Leonardi, Schäfer '03]	CFL	30
[Könemann, Leonardi, Schäfer '05]	Steiner forest	2
[Gupta, Könemann, Leonardi, Ravi, Schäfer '07]	Prize Collecting Steiner Forest	3
[Goyal, Gupta, Leonardi, Ravi '07]	2-Stage Stochastic Steiner Tree	O(1)

Talk Outline	Authors		Problem	eta
Cost-Sharing Mechanisms Cost-Sharing Mechanisms		Lower bo	ounds	
• Example: Multicast Transmission [Immorlica, Mahdian, Mirrokni '05]		ni '05]	edge cover	2
Metric Facility location LP formulation			facility location	3
• A 3-approximation algorithm			vertex cover	$n^{1/3}$
 A 3-approximation algorithm Example of execution of the 			set cover	n
 algorithm Proof of 3 approximation. Strategyproof mechanism for facility location Proof of strategyproofness The mechanism is not group-strategyproof A different set of cost shares is needed Cross-Monotonicity Moulin–Shenker Mechanism Example: Multicast Transmission Example: Multicast Transmission Example: Multicast Transmission Example: Multicast 	[Könemann, Leonardi, S Zwam '05]	Schäfer, van	Steiner tree	2
Transmission Facility location Steiner Forests				

Steiner Forest CS-Mechanism

Cost-Sharing Mechanisms

Facility location

 The Pál and Tardos mechanism

Cost-shares

• Example of execution of the algorithm

Opening facilities

Cost recovery I

• Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Facility location

The Pál and Tardos mechanism

• Talk Outline

Cost-Sharing Mechanisms

Facility location

- The Pál and Tardos mechanism
- Cost-shares
- Example of execution of the algorithm
- Opening facilities
- Cost recovery I
- Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

- In traditional Primal Dual algorithms, if a new city is added, the cost share of nearby cities is decreased, while farther cities can be negatively affected
- A ghost process uniformly raises every dual variable α_j even after user j is connected, to contribute to open other facilities
 - The cost share of user j is still the earliest time of connection of user j
 - How can we limit the number and the cost of opened facilities?
 - How can we recover at least a costant fraction of the opening cost?

[Pal and Tardos, 2003]

Cost-shares

• Talk Outline

Cost-Sharing Mechanisms

Facility location

 The Pál and Tardos mechanism

Cost-shares

- Example of execution of the algorithm
- Opening facilities
- Cost recovery I
- Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

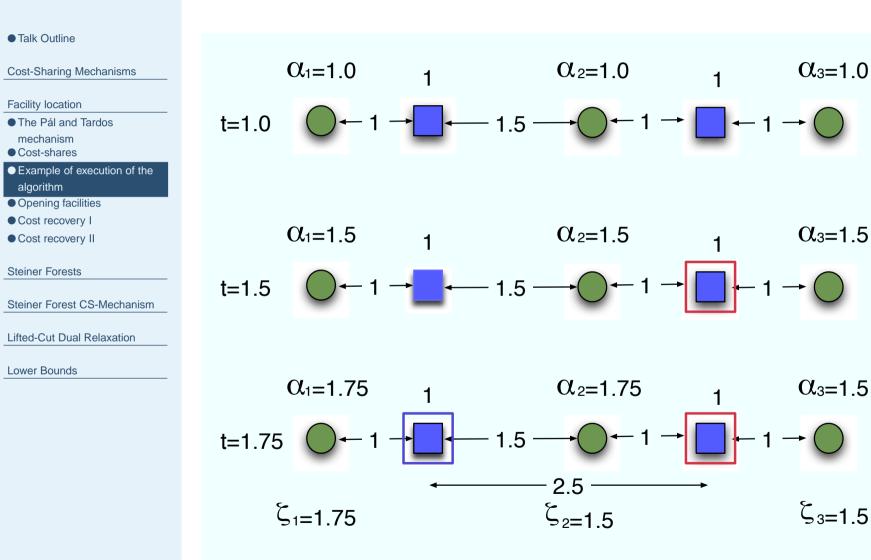
• t(i): when facility *i* becomes full

- S_i :users contributing to making facility i full, all within distance t(i) from i
- Raise cost share α_j till a facility that is touched becomes full or *j* touches a full facility:

$\xi_j = \min\{\min_{i:j \in S_i} t(i), \min_{i:j \notin S_i} c_{ij}\}$

- Cost shares are cross-monotonic since by adding more users, every facility becomes full earlier
- Attention! Not all full facilities are opened

Example of execution of the algorithm



Opening facilities

Talk Outline

Cost-Sharing Mechanisms

Facility location

- The Pál and Tardos mechanism
- Cost-shares
- Example of execution of the algorithm
- Opening facilities
- Cost recovery I
- Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

• Open a full facility *i* if there is no open facility *i'* at distance $c_{ii'} \leq 2t(i)$

Assign every city to the closest open facility i

Lemma: For every two open facilities $i, i', S_i \cap S_{i'} = \emptyset$. <u>Proof:</u> Assume *i* to open after *i'*. If there is a point in $S_i \cup S_{i'}$ then $c_{ii'} \leq 2t(i)$.

To prove:

If $j \in S_i$, ξ_j pays at least for t(i)/3

If $j \notin S_i \xi_j$ pays 1/3 of the connection cost to the closest open facility

Cost recovery I

Talk Outline

Cost-Sharing Mechanisms

Facility location

- The Pál and Tardos mechanism
- Cost-shares
- Example of execution of the algorithm
- Opening facilities
- Cost recovery I
- Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

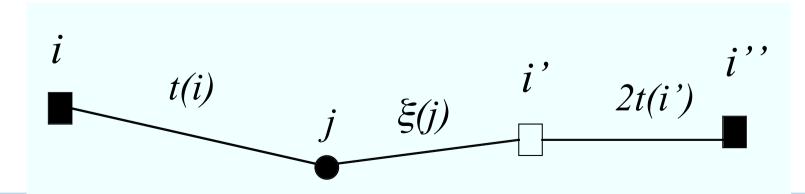
Lower Bounds

Lemma: For every $j \in S_i$, $\xi_j \ge t(i)/3$.

Proof:

- If ξ_j determined by *i*, then $\xi_j = t(i)$ (i.e. 1st full facility touched).
- If determined by facility i' and i' is open we get a contradiction since $c_{ii'} \leq 2t(i)$.
- Otherwise, assume $\xi_j < t(i)/3$ and i' not open. We have a facility i'' such that $c_{i'i''} \leq 2t(i') \leq 2\xi_j$. A contradiction since

$$c_{ii''} \le c_{ij} + c_{ji'} + c_{i'i''} \le t(i) + \xi_j + 2\xi_j \le 2t(i)$$



Cost recovery II

Talk Outline

Cost-Sharing Mechanisms

Facility location

- The Pál and Tardos mechanism
- Cost-shares
- Example of execution of the algorithm
- Opening facilities
- Cost recovery I
- Cost recovery II

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

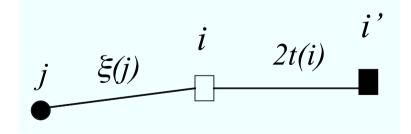
Lemma: Assume for every open facility $i, j \notin S_i$. If j has been allocated to open facility i then $\xi_j \ge c_{ji}/3$.

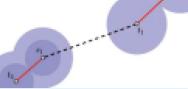
Proof:

Assume i is the first facility that j touches.

- If *i* is open then $\xi_j = c_{ji}$.
- If *i* not open , there exists *i'* such that $c_{ii'} \leq 2t(i)$ to which *j* is allocated. It follows:

$$c_{ji'} \le c_{ji} + c_{ii'} \le \xi_j + 2t(i) \le 3\xi_j$$





• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

• Steiner forests

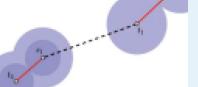
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Steiner Forests



Steiner forests

Steiner forests

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

• Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

• Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Steiner forests

Input:

- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V$.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

• Steiner forests

- Steiner forests: Example
- Our Result
 Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Steiner forests

Input:

- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V$.

Goal:

Compute min-cost forest F in G such that s and t are in same tree for all $(s, t) \in R$.

Steiner forests

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

- Steiner forests: Example
- Our Result
 Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Steiner forests

Input:

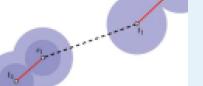
- undirected graph G = (V, E);
- non-negative edge costs $c: E \to \mathbb{R}^+$;
- terminal-pairs $R = \{(s_1, t_1), \dots, (s_k, t_k)\} \subseteq V \times V$.

Goal:

Compute min-cost forest *F* in *G* such that *s* and *t* are in same tree for all $(s, t) \in R$.

Special case: Steiner trees.

Compute a min-cost tree spanning a teminal-set $R \subseteq V$.



Steiner forests: Example

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

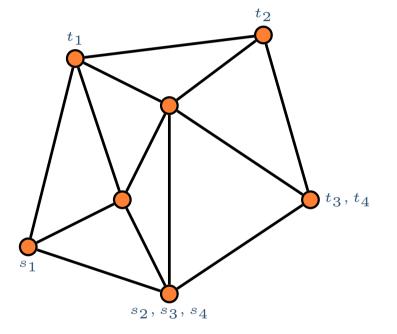
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

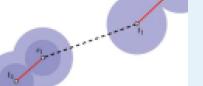
Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Example with four terminal pairs: $R = \{(s_i, t_i)\}_{1 \le i \le 4}$ All edges have unit cost.





Steiner forests: Example

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

Our Result

Primal-Dual

Primal LP: Steiner Cuts

Dual LP

Pictorial View

• Algorithm SF: Example

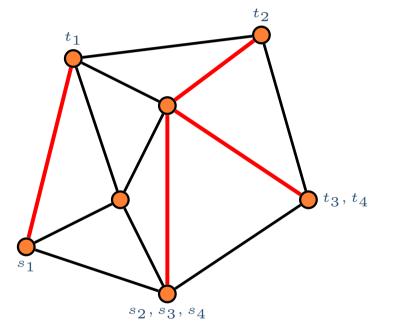
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

■ Example with four terminal pairs: R = {(s_i, t_i)}_{1≤i≤4}
 ■ All edges have unit cost.



Total cost is 4!

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

● Our Result

Primal-Dual

Primal LP: Steiner Cuts

Dual LP

Pictorial View

• Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

Previous Work and cross-monotonic result

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

Steiner forests: Example

- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

Previous Work and cross-monotonic result

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

- Our Result
- Primal-Dual

Primal LP: Steiner Cuts

Dual LP

Pictorial View

Algorithm SF: Example

PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

[Könemann, L., Schäfer, 2005]:

Group-strategyproof cost-sharing mechanism for Steiner forests that satisfies competitiveness and 2-budget balance.

Previous Work and cross-monotonic result

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

• Our Result

Primal-Dual

Primal LP: Steiner Cuts

Dual LP
 Pictorial View

Pictorial view

Algorithm SF: Example
PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

[Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]):

Primal-dual 2-approximation for Steiner forests.

[Jain, Vazirani '01]:

Group-strategyproof cost-sharing mechanism for Steiner trees that satisfies competitiveness and 2-budget balance.

[Könemann, L., Schäfer, 2005]:

Group-strategyproof cost-sharing mechanism for Steiner forests that satisfies competitiveness and 2-budget balance.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

Steiner forests: Example

• Our Result

Primal-Dual Primal LP: Steiner Cuts

Dual LP

Pictorial View

• Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

We sketch primal-dual algorithm SF due to [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]).

Steiner Forests: Primal-dual algorithm

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

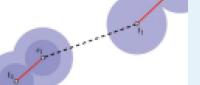
Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

- We sketch primal-dual algorithm SF due to [Agrawal, Klein, Ravi '95] (see also [Goemans, Williamson '95]).
- Algorithm SF computes
 - ♦ feasible Steiner forest F, and
 - feasible dual solution y
 - at the same time.

Key trick: Use dual y and weak duality to bound cost of F.



Primal LP: Steiner Cuts

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

Our Result

Primal-Dual

Primal LP: Steiner Cuts

• Dual LP

Pictorial View

• Algorithm SF: Example

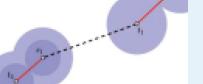
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Primal has variables x_e for all $e \in E$. $x_e = 1$ if e is in Steiner forest, 0 otherwise



Primal LP: Steiner Cuts

Talk Outline

Cost-Sharing Mechanisms

Facility location

- Steiner Forests
- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual

Primal LP: Steiner Cuts

- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

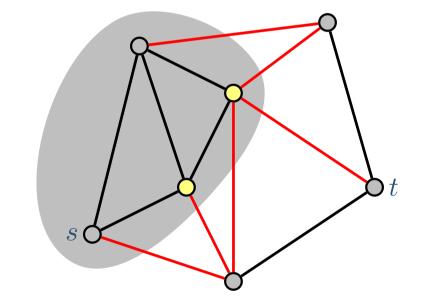
Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Primal has variables x_e for all $e \in E$. $x_e = 1$ if e is in Steiner forest, 0 otherwise

Steiner cut: Subset of nodes that separates at least one terminal pair $(s, t) \in R$.



Any feasible Steiner forest must contain at least one of the red edges!

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

Our Result

Primal-Dual

Primal LP: Steiner Cuts

Dual LP

Pictorial View

• Algorithm SF: Example

PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Primal LP has one constraint for each Steiner cut.

 $\begin{array}{lll} \min & \sum_{e \in E} c_e x_e \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e & \geq & 1 & \forall \text{ Steiner cut } U \\ & & x_e & \geq & 0 & \forall e \in E \end{array}$

 $\delta(U)$: Edges with exactly one endpoint in U.

Steiner trees: Dual LP

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

• Steiner forests: Example

• Our Result

Primal-Dual

Primal LP: Steiner Cuts

Dual LP

Pictorial View

● Algorithm SF: Example

PD-Algorithm: Properties

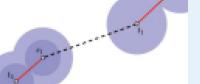
Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Dual LP has a variable y_U for all Steiner cuts U.

 $\delta(U)$: Edges with exactly one endpoint in U.



Dual LP: Pictorial View

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner forests

- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts

Dual LP

Pictorial View

• Algorithm SF: Example

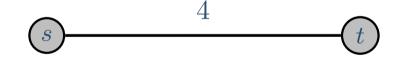
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

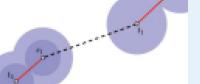
Lifted-Cut Dual Relaxation

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s, t) \in R$, edge (s, t) with cost 4



 $y_s = y_t = 0$



Dual LP: Pictorial View

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP

Pictorial View

• Algorithm SF: Example

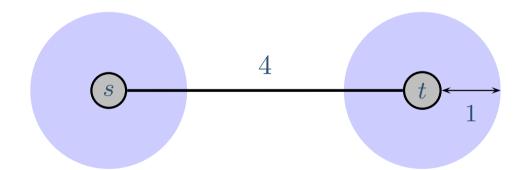
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

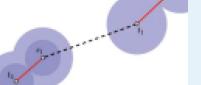
Lifted-Cut Dual Relaxation

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s, t) \in R$, edge (s, t) with cost 4



 $y_s = y_t = 1$



Dual LP: Pictorial View

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP

Pictorial View

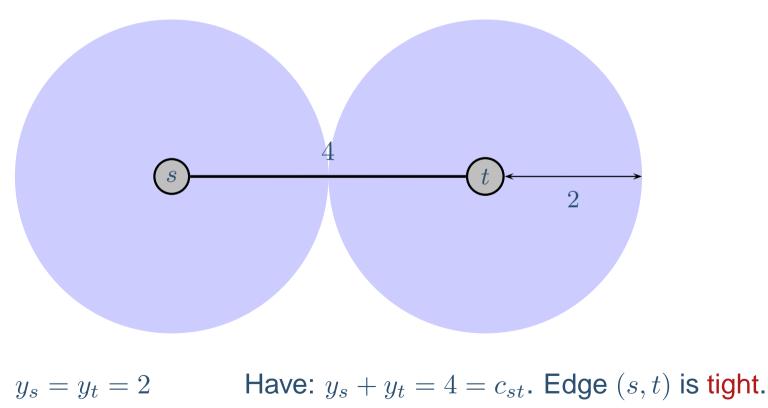
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Can visualize y_U as disks around U with radius y_U . Example: Terminal pair $(s,t) \in R$, edge (s,t) with cost 4



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

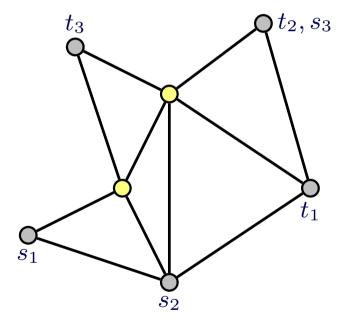
● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

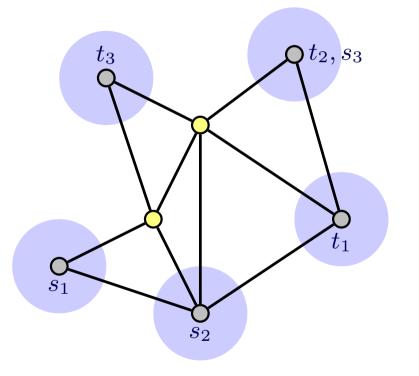
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Algorithm grows duals of connected components.



Algorithm SF: Example


```
Cost-Sharing Mechanisms
```

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

• Algorithm SF: Example

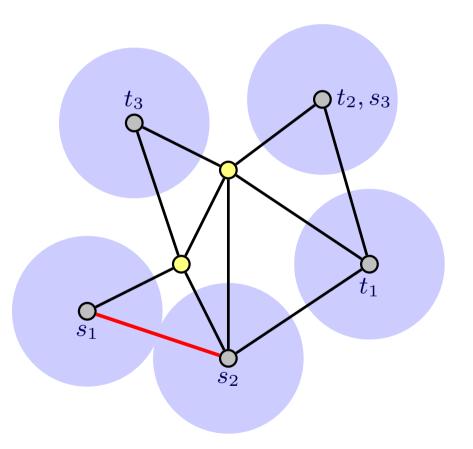
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Algorithm grows duals of connected components.



Algorithm SF: Example


```
Cost-Sharing Mechanisms
```

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

• Algorithm SF: Example

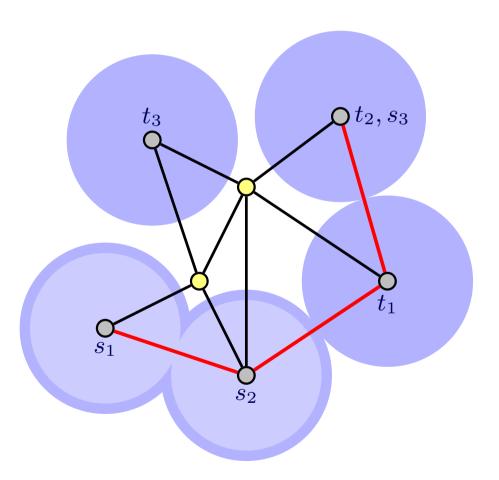
• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

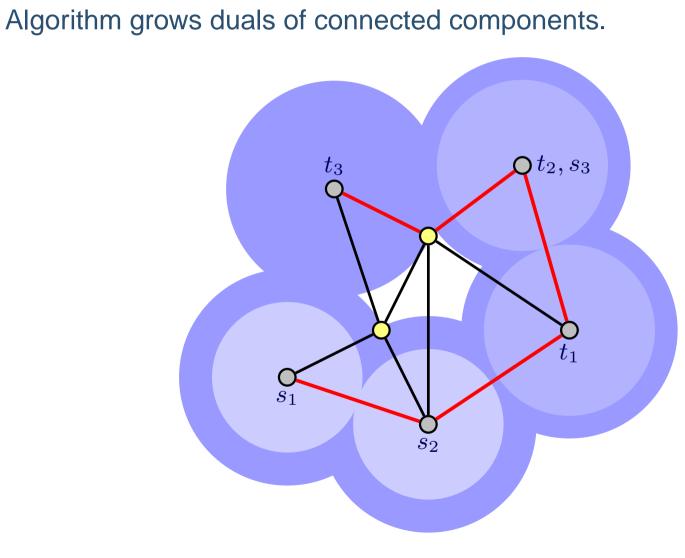
Lifted-Cut Dual Relaxation

Lower Bounds

Algorithm grows duals of connected components.



Algorithm SF: Example



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View

● Algorithm SF: Example

• PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

PD-Algorithm: Properties

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example

PD-Algorithm: Properties

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Theorem [Agrawal, Klein, Ravi '95]: Algorithm computes forest *F* and dual *y* such that

$$c(F) \leq (2 - 1/k) \cdot \sum_{U} y_U \leq (2 - 1/k) \cdot \operatorname{opt}_R.$$

PD-Algorithm: Properties

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner forests
- Steiner forests: Example
- Our Result
- Primal-Dual
- Primal LP: Steiner Cuts
- Dual LP
- Pictorial View
- Algorithm SF: Example
- PD-Algorithm: Properties

Steiner Forest CS-Mechanism

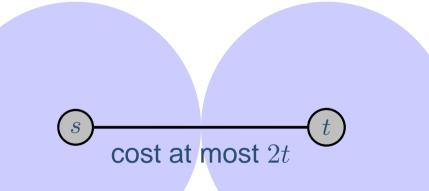
Lifted-Cut Dual Relaxation

Lower Bounds

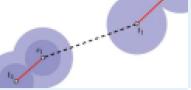
Theorem [Agrawal, Klein, Ravi '95]: Algorithm computes forest *F* and dual *y* such that

$$c(F) \le (2 - 1/k) \cdot \sum_{U} y_U \le (2 - 1/k) \cdot \operatorname{opt}_R.$$

Main trick: Edge (s, t) becomes tight at time t.



Use twice the dual around s and t to pay for cost of path.



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

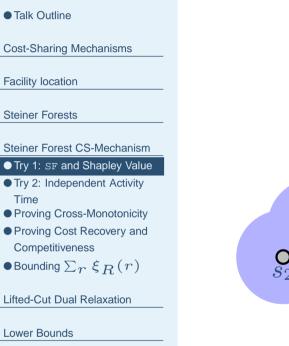
Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

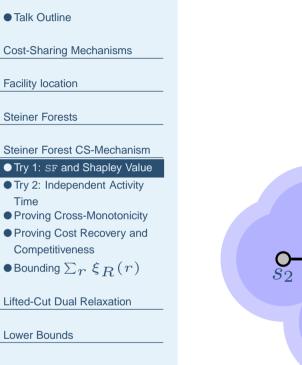
Lower Bounds

Steiner Forest Cost-Sharing Mechanism

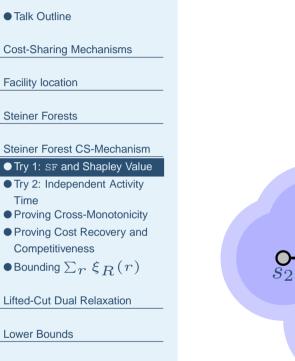


 s_1 t_2 ot_3 t_2

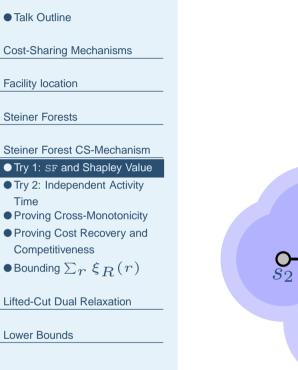
 Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.

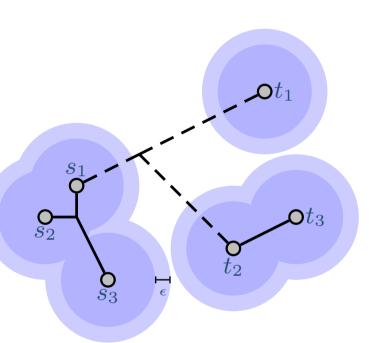


- s_1 s_2 s_3 ϵ t_2 t_2
- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .



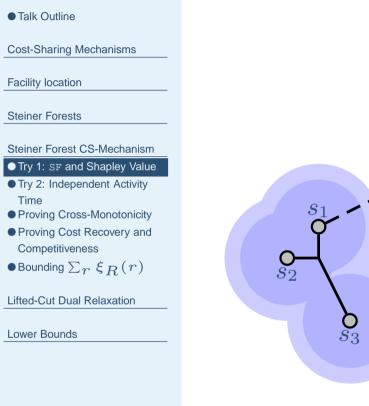
- s_1 s_2 s_3 ϵ t_2 t_2
- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .
- Growth of moats is shared among active terminals.





- Say: terminal pair (s, t) is active at time t if s and t are not in same moat.
 Example: All terminals are active.
- Grow active moats by ϵ .
- Growth of moats is shared among active terminals.
- Cost-share increase for ...

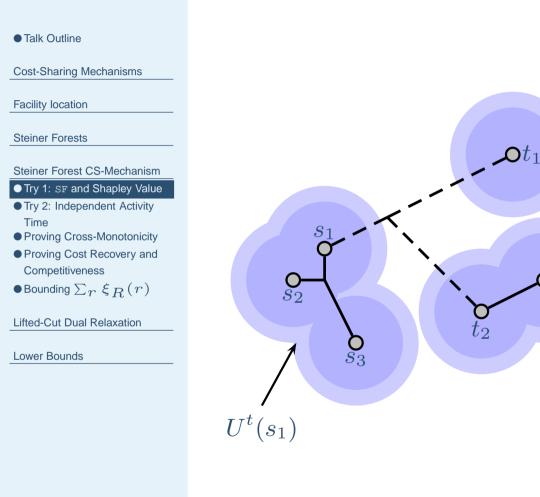
 $s_1:\epsilon/3$ $t_2:\epsilon/2$ $t_1:\epsilon$



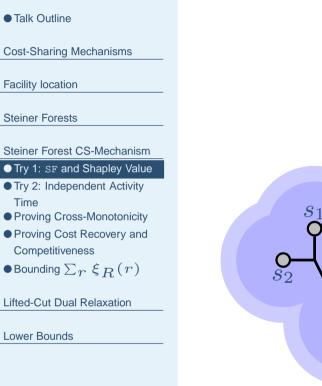
 s_1 t_2 t_2

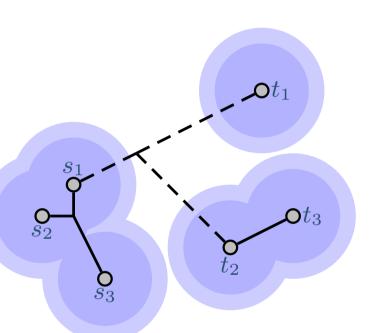
• $U^t(r)$: moat of terminal r at time t.

 $\mathcal{O}t_3$



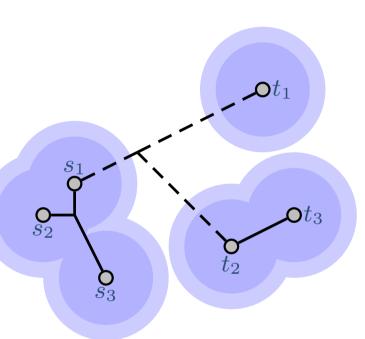
• $U^t(r)$: moat of terminal r at time t.





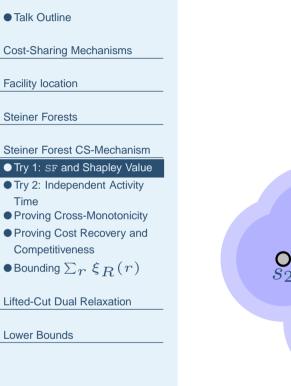
- $U^t(r)$: moat of terminal r at time t.
- a^t(r) : number of active terminals in U^t(r);
 e.g., a^t(s₁) = 3.

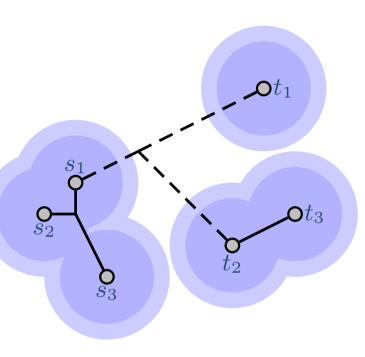




- $U^t(r)$: moat of terminal r at time t.
- a^t(r) : number of active terminals in U^t(r);
 e.g., a^t(s₁) = 3.
- Suppose terminal $r \in R$ becomes inactive at time T. Cost-share:

$$\xi_Q(r) = \int_0^T \frac{1}{a^t(r)} \, dt$$





- $U^t(r)$: moat of terminal r at time t.
- a^t(r) : number of active terminals in U^t(r);
 e.g., a^t(s₁) = 3.
- Suppose terminal $r \in R$ becomes inactive at time T. Cost-share:

$$\xi_Q(r) = \int_0^T \frac{1}{a^t(r)} dt$$

• For terminal-pair $(s, t) \in R$: $\xi_Q(s, t) = \xi_Q(s) + \xi_Q(t)$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

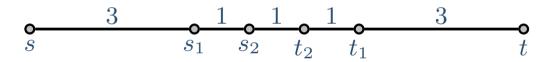
ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s, t), (s_1, t_1), (s_2, t_2)\}$, $R_0 = R \setminus \{(s_2, t_2)\}$



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

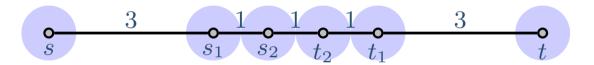
ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Q: Is ξ cross-monotonic? A: No! Simple example: $R = \{(s,t), (s_1,t_1), (s_2,t_2)\}, R_0 = R \setminus \{(s_2,t_2)\}$

t = 0.5



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

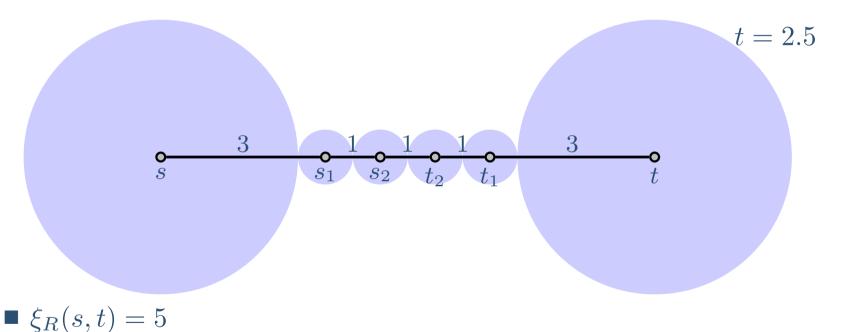
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s,t), (s_1,t_1), (s_2,t_2)\}, R_0 = R \setminus \{(s_2,t_2)\}$



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

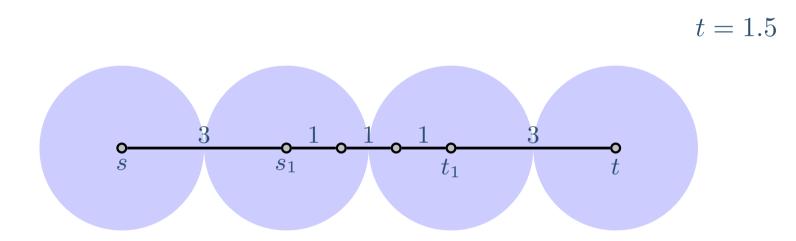
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s, t), (s_1, t_1), (s_2, t_2)\}, R_0 = R \setminus \{(s_2, t_2)\}$



•
$$\xi_R(s,t) = 5$$

• $\xi_{R_0}(s,t) = 3$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

● Try 1: SF and Shapley Value

- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

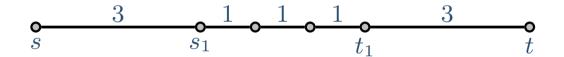
ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Q: Is ξ cross-monotonic? A: No!

Simple example: $R = \{(s, t), (s_1, t_1), (s_2, t_2)\}, R_0 = R \setminus \{(s_2, t_2)\}$



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

 Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

 Try 2: Independent Activity Time

Proving Cross-Monotonicity

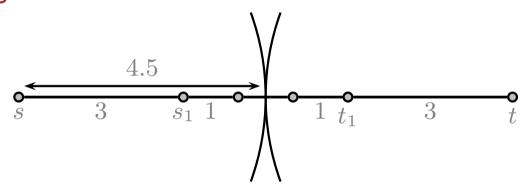
 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent. How long would they need to connect if no other terminal was in the game?



• Talk Outline

Cost-Sharing Mechanisms

```
Facility location
```

Steiner Forests

```
Steiner Forest CS-Mechanism
Try 1: SF and Shapley Value
Try 2: Independent Activity
```

Time

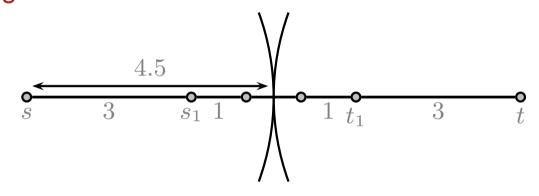
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Previous try: Activity-times of terminal pairs inter-dependent. How long would they need to connect if no other terminal was in the game?



Death time of terminal-pair $(s,t) \in R$:

$$\mathsf{d}(s,t) = \frac{c(s,t)}{2},$$

where c(s,t) is cost of minimum-cost s, t-path.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

 Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

 Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism • Try 1: SF and Shapley Value

 Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism Try 1: sF and Shapley Value Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

• Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism Try 1: sF and Shapley Value Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

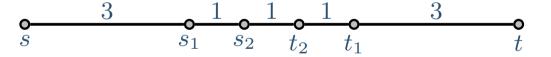
Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$\xi_R(r) = \int_0^{\mathsf{d}(r)} \frac{1}{a^t(r)} \, dt.$



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism Try 1: sF and Shapley Value Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

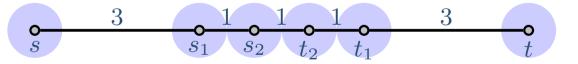
• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt.$

t = 0.5



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Try 1: SF and Shapley Value
Try 2: Independent Activity
Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

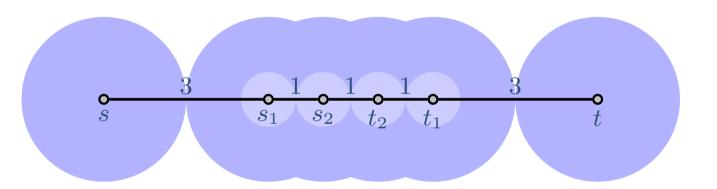
• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$$\xi_R(r) = \int_0^{\mathsf{d}(r)} \frac{1}{a^t(r)} \, dt.$$

t = 1.5



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism Try 1: SF and Shapley Value Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

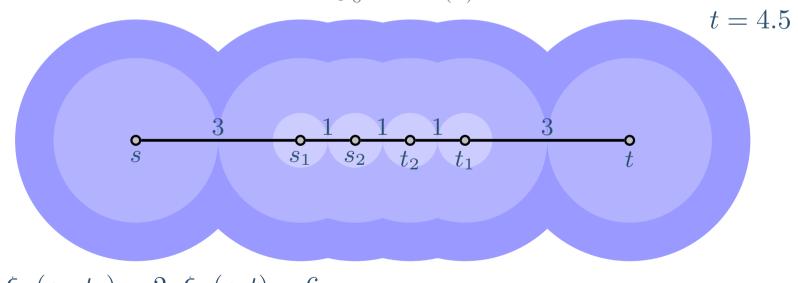
Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism Try 1: sF and Shapley Value Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

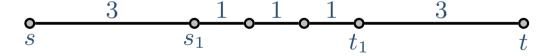
Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

$\xi_R(r) = \int_0^{\mathsf{d}(r)} \frac{1}{a^t(r)} \, dt.$



•
$$\xi_R(s_1, t_1) = 2$$
, $\xi_R(s, t) = 6$.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Try 1: SF and Shapley Value
Try 2: Independent Activity
Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

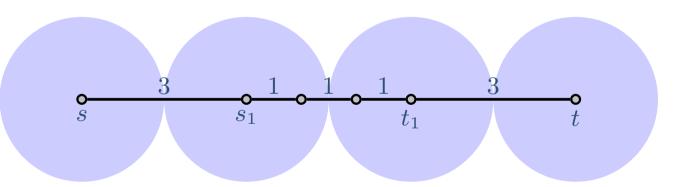
Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:

t = 1.5



•
$$\xi_R(s_1, t_1) = 2, \ \xi_R(s, t) = 6.$$

• $\xi_{R_0}(s_1, t_1) = 3$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism Try 1: SF and Shapley Value Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

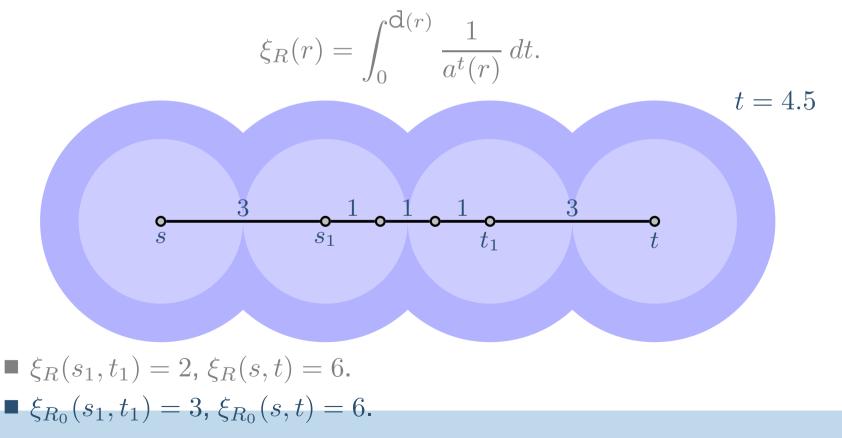
Lifted-Cut Dual Relaxation

Lower Bounds

• Extend to terminal nodes: d(r) = d(s, t) for $r \in \{s, t\}$.

• Terminal r is active until time d(r).

SF grows moats as long as they contain active terminals.
 Cost-share of terminal r:



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

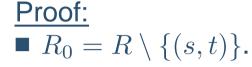
 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof: $\blacksquare R_0 = R \setminus \{(s,t)\}.$

• $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

- Proving Cost Recovery and Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof: $R_0 = R \setminus \{(s,t)\}.$

- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof: $R_0 = R \setminus \{(s,t)\}.$

- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.
- Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

 $U_0^t(r)$ active $\Longrightarrow U^t(r)$ active and $U_0^t(r) \subseteq U^t(r)$.

Proving Cross-Monotonicity

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof:

- $\blacksquare R_0 = R \setminus \{(s,t)\}.$
- $U_0^t(r)$: Moat of r at time t in $SF(R_0)$.
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.

Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

 $U_0^t(r)$ active $\Longrightarrow U^t(r)$ active and $U_0^t(r) \subseteq U^t(r)$.

• Implies: $a_0^t(r) \leq a^t(r)$ for all $t \geq 0$ and $r \in R_0$.

Proving Cross-Monotonicity

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ is cross-monotonic.

Proof: $R_0 = R \setminus \{(s,t)\}.$

- $\blacksquare U_0^t(r): \text{ Moat of } r \text{ at time } t \text{ in } SF(R_0).$
- $a_0^t(r)$: Number of active terminals in $U_0^t(r)$.

Death-times of terminal-pairs are instance independent! Therefore: For each $r \in R_0$:

$$U_0^t(r)$$
 active $\Longrightarrow U^t(r)$ active and $U_0^t(r) \subseteq U^t(r)$

Implies:
$$a_0^t(r) \le a^t(r)$$
 for all $t \ge 0$ and $r \in R_0$.

• We obtain: For each $r \in R_0$:

$$\xi_R(r) = \int_0^{\mathbf{d}(r)} \frac{1}{a^t(r)} \, dt \le \int_0^{\mathbf{d}(r)} \frac{1}{a_0^t(r)} \, dt = \xi_{R_0}(r).$$

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

• Try 1: SF and Shapley Value

• Try 2: Independent Activity Time

Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

• Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

• Let *F* and *y* be forest and corresponding dual computed by

SF.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time

Proving Cross-Monotonicity
 Proving Cost Recovery and

Competitiveness

• Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

Let F and y be forest and corresponding dual computed by SF.

■ SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
 Proving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

Let F and y be forest and corresponding dual computed by SF.

■ SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

• Can show: $\sum_{r \in R} \xi_R(r) \leq \operatorname{opt}_R$.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- \bullet Try 1: ${\tt SF}$ and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-MonotonicityProving Cost Recovery and
- Competitiveness
- ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Lemma: ξ satisfies cost recovery and 2-approximate competitiveness.

Proof:

Let F and y be forest and corresponding dual computed by SF.

■ SF-Theorem implies

$$c(F) \le 2 \cdot \sum_{U \subseteq V} y_U = 2 \cdot \sum_{r \in R} \xi_R(r).$$

y is **not** dual feasible! Some active moats do not correspond to Steiner cuts.

- Can show: $\sum_{r \in R} \xi_R(r) \leq \operatorname{opt}_R$.
- This implies:

$$c(F) \le 2 \cdot \sum_{r \in R} \xi_R(r) \le 2 \cdot \operatorname{opt}_R.$$

Talk Outline

Cost-Sharing Mechanisms

er - de

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Assume that $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ and $d(s_1, t_1) \leq \dots \leq d(s_k, t_k).$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

• Assume that $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ and $d(s_1, t_1) \le \dots \le d(s_k, t_k).$

• Define total order: For $u \in \{s_i, t_i\}, v \in \{s_j, t_j\}$:

$$u \prec v$$
 iff $\begin{cases} i < j & \text{or} \\ i = j & \text{and} \ u = s_j. \end{cases}$

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Assume that $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ and $d(s_1, t_1) \leq \dots \leq d(s_k, t_k).$

• Define total order: For $u \in \{s_i, t_i\}, v \in \{s_j, t_j\}$:

$$u \prec v$$
 iff $\begin{cases} i < j & \text{or} \\ i = j & \text{and} & u = s_j. \end{cases}$

• $v \in R$ is responsible at time t if $u \prec v$ for all $u \in U^t(v)$. Write: $r^t(v) = 1$ iff v is responsible at time t.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Assume that $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ and $d(s_1, t_1) \leq \dots \leq d(s_k, t_k).$

• Define total order: For $u \in \{s_i, t_i\}, v \in \{s_j, t_j\}$:

$$u \prec v$$
 iff $\begin{cases} i < j & \text{or} \\ i = j & \text{and} \ u = s_j. \end{cases}$

• $v \in R$ is responsible at time t if $u \prec v$ for all $u \in U^t(v)$. Write: $r^t(v) = 1$ iff v is responsible at time t.

• Total responsibility time of $v \in R$:

$$r(v) = \int_0^{\mathbf{d}(v)} r^t(v) \, dt$$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Assume that
$$R = \{(s_1, t_1), \dots, (s_k, t_k)\}$$
 and

$$d(s_1, t_1) \leq \dots \leq d(s_k, t_k).$$

• Define total order: For $u \in \{s_i, t_i\}, v \in \{s_j, t_j\}$:

$$u \prec v$$
 iff $\begin{cases} i < j & \text{or} \\ i = j & \text{and} & u = s_j. \end{cases}$

• $v \in R$ is responsible at time t if $u \prec v$ for all $u \in U^t(v)$. Write: $r^t(v) = 1$ iff v is responsible at time t.

• Total responsibility time of $v \in R$:

$$r(v) = \int_0^{\mathbf{d}(v)} r^t(v) \, dt$$

Intuition: No sharing of dual growth. The responsible terminal gets everything!

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Exactly one responsible vertex per growing moat in SF. Hence:

$$\sum_{v \in R} \xi_R(v) = \sum_{v \in R} r(v).$$

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

- Steiner Forest CS-Mechanism
- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Exactly one responsible vertex per growing moat in SF. Hence:

$$\sum_{v \in R} \xi_R(v) = \sum_{v \in R} r(v).$$

• Let F^* be a minimum-cost Steiner forest spanning R.

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Exactly one responsible vertex per growing moat in SF. Hence:

$$\sum_{v \in R} \xi_R(v) = \sum_{v \in R} r(v).$$

• Let F^* be a minimum-cost Steiner forest spanning R.

Consider tree T in F^* and assume that T spans terminals $\{v_1, \ldots v_p\} \subseteq R$ with

 $r(v_1) \leq \ldots \leq r(v_p).$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity

 Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

Lower Bounds

Exactly one responsible vertex per growing moat in SF. Hence:

$$\sum_{v \in R} \xi_R(v) = \sum_{v \in R} r(v).$$

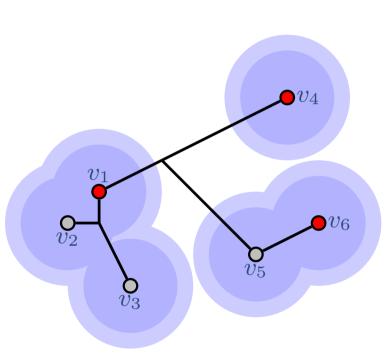
• Let F^* be a minimum-cost Steiner forest spanning R.

Consider tree T in F^* and assume that T spans terminals $\{v_1, \ldots v_p\} \subseteq R$ with

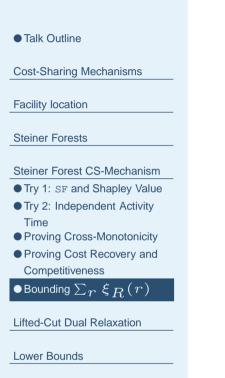
$$r(v_1) \leq \ldots \leq r(v_p).$$

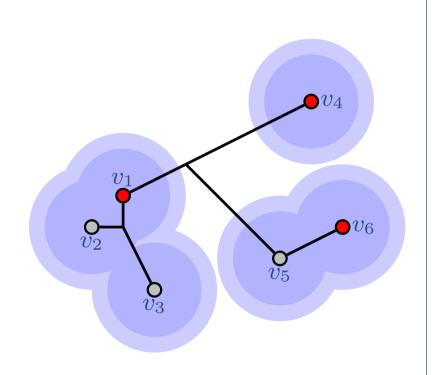
Must have

 $\{U^t(v_i), \dots, U^t(v_p)\}$ pairwise disjoint for $t \in [r(v_{i-1}), r(v_i))$.



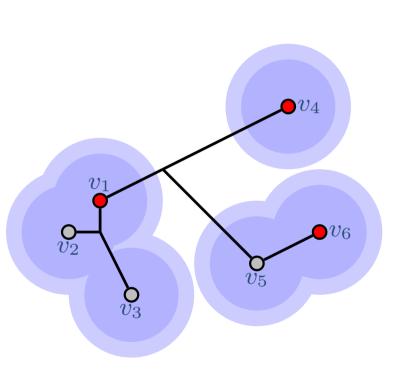
Example: A tree T of F* connecting 6 terminals



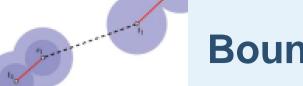


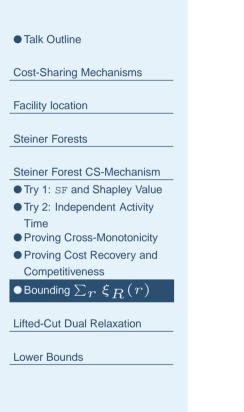
Example: A tree T of F* connecting 6 terminals

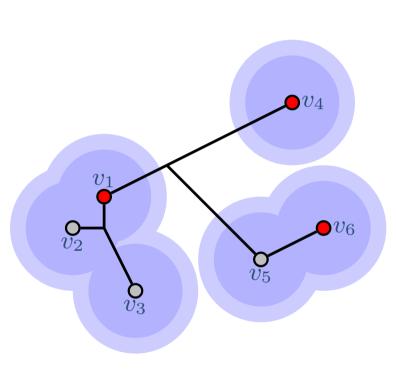
Red terminals are responsible.



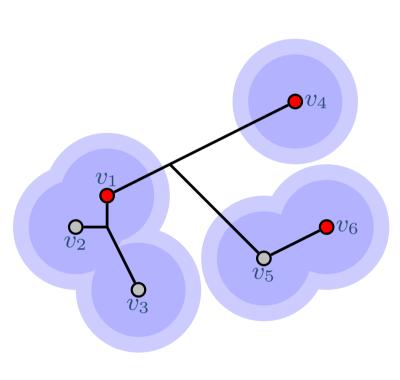
- Example: A tree T of F* connecting 6 terminals
- Red terminals are responsible.
- Each vertex $v \in \{v_1, \dots, v_p\}$ loads distinct part of T of cost r(v)!



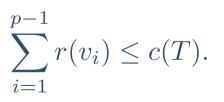




- Example: A tree T of F* connecting 6 terminals
- Red terminals are responsible.
- Each vertex $v \in \{v_1, \dots, v_p\}$ loads distinct part of T of cost r(v)!
- Careful: Argument applies if there are at least two responsible terminals at time t.



- Example: A tree T of F* connecting 6 terminals
- Red terminals are responsible.
- Each vertex $v \in \{v_1, \dots, v_p\}$ loads distinct part of T of cost r(v)!
- Careful: Argument applies if there are at least two responsible terminals at time t.
- Let v_p be vertex with highest responsibility time. We get:



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

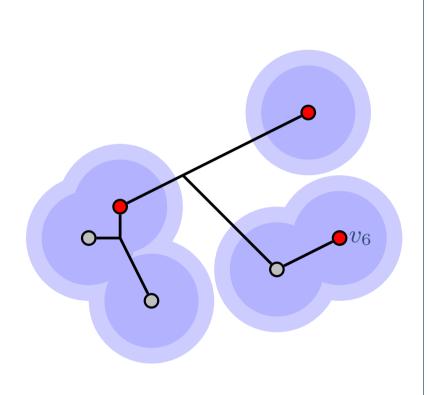
Steiner Forest CS-Mechanism

- Try 1: SF and Shapley Value
- Try 2: Independent Activity Time
- Proving Cross-Monotonicity
- Proving Cost Recovery and Competitiveness

ullet Bounding $\sum_r \xi_R(r)$

Lifted-Cut Dual Relaxation

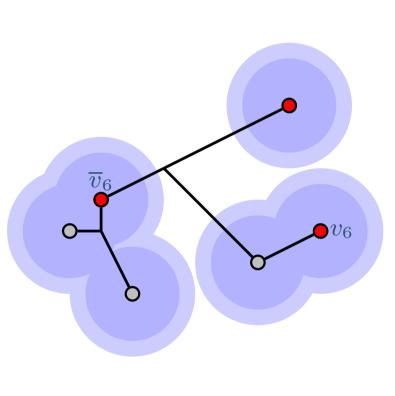
Lower Bounds



Let v_p be vertex with highest responsibility time. We get:

$$\sum_{i=1}^{p-1} r(v_i) \le c(T).$$

Talk Outline
Cost-Sharing Mechanisms
Facility location
Steiner Forests
Steiner Forest CS-Mechanism
Try 1: SF and Shapley Value
Try 2: Independent Activity Time
Proving Cross-Monotonicity
Proving Cost Recovery and Competitiveness
Bounding ∑r ξ_R(r)
Lifted-Cut Dual Relaxation
Lower Bounds

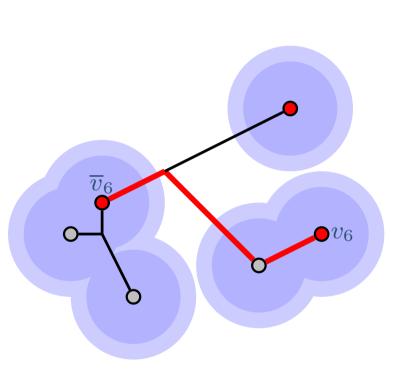


Let v_p be vertex with highest responsibility time. We get:

$$\sum_{i=1}^{p-1} r(v_i) \le c(T).$$

• v_p 's mate is in T as well!

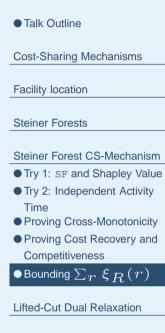
Lower Bounds



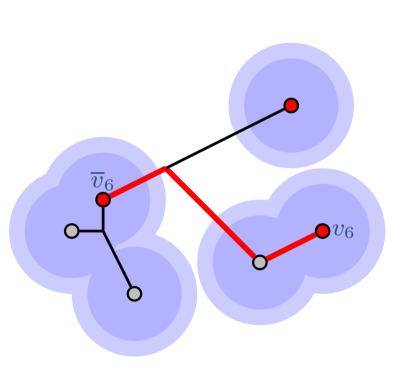
Let v_p be vertex with highest responsibility time. We get:

$$\sum_{i=1}^{p-1} r(v_i) \le c(T).$$

• v_p 's mate is in T as well! • $r(v_p) \le d(v_p) \le \frac{1}{2}c(T)$.



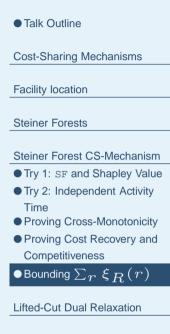
Lower Bounds



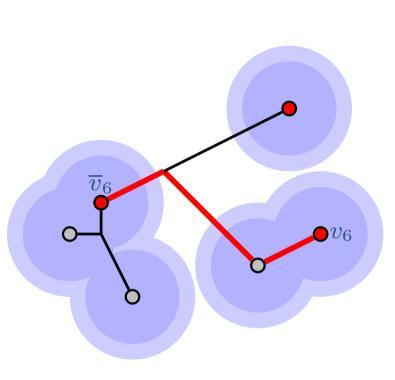
Let v_p be vertex with highest responsibility time. We get:

$$\sum_{i=1}^{p-1} r(v_i) \le c(T).$$

 v_p 's mate is in T as well! $r(v_p) \le d(v_p) \le \frac{1}{2}c(T)$.
Hence: $\sum_{i=1}^p r(v_i) \le \frac{3}{2}c(T)$.



Lower Bounds



Let v_p be vertex with highest responsibility time. We get:

$$\sum_{i=1}^{p-1} r(v_i) \le c(T).$$

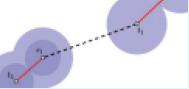
• v_p 's mate is in T as well!

$$r(v_p) \le \mathbf{d}(v_p) \le \frac{1}{2}c(T).$$

• Hence:
$$\sum_{i=1}^{p} r(v_i) \leq \frac{3}{2}c(T)$$
.

• Summing over all trees $T \in F^*$:

$$\sum_{v \in R} r(v) \le \frac{3}{2} \cdot c(F^*).$$



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

- Approximating Steiner Forests
- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution
- Relaxation of LC Primal

Lower Bounds

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

Suppose our modified Steiner forest algorithm produces forest F and (infeasible) dual y.

Approximating Steiner Forests

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

Suppose our modified Steiner forest algorithm produces forest F and (infeasible) dual y.

Can still show

$$c(F) \le (2 - 1/k) \sum_{U \subseteq V} y_U \le (2 - 1/k) \cdot \operatorname{opt}_R.$$

Approximating Steiner Forests

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

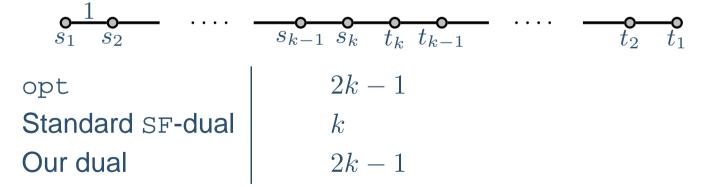
Lower Bounds

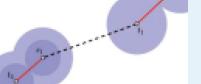
Suppose our modified Steiner forest algorithm produces forest F and (infeasible) dual y.

Can still show

$$c(F) \le (2 - 1/k) \sum_{U \subseteq V} y_U \le (2 - 1/k) \cdot \operatorname{opt}_R.$$

• Our dual is often much better than the SF-dual!





Lifted-Cut Dual for Steiner Forests

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

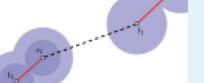
Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

Fix an order \prec on the terminal pairs:

 $d(s_1, t_1) \leq d(s_2, t_2) \leq \cdots \leq d(s_k, t_k)$



Lifted-Cut Dual for Steiner Forests

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

● Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

• Fix an order \prec on the terminal pairs:

```
d(s_1, t_1) \leq d(s_2, t_2) \leq \cdots \leq d(s_k, t_k)
```

• Associate each cut $U \subseteq V$ with a terminal (pair).

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

● Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

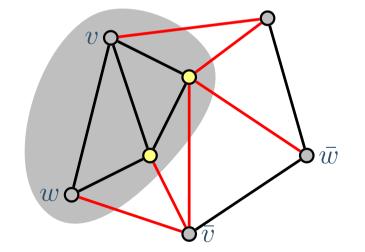
- Optimal Integral Solution
- Relaxation of LC Primal

Lower Bounds

• Fix an order \prec on the terminal pairs:

```
d(s_1, t_1) \leq d(s_2, t_2) \leq \cdots \leq d(s_k, t_k)
```

Associate each cut U ⊆ V with a terminal (pair).
Example: (v, v̄) ≺ (w, w̄).



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

● Lifted Cut-Dual for SF

- Lifted-Cut Primal for SF
- Optimal Integral Solution
- Relaxation of LC Primal

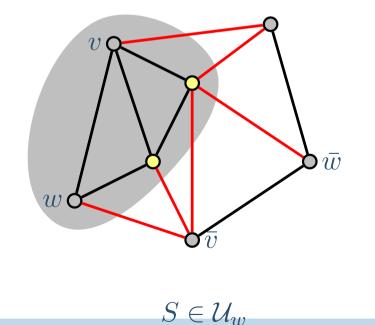
Lower Bounds

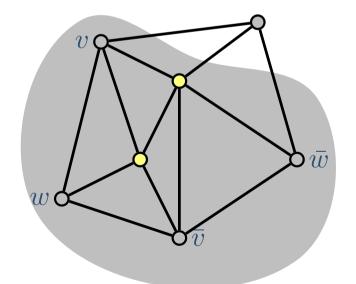
• Fix an order \prec on the terminal pairs:

d

$$(s_1, t_1) \leq \mathbf{d}(s_2, t_2) \leq \cdots \leq \mathbf{d}(s_k, t_k)$$

Associate each cut U ⊆ V with a terminal (pair).
Example: (v, v̄) ≺ (w, w̄).





 $S \in \mathcal{U}_{w,\bar{w}}$

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

● Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

Lifted-Cut Primal for Steiner Forests

• Talk Outline

Cost-Sharing	Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

s.t.

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

• Lifted Cut-Dual for SF

● Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & > & 0 \end{array}$$

Optimal Integral Solution is a Steiner Forest

Talk Outline Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation

Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Assume cut $U \in U_w$ violated. Cut $V/U \in U_{\bar{w}}$ is also violated.

Optimal Integral Solution is a Steiner Forest

Talk Outline

min

s.t.

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w$$
$$\sum_{e \in \delta(U)} x_e + x_w \geq 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R$$
$$\sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} \geq 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R$$
$$x \geq 0$$

Assume cut $U \in U_w$ violated. Cut $V/U \in U_{\bar{w}}$ is also violated.

• Feasible integral solution assigns $x_w = x_{\bar{w}} = 1$

Optimal Integral Solution is a Steiner Forest

• Talk Outline

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Assume cut $U \in U_w$ violated. Cut $V/U \in U_{\bar{w}}$ is also violated.

• Feasible integral solution assigns $x_w = x_{\bar{w}} = 1$

Cost $(x_w + x_{\bar{w}})$, $d(w) = c(w, \bar{w})$ pays for the cost of connecting w to \bar{w} .

• Talk Outline

Cost-Sharing Mechanisms	
Facility location	
Steiner Forests	
Steiner Forest CS-Mechanism	

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

• Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

• Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} \mathrm{d}(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem: $opt_{LP} \leq opt_{LC} \leq opt_R$.

• Talk Outline

Cost-Sharing Mechanisms	
Facility location	
Steiner Forests	
Steiner Forest CS-Mechanism	
Lifted-Cut Dual Relaxation	

• Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

• Consider each tree T of the optimal forest F^* .

• Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation • Approximating Steiner Forests

Lifted Cut-Dual for SF

Lifted-Cut Primal for SF

Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

• Consider each tree T of the optimal forest F^* .

• (w, \bar{w}) : responsible pair for T.

• Talk Outline

Cost-Sharing Mechanisms	
Facility location	
Steiner Forests	
Steiner Forest CS-Mechanism	
Lifted-Cut Dual Relaxation	
Approximating Steiner Forests	
Lifted Cut-Dual for SF	

Lifted-Cut Primal for SF

- Optimal Integral Solution
- Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

• Consider each tree T of the optimal forest F^* .

- (w, \bar{w}) : responsible pair for T.
- Path *P* connects *w* to \bar{w} in *T*.

• Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation

Approximating Steiner Forests

- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution

Relaxation of LC Primal

Lower Bounds

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} \mathrm{d}(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

• Consider each tree T of the optimal forest F^* .

- (w, \bar{w}) : responsible pair for T.
- Path *P* connects *w* to \bar{w} in *T*.
- Feasible solution *S*:

• Talk Outline

Cost-Sharing Mechanisms	
Facility location	
Steiner Forests	
Steiner Forest CS-Mechanism	
Lifted-Cut Dual Relaxation	
Approximating Steiner Forests	

- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution
- Relaxation of LC Primal

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} \mathrm{d}(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

- Consider each tree T of the optimal forest F^* .
- (w, \bar{w}) : responsible pair for T.
- Path P connects w to \bar{w} in T.
- Feasible solution S:
 - Set $x_e = 1/2$, $\forall e \in P$ and $x_e = 1$, $\forall e \in T/P$

• Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation

Approximating Steiner Forests

- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution

Relaxation of LC Primal

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} \mathrm{d}(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

• Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

- Consider each tree T of the optimal forest F^* .
- (w, \bar{w}) : responsible pair for T.
- Path *P* connects *w* to \bar{w} in *T*.
- Feasible solution S:
 - Set $x_e = 1/2$, $\forall e \in P$ and $x_e = 1$, $\forall e \in T/P$
 - Set $x_w = x_{\bar{w}} = 1/2$ and $x_v = 0$, $\forall v \in V(T)/\{w, \bar{w}\}$.

• Talk Outline

Cost-Sharing Mechanisms Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation • Approximating Steiner Forests

- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution
- Relaxation of LC Primal

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} d(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

- Consider each tree T of the optimal forest F^* .
- (w, \overline{w}) : responsible pair for T.
- Path *P* connects *w* to \bar{w} in *T*.
- Feasible solution S:
 - Set $x_e = 1/2$, $\forall e \in P$ and $x_e = 1$, $\forall e \in T/P$
 - Set $x_w = x_{\bar{w}} = 1/2$ and $x_v = 0$, $\forall v \in V(T) / \{w, \bar{w}\}$.
- $\blacksquare \ c(S) = c(T) 1/2c(P) + 1/2(d(w) + d(\bar{w})) \le c(T)$

• Talk Outline

Facility location
Steiner Forests
Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

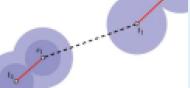
- Approximating Steiner Forests
- Lifted Cut-Dual for SF
- Lifted-Cut Primal for SF
- Optimal Integral Solution

Relaxation of LC Primal

$$\begin{array}{lll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{w \in R} \mathrm{d}(w) x_w \\ \text{s.t.} & \sum_{e \in \delta(U)} x_e + x_w & \geq & 1 \quad \forall U \in \mathcal{U}_w, \ \forall w \in R \\ & \sum_{e \in \delta(U)} x_e + x_w + x_{\bar{w}} & \geq & 1 \quad \forall U \in \mathcal{U}_{w,\bar{w}}, \ \forall (w,\bar{w}) \in R \\ & x & \geq & 0 \end{array}$$

• Theorem:
$$opt_{LP} \leq opt_{LC} \leq opt_R$$
.

- Consider each tree T of the optimal forest F^* .
- (w, \bar{w}) : responsible pair for T.
- Path *P* connects *w* to \bar{w} in *T*.
- Feasible solution S:
 - Set $x_e = 1/2$, $\forall e \in P$ and $x_e = 1$, $\forall e \in T/P$
 - Set $x_w = x_{\bar{w}} = 1/2$ and $x_v = 0$, $\forall v \in V(T) / \{w, \bar{w}\}$.
- $c(S) = c(T) 1/2c(P) + 1/2(d(w) + d(\bar{w})) \le c(T)$
- Solution S is feasible.



• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

Objectives

Known Results - Social Cost

Summary

Open Issues

Lower bounds for cross-monotonic cost-sharing mechanisms

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Lower Bound for

Cross-Monotonicity

Lower Bound for Steiner Trees

Limitations of Moulin

mechanisms

Objectives

Known Results - Social Cost

Summary

Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover (n^{1/3}) and edge cover (2).

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Lower Bound for

Cross-Monotonicity

• Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

Objectives

Known Results - Social Cost

Summary

Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

■ We prove a lower bound of 2 for Steiner trees.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

Lower Bound for

Cross-Monotonicity

Lower Bound for Steiner Trees

Limitations of Moulin

mechanisms

- Objectives
- Known Results Social Cost

Summary

Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

■ We prove a lower bound of 2 for Steiner trees.

 \blacksquare \Rightarrow our result for Steiner forest is tight.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

\bullet	Lower	Bound for
	~	

Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

■ We prove a lower bound of 2 for Steiner trees.

 $\blacksquare \Rightarrow$ our result for Steiner forest is tight.

Lower bounds are irrespective of time complexity.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

■ We prove a lower bound of 2 for Steiner trees.

 $\blacksquare \Rightarrow$ our result for Steiner forest is tight.

Lower bounds are irrespective of time complexity.

Proofs exploit the core property (weaker than cross-monotonicity):

 $\forall Q \subseteq V, \ \sum_{j \in Q} \xi_V(j) \leq \operatorname{opt}_Q$

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

[Immorlica, Mahdian, Mirrokni '05]: Give bounds on budget balance of cross-monotonic cost-sharing methods for facility location (3), vertex cover $(n^{1/3})$ and edge cover (2).

■ We prove a lower bound of 2 for Steiner trees.

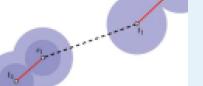
 $\blacksquare \Rightarrow$ our result for Steiner forest is tight.

Lower bounds are irrespective of time complexity.

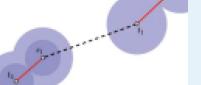
Proofs exploit the core property (weaker than cross-monotonicity):

$$\forall Q \subseteq V, \ \sum_{j \in Q} \xi_V(j) \leq \mathsf{opt}_Q$$

Turns into a lower bound on budget-balance of group-strategyproof methods only if there are no free riders.



• *k* pairwise disjoint classes A_i of *m* Talk Outline vertices. **Cost-Sharing Mechanisms** Facility location Steiner Forests Steiner Forest CS-Mechanism Lifted-Cut Dual Relaxation Lower Bounds Lower Bound for Cross-Monotonicity Lower Bound for Steiner Trees Limitations of Moulin mechanisms Objectives Known Results - Social Cost Summary Open Issues



Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

Objectives

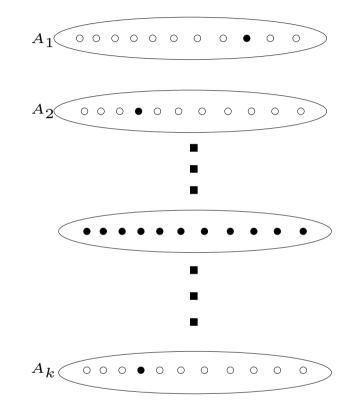
Known Results - Social Cost

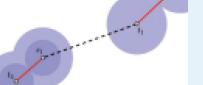
Summary

Open Issues

 k pairwise disjoint classes A_i of m vertices.

• Select a random class $A_i = \{c_1, \dots, c_m\}.$





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

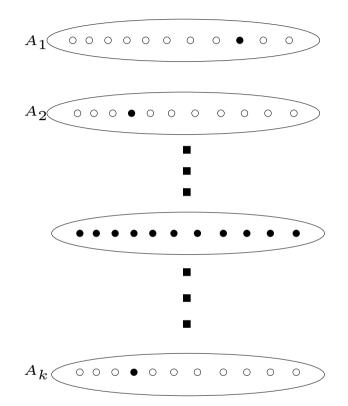
Lower Bound for Steiner Trees

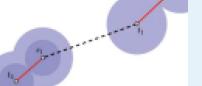
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 k pairwise disjoint classes A_i of m vertices.

Select a random class $A_i = \{c_1, \dots, c_m\}.$

For each class $j \neq i$ select a random vertex a_j .





• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

• Lower Bound for

Cross-Monotonicity

Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

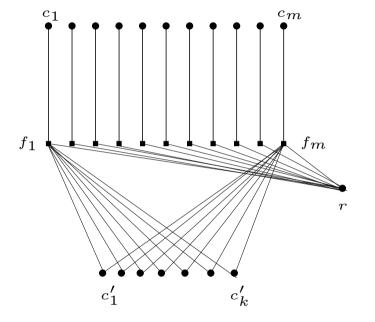
Objectives

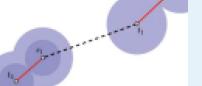
• Known Results - Social Cost

Summary

Open Issues

$$B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$$





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

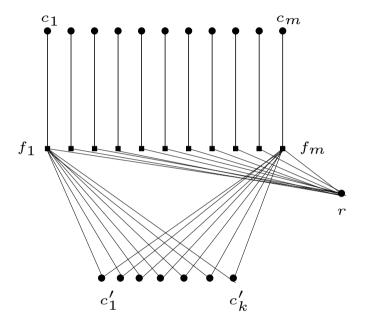
• Lower Bound for Steiner Trees

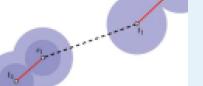
 Limitations of Moulin mechanisms

- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

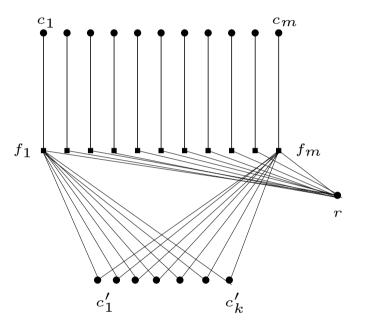
Lower Bound for Steiner Trees

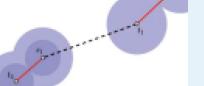
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

• f_B is connected to the root r, with edges of length 3.





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

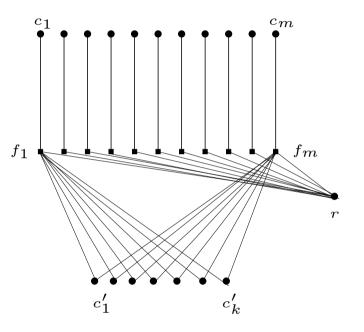
Lower Bound for Steiner Trees

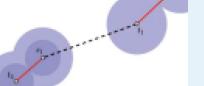
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

 $B := \{\{a_1, \dots, a_k\} : a_i \in A_i, i = 1, \dots, k\}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

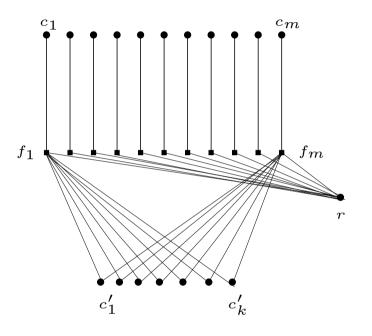
- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

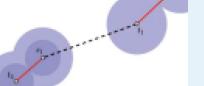
 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

• For each c_l , l = 1, ..., m, $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$ implies $\xi(c_l) = \frac{k+3}{k}$





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

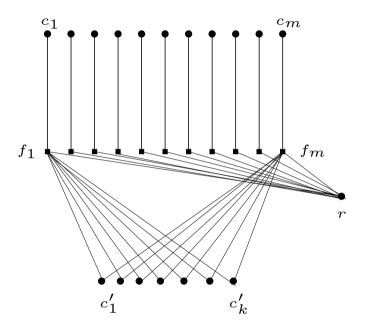
For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

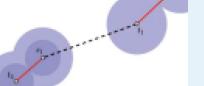
- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

For each
$$c_l$$
, $l = 1, ..., m$,
 $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$
implies $\xi(c_l) = \frac{k+3}{k}$

Total cost share:

$$\sum_{c \in A_i} \xi(c) + \sum_{j \neq i} \xi(a_j) \le m \times \frac{k+3}{k} + k + 2$$





Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

- Limitations of Moulin
- mechanismsObjectives
- Known Results Social Cost
- Summary
- Open Issues

 $\mathcal{B} := \{ \{a_1, \dots, a_k\} : a_i \in A_i, \ i = 1, \dots, k \}.$

For each $B \in \mathcal{B}$: vertex f_B with distance 1 to all vertices in B.

- f_B is connected to the root r, with edges of length 3.
- *f_B* has distance 3 to vertices not in
 B.

• For each
$$c_l$$
, $l = 1, ..., m$,
 $c(\{a_1, ..., a_{i-1}, c_l, a_{i+1}, a_k\}) = k+3$
implies $\xi(c_l) = \frac{k+3}{k}$

Total cost share:

$$\sum_{c \in A_i} \xi(c) + \sum_{j \neq i} \xi(a_j) \le m \times \frac{k+3}{k} + k + 2$$

$$f_1 \qquad \qquad f_m \\ c_1' \qquad c_k'$$

 c_m

^c1

• opt $\geq 2m + k + 3$

Cost-Sharing Mechanisms

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost
- Summary
- Open Issues

Objectives:

- Strategyproofness: Dominant strategy for each user is to bid true utility.
- Group-Strategyproofness: Same holds even if users collaborate. No side payments between users.

• Cost Recovery or Budget Balance: $\sum_{j \in Q} p_j \ge c(Q)$.

- **Competitiveness:** $\sum_{j \in Q} p_j \leq \operatorname{opt}_Q$.
- α-Efficiency approximate maximum social welfare:

$$u(Q) - c(Q) \ge \frac{1}{\alpha} \cdot \max_{S \subseteq U} [u(S) - C(S)], \quad \alpha \ge 1$$

No mechanism can achieve (approximate) budget balance, truthfullness and efficiency [Feigenbaum et al. '01]

Limitations of Moulin mechanisms

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

• Limitations of Moulin

mechanismsObjectives

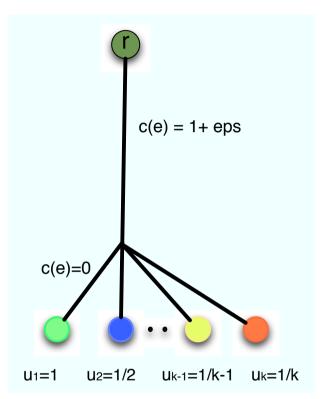
• Known Results - Social Cost

Summary

Open Issues

Moulin mechanism ends with dropping all players

■ (1+ϵ)-budget balance solution achieves H(k) social welfare.



Objectives

Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

Limitations of Moulin

mechanismsObjectives

• Known Results - Social Cost

Summary

Open Issues

1. β -budget balance: approximate total cost

$$\frac{1}{\beta}c(Q) \leq p(Q) \leq \operatorname{opt}_Q, \quad \beta \geq 1$$

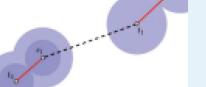
2. Group-strategyproofness: bidding truthfully $b_i = u_i$ is a dominant strategy for every user $i \in U$, even if users cooperate

3. α -approximate: approximate minimum social cost

 $\Pi(Q) \le \alpha \cdot \min_{S \subseteq U} \Pi(S), \quad \alpha \ge 1$

where $\Pi(S) := u(U \setminus S) + C(S)$

[Roughgarden and Sundararajan '06]



Known Results - Social Cost

 Talk Outline 				
	Authors	Problem	β	lpha
Cost-Sharing Mechanisms				- (-)
Facility location	[Roughgarden, Sundararajan '06]	submodular cost	1	$\Theta(\log n)$
Steiner Forests		Steiner tree	2	$\Theta(\log^2 n)$
Steiner Forest CS-Mechanism	[Chawla, Roughgarden, Sundarara-	Steiner forest	2	$\Theta(\log^2 n)$
Lifted-Cut Dual Relaxation	jan '06]			
Lower Bounds Cross-Monotonicity	[Roughgarden, Sundararajan]	facility location	3	$\Theta(\log n)$
		SRoB	4	$\Theta(\log^2 n)$
 Lower Bound for Steiner Trees Limitations of Moulin 	[Gupta, Könemann, Leonardi, Ravi,	prize-collecting	3	$\Theta(\log^2 n)$
mechanisms ● Objectives ● Known Results - Social Cost	Schäfer '07]	Steiner forest		
 Summary Open Issues 	[Goyal, Gupta, Leonardi, Ravi '07]	2-stage Stochastic Steiner Tree	O(1)	$\Theta(\log^2 n)$
		Otemer nee		

Summary

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost

Summary

Open Issues

- Introduced cost-sharing mechanisms for network design problems
- Presented a group-strategyproof mechanism for Steiner forests that is 2-budget balance.
- Presented a new undirected cut relaxation for Steiner forests, strictly stronger than the classical undirected cut relaxation.
- Presented a lower bound of 2 on the budget balance approximation of cross-monotonic algorithms for Steiner trees.

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

Objectives

Known Results - Social Cost

Summary

Open Issues

Can we use our infeasible dual to give better primal-dual approximation algorithms for Steiner forests/trees?

Open Issues

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

 Lower Bound for Cross-Monotonicity

• Lower Bound for Steiner Trees

 Limitations of Moulin mechanisms

Objectives

Known Results - Social Cost

Summary

Open Issues

Can we use our infeasible dual to give better primal-dual approximation algorithms for Steiner forests/trees?

Give cross-monotonic cost-sharing methods for more network design problems.

Open Issues

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost

Summary

Open Issues

- Can we use our infeasible dual to give better primal-dual approximation algorithms for Steiner forests/trees?
- Give cross-monotonic cost-sharing methods for more network design problems.
- Characterize classes of problems yielding mechanisms with good cost recovery.

Open Issues

• Talk Outline

Cost-Sharing Mechanisms

Facility location

Steiner Forests

Steiner Forest CS-Mechanism

Lifted-Cut Dual Relaxation

Lower Bounds

- Lower Bound for Cross-Monotonicity
- Lower Bound for Steiner Trees
- Limitations of Moulin mechanisms
- Objectives
- Known Results Social Cost

Summary

Open Issues

- Can we use our infeasible dual to give better primal-dual approximation algorithms for Steiner forests/trees?
- Give cross-monotonic cost-sharing methods for more network design problems.
- Characterize classes of problems yielding mechanisms with good cost recovery.
- A more satisfactory definition of group-strategyproofness.