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Facility location problems

Metric Facility location
Input:

» undirected graph G = (V,E)
non-negative edge costs ¢ : E — R™
set of facilities F C V
facility i has facility opening cost f;
set of demand points D C V

cji: cost of connecting demand point j to facility i.
Connection cost satisfy triangle inequality

Goal: Compute
» set F’ C F of opened facilities; and

» function ¢ : D — F’ assigning demand points to opened
facilities that minimizes

D it cupy

ieF’ jeD

vV v.v.v Yy



Facility location problems

LP formulation

min Z CijXjj + Zfiyi

ieF.,jeD ieF
S.t. inj > 1 jeb
ieF
Yi — Xjj > 0 iEF,jED
xj € {0,1} ieF,jeD
yi € {0,1} ieF

» y; = 1if facility i is opened,;
» Xj = 1 if demand j connected to facility i.



Connected facility location

Input:
» Same as facility location; plus
» Parameter M
Goal: Compute
» set F’ C F of opened facilities; and

» function ¢ : D — F’ assigning cities to opened facilities;
and

» Steiner tree T connecting the opened facilities that
minimizes

DAt > cop M ce

icF/ jeD ecT



Facility location problems

Example

Cost=12+10+8=30

Two facilities of cost 5 are opened and connected in a tree



Facility location problems

Connected facility location

LP formulation:
Try all possible vertices facilities as root of the Steiner tree T.

min Zfiyi Z CiXij +M ZCeZe

ieF ieF.jeD
st > x> 1 jeD
icF
yi—X%j > 0 icF,jeD
YVv = 1

inj = Eeea(s)ze VSCV,v¢S,j
ics
Xii,Yi,ze € {0,1} icF,jeD

Primal-dual 9-apx [Swamy and Kumar, 2002].
Idea: Once a demand has contributed to open a facility, it starts
paying for the Steiner cost.



Definition: Single-sink rent-or-buy

Input:
» Graph G = (V,E), edge costsce > Oforalle € E
> rootr
» Demand points D = {vy,...,w} CV
» Flows fq,... fx

(here: assume f; = 1 for all i)
» Economies of scale parameterM > 1

Goal: Find Ep,E;, C E s.t.
» F = E, UE, has an vj, r-path for all i,
> > eck, M€) - Ce + D ecg, M - Ce is minimum



Single-source Rent-or-buy

Example

M=2




Single-source Rent-or-buy

Example

Cost =14
M=2




Single-source Rent-or-buy

Example

Cost =12
M=2
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Single-source Rent-or-buy network design

» SROB is a special case of Connected Facility Location
» Facilities have 0 opening cost
» Facilities can be opened at all vertices of the graph

» A 4.55 approximation primal-dual algorithm given in
[Swamy and Kumar, 2002]

» Simple and elegant solution given in [Gupta, Kumar and
Roughgarden, 2003] with 3.55 approximation
» Also applies to Multi-commaodity rent-or-buy (later in this

talk), CFL, Virtual Private Network design, Single-sink buy
at bulk.



Special Cases

Steiner tree (M = 1):
Given a graph G = (V,E), root r, k terminals vy, ..., vk and
non-negative edge costs ¢, for alle € E.

Find a minimum-cost tree T in G that contains an v;, r-path for
alli.



Special Cases

Steiner tree (M = 1):

Given a graph G = (V,E), root r, k terminals vy, ..., vk and
non-negative edge costs ¢, for alle € E.

Find a minimum-cost tree T in G that contains an v;, r-path for
alli.

Shortest Paths (M = o0):
An optimum solution will never buy any edge. Cheapest way of
renting capacity f; between s; and t; is along shortest path.



The GKR approach

Sample-Augment algorithm:

» Sample step Mark each demand with probability 1/M

» Subproblem step Buy a forest F connecting the set of
marked demands R

» Augmentation step Greedily rent capacity to produce a
feasible solution.



GKR applied to SROB

Sample-Augment for SROB
W.l.0.g, Consider demand flow f; = 1.
» Sample step Mark each demand with probability 1/M

» Subproblem step Buy a tree T connecting the set of
marked demands R to the root r.

» Augmentation step Connect each demand in D/R to the
closest vertex in T.
We separately bound:

» Buying cost incurred in the Subproblem step
» Renting cost incurred in the Augmentation step



Single-source Rent-or-buy

Sample-augment:Example

M=3
Q
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Demands sampled with pb 1/M



Single-source Rent-or-buy

Sample-augment:Example

M=3
0
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®

Three "facilities" openend



Single-source Rent-or-buy

Sample-augment:Example

M=3

Q
Q

Build a Steiner tree over sampled demands



Single-source Rent-or-buy

Sample-augment:Example

M=3

Connect demands to closest facilities



Approximation of SROB

Bounding the buying cost.

» TOPT: Steiner tree in OPT spanning ROPT.
> OPT =M TOPT 4+ 37, p jgoer C(v, TOPT)

Lemma
Er[T(R)] < OPT(D)

Proof.
Er[T(R)] <M TOPT 3 oer 1M c(v,TOPT) = OPT (D)



Strict cost-shares

» We like to distribute in a fair manner between the demands
the cost of the subproblem solution

» Every player should be charged proportionally to its
contribution to the cost.

(-strictness
¢(v,R): cost share of vertex v on sapled set R.

Definition
Cost-shares (v, R) are j-strict if:

> > veré(V,R) < T(R) competitiveness
» c(v,T(R/v)) < B¢(v,R) strictness



Single-source Rent-or-buy

Strict cost-shares for SROB

Theorem
There exists 2-strict cost shares for Steiner tree.

» Let us run the Prim algorithm on the set of sampled
demands

» MST is a 2-apx for Steiner tree.

» Let T, be the tree constructed on the first i vertices
selected by Prim’s algorithm.

» If vertex v is connected by Prim at the i 4 1-th iteration,
define & (R) = 3c(v,T).
» Prim’s cost-shares are 2-strict for Steiner tree since:

(v, T(R/V)) < c(v,Ti) < 26(R).



Single-source Rent-or-buy

Bounding the Renting cost

Proof.
» Renting cost R, =c(v,R) (Ry =0ifv € R.)
» Buying cost B, = M¢(v,R)ifveR B, =0ifv ¢ R.)
Total buying cost: }, .p By = >, cg M{(V,R) <M T(R)
» Renting cost of v: E[Ry|R] = (1 — &)c(v,R)
» Buying cost of v: E[By|R] = #ME(V,RUV) = £(V,RUV)
» It follows from (3 strictness: E[Ry|R] < SE[By|R], and

E [ZveD RV] < ﬁ E [ZveD BV] < ﬁ E [M T(R)] <
BOPT (D)



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy

Approximation via Cost-sharing

» One way to obtain strict cost shares is to add extra edges
the solution of the subproblem.

» However, we like to obtain cost shares that are strict for a
solution of good quality for the subproblem

» The approximation we achieve depends on the trade-off
between the quality of the approximation to the
subproblem and strictness

The strictness theorem:

Theorem

If there exist cost-shares that are competitive and 3-strict for an
«-approximate algorithm, then Sample-augment is

« + (-approximated.



Multi-commodity rent-or-buy (MROB)

Given:

» Network G = (V, E) with edge
costsce foralle e E
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Given:
» Network G = (V, E) with edge
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» Each terminal pair (sj,t;) wants to
send f; units of flow from s; to t;




Multi-commodity rent-or-buy (MROB)

Given:
» Network G = (V, E) with edge
costsce foralle e E
» Terminal pairs (S1,t1), ..., (Sk, )

» Each terminal pair (sj,t;) wants to
send f; units of flow from s; to t;

Goal: Install capacities on edges such
that all flows f; can be routed
simultaneously




MROB

Rent-or-Buy: On each edge e

» we can either rent capacity \(e)
at cost \(e) - Ce,

» or buy infinite capacity at cost
M N Ce
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» Cost of capacity installation: 20
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MROB

Rent-or-Buy: On each edge e

» we can either rent capacity \(e)
at cost \(e) - Ce,

» or buy infinite capacity at cost
M N Ce

Example: M =4

» Cost of capacity installation: 19



Definition: Multicommodity Rent-or-Buy

Input:
» Graph G = (V,E), edge costsce > Oforalle € E
» Terminal pairs R = {(S1,t1),...,(Sk,t%k)} SV x V
» Flows fy, ... fg
(here: assume f; = 1 for all i)

» Economies of scale parameter M > 1

Goal: Find Ep,E;, C E s.t.
» F = Ey, UE; has an sj, tj-path for all i,
> > eck, M€) - Ce + D ecg, M - Ce is minimum



Multi-commodity rent-or-buy

Special Cases

Steiner Forests (M = 1):

Given a graph G = (V,E), k terminal pairs (s1,t1), ..., (Sk, )
and non-negative edge costs c. foralle € E.

Find a minimum-cost forest F in G that contains an s;, tj-path
for all i.



Multi-commodity rent-or-buy

Special Cases

Steiner Forests (M = 1):

Given a graph G = (V,E), k terminal pairs (s1,t1), ..., (Sk, )
and non-negative edge costs c. foralle € E.

Find a minimum-cost forest F in G that contains an s;, tj-path
for all i.



Results on MROB

Multicommodity Rent-or-Buy

Kumar, Gupta, Roughgarden '02 0(1)
Gupta, Kumar, Pal, Roughgarden '03 12
Becchetti, Kbnemann, L., Pal '05 6.82
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Kumar, Gupta, Roughgarden '02 0(1)

Gupta, Kumar, Pal, Roughgarden '03 12

Becchetti, Kbnemann, L., Pal '05 6.82
Theorem

There is a 5-apx for the multicommodity rent-or-buy problem.
Fleischer, Kbnemann, L., Schafer'06



Results on MROB

Multicommodity Rent-or-Buy

Kumar, Gupta, Roughgarden '02 0(1)

Gupta, Kumar, Pal, Roughgarden '03 12

Becchetti, Kbnemann, L., Pal '05 6.82
Theorem

There is a 5-apx for the multicommodity rent-or-buy problem.
Fleischer, Kbnemann, L., Schafer'06

Key features:
» Use the framework of Gupta et al. '03.

» Alternate view of Steiner forest algorithm by Agrawal, Klein
and Ravi '95 gives much simpler analysis.



Multi-commodity rent-or-buy

Sample Augment for MROB[ ]
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Sample Augment for MROB[ ]

1. Mark each terminal pair with
probability 1/M. Marked terminal
pairs: D.
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1. Mark each terminal pair with
probability 1/M. Marked terminal
pairs: D.

2: Buy the edges of a Steiner forest
Ey, for D.

3: Rent cheapest set E; s.t.

F = Ep, UE;, is feasible.




Sample Augment for MROB[ ]

1. Mark each terminal pair with
probability 1/M. Marked terminal
pairs: D.

2: Buy the edges of a Steiner forest
Ey, for D.

3: Rent cheapest set E; s.t.

F = Ep, UE;, is feasible.

Total cost
M=3,e:D , - :E, M- c(Ep) + > ecg, AM(F,€)Ce = 23.



Sample Augment for MRoB

SimpleMRoB [Gupta et al. '03]:



Sample Augment for MRoB

SimpleMRoB [Gupta et al. '03]:

1: Mark each terminal pair with probability 1/M. Let D be set
of marked terminal pairs.



Sample Augment for MRoB

SimpleMRoB [Gupta et al. '03]:
1: Mark each terminal pair with probability 1/M. Let D be set
of marked terminal pairs.
2: Compute (approximate) Steiner forest F’ = E;, for D and
buy all edges in Ey,.



Sample Augment for MRoB

SimpleMRoB [Gupta et al. '03]:
1: Mark each terminal pair with probability 1/M. Let D be set
of marked terminal pairs.
2: Compute (approximate) Steiner forest F’ = E;, for D and
buy all edges in Ey,.
3: For all terminal pairs (s,t) ¢ D: Rent unit capacity on
shortest s, t-path in contracted graph G|F’.



Multi-commodity rent-or-buy

A Randomized Framework for MRoB

Theorem
Given an a-approximate and (-strict Steiner forest algorithm,
SimpleMRoB returns a feasible solution F = E,; U E;, such that

E{Y AMe)-cet+ D M-ce| <(a+p)-opt.

eckr ecky



Concept: Cost-Sharing

» An example with 2 terminal pairs

4—c 4-—c¢ R:{(V’V)’(W’W)}'
m » Steiner forest returned by
v 2w 2§ 2 g standard primal-dual algorithm

AKRis v, w-path.
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m » Steiner forest returned by
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Concept: Cost-Sharing

» An example with 2 terminal pairs

4—c 4-—c¢ R:{(V’V)’(W’W)}'
m » Steiner forest returned by
v 2w 2§ 2 g standard primal-dual algorithm

AKRis v, w-path.

Cost-Sharing Method:
Ev,v) = 1 Want algorithm to compute cost-share
¢(u,u) forall (u,u) € R s.t.

Y &(u,0) <optgr

(u,u)eRrR



Multi-commodity rent-or-buy

Concept: Strictness

Notation:
4-€ A4-c » R_,g : all pairs except (u, 0)




Multi-commodity rent-or-buy

Concept: Strictness

Notation:
» R_,g : all pairs except (u, u)

m » F_ua : AKRforest for R_g.

Ex: F_yy.




Multi-commodity rent-or-buy

Concept: Strictness

Notation:

47 4-c » R_,g : all pairs except (u, Q)
m » F_ua : AKRforest for R_g.
v w v W

Ex: F_yy.

> Cg|F_,y(2,Z) : min-cost z, Z-path
in G when edges in F_,g are
&(v,v) = 3 contracted.

fw,w) = 3 EX: CoF_,;(V,V) =4 —¢



Multi-commodity rent-or-buy

Concept: Strictness

Definition: Cost-shares ¢ are -strict if

CG|F_ug(u) l]) < ﬁ ' fu,ﬂ

m for all (u,0) € R.
v 2 w 2 g 2 &
&(v,v 3



Multi-commodity rent-or-buy

Concept: Strictness

Definition: Cost-shares ¢ are -strict if

CG|F_ug(u) l]) < ﬁ ' fu,ﬂ

4 —¢ 4 —¢
m for all (u,u) € R.
v 2 w 2 \v_/ 2 =
_ 4 _
CG|F,V\7(V7V) = 4_€§§€(V7V)
&(v,v) = 3



Multi-commodity rent-or-buy

Concept: Strictness

Definition: Cost-shares ¢ are -strict if

CG|F_ug(u) l]) < ﬁ ' fu,ﬂ

4—e 4—¢
m for all (u,d) € R.
v 2 w 2 \V-J 2
_ 4 _
CofF s (V,V) = 4—e<3¢(v,V)
_ 4 _
&v,v) = 3 CalF (W, W) = 4—e< (W, W)



Multi-commodity rent-or-buy

Concept: Strictness

Definition: Cost-shares ¢ are -strict if

CG|F_ug(u) l]) < ﬁ ' fu,ﬂ

4—e 4—¢
o o e Yy PraluieR
v 2 w 2 \V-J 2
_ 4 _
CofF s (V,V) = 4—e<3¢(v,V)
_ 4 _
£v,¥) = 3 CalF (W, W) = 4—e< (W, W)
&(w, 3

Cost-shares in this example are
3-strict.



Multi-commodity rent-or-buy

Concept: Strictness

Definition
A Steiner forest algorithm AKRis -strict if it returns a
cost-share & for all (s,t) € R such that

Notation:



Multi-commodity rent-or-buy

Concept: Strictness

Definition
A Steiner forest algorithm AKRis -strict if it returns a
cost-share & for all (s,t) € R such that

1. Z(s,t)eR Est < c(FY)

Notation:
» F* = min-cost Steiner forest for R



Multi-commodity rent-or-buy

Concept: Strictness

Definition

A Steiner forest algorithm AKRis -strict if it returns a
cost-share & for all (s,t) € R such that

1. Z(s,t)eR Est < c(FY)

2. Forany (s,t) € R, cgjp_,(S;t) < B-&st

Notation:
» F* = min-cost Steiner forest for R
» F_st = apx Steiner forest for R_s; = R \ {(s,t)} computed
by AKR
» G|F_st = graph obtained if all components of F_g; are
contracted.



Multi-commodity rent-or-buy

Strictness:; Once more...

» Run AKRon R to compute cost-shares &g for all (s,t) € R



Multi-commodity rent-or-buy

Strictness:; Once more...

» Run AKRon R to compute cost-shares &g for all (s,t) € R
> Cost-shares & must satisfy 3° g ést < C(F¥)



Multi-commodity rent-or-buy

Strictness:; Once more...

» Run AKRon R to compute cost-shares &g for all (s,t) € R
> Cost-shares &t must satisfy } s )cg &st < C(F”)
» Pick an arbitrary terminal pair (s,t) € R and let

Rost =R\ {(s,1)}



Multi-commodity rent-or-buy

Strictness:; Once more...

» Run AKRon R to compute cost-shares &g for all (s,t) € R
> Cost-shares &t must satisfy } s )cg &st < C(F”)
» Pick an arbitrary terminal pair (s,t) € R and let

Rost =R\ {(s, 1)}

» Run AKRon R_g and let F_g be the computed solution



Multi-commodity rent-or-buy

Strictness: Once more...

v

Run AKRon R to compute cost-shares & for all (s,t) € R
Cost-shares &t must satisfy } s g &st < ¢(F¥)

Pick an arbitrary terminal pair (s,t) € R and let

Rost =R\ {(s;1)}

Run AKRon R_g and let F_g be the computed solution
AKR g-strict implies:

shortest s, t-path in G|F_g; has cost at most 3 - &t

v

v

v

v



Multi-commodity rent-or-buy

Remainder of this Lecture

Show that the standard primal-dual algorithm for Steiner forests
due to Agrawal, Klein and Ravi is 2-approximate and 4-strict.
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Steiner Cuts

» AsubsetS CV iscalled a
Steiner cut if S separates at least
one terminal pair
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needs to have one edge crossing
every Steiner cut



Steiner Cuts

» AsubsetS CV iscalled a
Steiner cut if S separates at least
one terminal pair

» Every feasible Steiner forest
needs to have one edge crossing
every Steiner cut

» Use U for the set of all Steiner
cuts



Multi-commodity rent-or-buy

Undirected Cut Relaxation

Primal LP Relaxation:

m n z:ce-xe

ecE

s.t. Z Xe >1 VYU elU
ecé(U)
Xe >0 VecE

(6(V) : Edges in the cut defined by U)



Multi-commodity rent-or-buy

Undirected Cut Relaxation

Primal LP Relaxation: Dual LP:
ecE Uel
s.t. erzl YU e U s.t. Z yu<cCe VecE
ecs(U) U:ees(U)
Xe >0 VecE yu=>0 YUelU

(6(V) : Edges in the cut defined by U)



Multi-commodity rent-or-buy

Visualizing the Dual

» The dual yg of Steiner-cut S is
visualized as moat around S of

Yy .
S : radius ys



Visualizing the Dual

» The dual yg of Steiner-cut S is

visualized as moat around S of
radius ys

» The dual constraint for edge e is
tight if

Z Yu = Ce

U:eed(U)

Here: ys +ys = Ce



Primal-Dual Algorithm

» Algorithm starts with an empty (infeasible) primal solution
F and dual (feasible) solution yy = 0 for all Steiner cuts
Ueld



Primal-Dual Algorithm

» Algorithm starts with an empty (infeasible) primal solution
F and dual (feasible) solution yy = 0 for all Steiner cuts
Ueld

» Goal: Compute feasible primal/dual pair (F,y) such that
cost of F is bounded within dual objective function value,
e.g.,

c(F)<a-) yu

Ueld



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy Conclusion

Primal-Dual Algorithm

» Algorithm starts with an empty (infeasible) primal solution
F and dual (feasible) solution yy = 0 for all Steiner cuts
Ueld

» Goal: Compute feasible primal/dual pair (F,y) such that
cost of F is bounded within dual objective function value,
e.g.,

c(F)<a-) yu

ueud

» By weak duality, computed solution F is a-approximate
Steiner forest



Primal-Dual Algorithm




Primal-Dual Algorithm

®_—_C> . ) .
» Initially: Raise duals for all
3 singleton Steiner cuts
simultaneously...
®
2
®
3
——@

Time: .5



Single-source Rent-or-buy Multi-commodity rent-or-buy

Facility location problems

Primal-Dual Algorithm

5
®—® . ) .
» Initially: Raise duals for all
3 singleton Steiner cuts
simultaneously... until some
® edge/path becomes tight
2
®
3
O———@
5

Time: 1



Multi-commodity rent-or-buy

Facility location problems Single-source Rent-or-buy

Primal-Dual Algorithm

®—® . ) .
» Initially: Raise duals for all
3 singleton Steiner cuts
simultaneously... until some
edge/path becomes tight
2 » Add tight segment to F
3
O———@
5

Time: 1
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Primal-Dual Algorithm

C— @ » Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight
2 » Add tight segment to F

» Terminal is active if it is
3 separated from its mate

Time: 1



Multi-commodity rent-or-buy

Primal-Dual Algorithm

» Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight

» Add tight segmentto F

» Terminal is active if it is
separated from its mate

» Raise the duals of active
connected components

Time: 2

u]

|
1
I

!

o>
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Primal-Dual Algorithm

» Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight

» Add tight segmentto F

» Terminal is active if it is
separated from its mate

» Raise the duals of active
connected components

Time: 2
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|
1
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Primal-Dual Algorithm

» Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight

» Add tight segmentto F

» Terminal is active if it is
separated from its mate

» Raise the duals of active
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Multi-commodity rent-or-buy

Primal-Dual Algorithm

» Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight

» Add tight segmentto F

» Terminal is active if it is
separated from its mate

» Raise the duals of active
connected components

u]

|
1
I

!

acy



Multi-commodity rent-or-buy

Approximation Guarantee

Theorem (Agrawal, Klein, Ravi '95)
The cost of the computed forest F is

c(F)<2-> yy<2-opt
Uel



Multi-commodity rent-or-buy

Primal-Dual Algorithm: Different View




Multi-commodity rent-or-buy

Primal-Dual Algorithm: Different View

» When path P; becomes tight
» passes through inactive moats S, ..., S!
» segments P!, ..., P/™* are added to existing forest



Adding Strictness

1. Need to compute cost-shares & for all (s,t) € R such that

Z st < opt

(s,t)eR
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» Final forest F = P; U... U Pq has cost at most 2 - opt



Adding Strictness

1. Need to compute cost-shares & for all (s,t) € R such that

Z st < opt

(s,t)eR
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Multi-commodity rent-or-buy

Adding Strictness

1. Need to compute cost-shares & for all (s,t) € R such that

Z st < opt

(s,t)eR

» Final forest F = P; U... U Pq has cost at most 2 - opt

» Whenever a path P; becomes tight, can distribute half of the
cost of the added segments as cost-share

» This implies:
Total cost-share distributed is 2c(F) < opt .



Adding Strictness

2. Need to augment forest F_g; at cost

CG\F_St(Sat) < B-&st



Adding Strictness

2. Need to augment forest F_g; at cost

CG\F_St(Sat) < B-&st

» Consider the unique s, t-path Py in F



Adding Strictness

2. Need to augment forest F_g; at cost

CG\F_St(Sat) < B-&st

» Consider the unique s, t-path Py in F
» Some segments of Py might be missing in F_g;



Adding Strictness

2. Need to augment forest F_g; at cost

CG\F_St(Sat) < B-&st

» Consider the unique s, t-path P in F
» Some segments of Py might be missing in F_g;
» Use - & to pay for adding missing segments



Multi-commodity rent-or-buy

Crucial Notion: Witnesses

» Suppose, AKR adds path P; to connect S and S at time 7.



Multi-commodity rent-or-buy

Crucial Notion: Witnesses

» Suppose, AKR adds path P; to connect S and S at time 7.
» S and S are active = both contain active terminals.



Crucial Notion: Witnesses

» Suppose, AKR adds path P; to connect S and S at time 7.
» S and S are active = both contain active terminals.

Witnesses:

Carefully chosen active terminals w and w in S and S that are
closest to P;j.

For all e € Pj, let We = {w, W} be the set of its witnesses.
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Witnesses

Suppose s and t meet at time 75, > 7; and use (parts of) P;:
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Multi-commodity rent-or-buy

Witnesses

Suppose s and t meet at time 75, > 7; and use (parts of) P;:

Witness Lemma:
For all edges e in F that have been added before time 7;:

e ¢ F_g = sortis awitness of e
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Multi-commodity rent-or-buy

Consequences of Witness Lemma

» Consider s,t-path Py in F

» Any edge e € Pg; must have been added at some time
Te < 75t during AKR(R)

» Therefore: edge e € P missing = {s,t} N W, # ()
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Symmetric Cost-Sharing

» W, W: witnesses for the edges in e in P;

» The cost-share of witness v € {w,w} for each edge
ecPlu...uP™is

&v(e) =

e
a°e

» Cost-share of terminal pair (s, t):

st i= D ecr (&s(€) + &i(€))
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Wrapping Up

Theorem: AKRIis 2-approximate and 4-strict.

Proof.
» Pg: set of edges in Pg not contained in F_g;
» From Witness Lemma: e € Py = {s,t} N We # 0
» Cost of edge e is at most 4 - (£e(S) + Le(t))
» Cost to rebuild the path Pg; is at most

D Ce <4 ) (&) Fée(t) <4-Lu

ec |55t ec |55t



Multi-commodity rent-or-buy

Bad Examples and Insights

» Analysis is tight:
Cost-share of (s1,t;) for path (s1,51,t;) is 1.
Reconstruction of this path in F_g ¢, is 4.



Multi-commodity rent-or-buy

Bad Examples and Insights

» Analysis is tight:
Cost-share of (s1,t;) for path (s1,51,t;) is 1.
Reconstruction of this path in F_g ¢, is 4.

> But we're not using &, (t1)!
Total cost-share of (s1,t;) in our algorithm is %

We could have shown 3}% = 8-strictness!



Bad Examples and Insights

» Analysis is tight:
Cost-share of (s1,t;) for path (s1,51,t;) is 1.
Reconstruction of this path in F_g ¢, is 4.

> But we're not using &, (t1)!
Total cost-share of (s1,t;) in our algorithm is %

We could have shown 3}% = 8-strictness!

» Does the symmetric cost-sharing rule really lead to
8_strictness?
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It gets worse...

Nj—g:e 4_ ¢ N+2—¢ 4—¢
D pg Al
St N 5 2 t 2 fl S1 N 5, 2 t 2 fl

» Cost-shares of all terminal pairs

N
é.Sltl = €§1f1 = Z + 1

» Reconnecting s; and t; costs N + 2.
» Reconnecting S; and t; costs 4 — ¢



It gets worse...

Nj—g:e 4_ ¢ N+2—¢ 4—¢
D pg Al
St N 5 2 t 2 fl S1 N 5, 2 t 2 fl

v

Cost-shares of all terminal pairs

N
é.Sltl = €§1f1 = Z + 1

v

Reconnecting s; and t; costs N + 2.
Reconnecting 5; and t; costs 4 — ¢
Need to share cost of edges in asymmetric fashion!

v

v



Conclusion and Open Issues

» This lecture: AKRIis 4-strict = 6-apx for MRoB

» The analysis is tight but can be strengthened: replacing
symmetric by asymmetric cost-sharing rule leads to
3-strictness

» Can also show:

Current Steiner forest algorithms are no better than % strict.
Conjecture: AKRis 3-strict.
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