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Metric Facility location
Input:

◮ undirected graph G = (V , E)

◮ non-negative edge costs c : E → R
+

◮ set of facilities F ⊆ V
◮ facility i has facility opening cost fi
◮ set of demand points D ⊆ V
◮ cij : cost of connecting demand point j to facility i .

Connection cost satisfy triangle inequality

Goal: Compute
◮ set F ′ ⊆ F of opened facilities; and
◮ function φ : D → F ′ assigning demand points to opened

facilities that minimizes

∑

i∈F ′

fi +
∑

j∈D

cφ(j)j
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LP formulation

min
∑

i∈F ,j∈D

cijxij +
∑

i∈F

fiyi

s.t.
∑

i∈F

xij ≥ 1 j ∈ D

yi − xij ≥ 0 i ∈ F , j ∈ D
xij ∈ {0, 1} i ∈ F , j ∈ D
yi ∈ {0, 1} i ∈ F

◮ yi = 1 if facility i is opened;
◮ xij = 1 if demand j connected to facility i .
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Connected facility location

Input:
◮ Same as facility location; plus
◮ Parameter M

Goal: Compute
◮ set F ′ ⊆ F of opened facilities; and
◮ function φ : D → F ′ assigning cities to opened facilities;

and
◮ Steiner tree T connecting the opened facilities that

minimizes

∑

i∈F ′

fi +
∑

j∈D

cφ(j)j + M
∑

e∈T

ce
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Example

5 5

10

M=2

4

3 3

1

Cost = 12 + 10 + 8 = 30

Two facilities of cost 5 are opened and connected in a tree
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Connected facility location
LP formulation:
Try all possible vertices facilities as root of the Steiner tree T .

min
∑

i∈F

fiyi +
∑

i∈F ,j∈D

cijxij + M
∑

e

ceze

s.t.
∑

i∈F

xij ≥ 1 j ∈ D

yi − xij ≥ 0 i ∈ F , j ∈ D
yv = 1

∑

i∈S

xij ≤
∑

e∈δ(S) ze ∀S ⊆ V , v /∈ S, j

xij , yi , ze ∈ {0, 1} i ∈ F , j ∈ D

Primal-dual 9-apx [Swamy and Kumar, 2002].
Idea: Once a demand has contributed to open a facility, it starts
paying for the Steiner cost.
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Definition: Single-sink rent-or-buy

Input:
◮ Graph G = (V , E), edge costs ce ≥ 0 for all e ∈ E
◮ root r
◮ Demand points D = {v1, . . . , vk} ⊆ V
◮ Flows f1, . . . , fk

(here: assume fi = 1 for all i)
◮ Economies of scale parameter M ≥ 1

Goal: Find Eb, Er ⊆ E s.t.
◮ F = Eb ∪ Er has an vi , r -path for all i ,
◮

∑

e∈Er
λ(e) · ce +

∑

e∈Eb
M · ce is minimum
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Example

M=2

2

5
5
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Single-source Rent-or-buy network design

◮ SROB is a special case of Connected Facility Location
◮ Facilities have 0 opening cost
◮ Facilities can be opened at all vertices of the graph
◮ A 4.55 approximation primal-dual algorithm given in

[Swamy and Kumar, 2002]
◮ Simple and elegant solution given in [Gupta, Kumar and

Roughgarden, 2003] with 3.55 approximation
◮ Also applies to Multi-commodity rent-or-buy (later in this

talk), CFL, Virtual Private Network design, Single-sink buy
at bulk.
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Special Cases

Steiner tree (M = 1):
Given a graph G = (V , E), root r , k terminals v1, . . . , vk and
non-negative edge costs ce for all e ∈ E .
Find a minimum-cost tree T in G that contains an vi , r -path for
all i .

Shortest Paths (M = ∞):
An optimum solution will never buy any edge. Cheapest way of
renting capacity fi between si and ti is along shortest path.
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The GKR approach

Sample-Augment algorithm:

◮ Sample step Mark each demand with probability 1/M
◮ Subproblem step Buy a forest F connecting the set of

marked demands R
◮ Augmentation step Greedily rent capacity to produce a

feasible solution.
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GKR applied to SROB

Sample-Augment for SROB
W.l.o.g, Consider demand flow fj = 1.

◮ Sample step Mark each demand with probability 1/M
◮ Subproblem step Buy a tree T connecting the set of

marked demands R to the root r .
◮ Augmentation step Connect each demand in D/R to the

closest vertex in T .

We separately bound:

◮ Buying cost incurred in the Subproblem step
◮ Renting cost incurred in the Augmentation step
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Sample-augment:Example

M=3

r

Demands sampled with pb 1/M
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Sample-augment:Example

M=3

r

Three "facilities" openend
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Sample-augment:Example

M=3

r

Build a Steiner tree over sampled demands
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Sample-augment:Example

M=3

r

Connect demands to closest facilities
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Approximation of SROB

Bounding the buying cost.

◮ T OPT : Steiner tree in OPT spanning ROPT .
◮ OPT = M T OPT +

∑

v∈D/ROPT c(v , T OPT )

Lemma
ER[T (R)] ≤ OPT (D)

Proof.
ER[T (R)] ≤ M T OPT +

∑

v∈D/ROPT
1
M M c(v , T OPT ) = OPT (D)
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Strict cost-shares

◮ We like to distribute in a fair manner between the demands
the cost of the subproblem solution

◮ Every player should be charged proportionally to its
contribution to the cost.

β-strictness
ξ(v , R): cost share of vertex v on sapled set R.

Definition
Cost-shares ξ(v , R) are β-strict if:

◮

∑

v∈R ξ(v , R) ≤ T (R) competitiveness
◮ c(v , T (R/v)) ≤ βξ(v , R) strictness
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Strict cost-shares for SROB

Theorem
There exists 2-strict cost shares for Steiner tree.

◮ Let us run the Prim algorithm on the set of sampled
demands

◮ MST is a 2-apx for Steiner tree.
◮ Let Ti be the tree constructed on the first i vertices

selected by Prim’s algorithm.
◮ If vertex v is connected by Prim at the i + 1-th iteration,

define ξv (R) = 1
2c(v , Ti ).

◮ Prim’s cost-shares are 2-strict for Steiner tree since:

c(v , T (R/v)) ≤ c(v , Ti ) ≤ 2ξv (R).
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Bounding the Renting cost

Proof.

◮ Renting cost Rv = c(v , R) (Rv = 0 if v ∈ R.)
◮ Buying cost Bv = Mξ(v , R) if v ∈ R (Bv = 0 if v /∈ R.)

Total buying cost:
∑

v∈D Bv =
∑

v∈R Mξ(v , R) ≤ M T (R)

◮ Renting cost of v : E [Rv |R] = (1 − 1
M )c(v , R)

◮ Buying cost of v : E [Bv |R] = 1
M Mξ(v , R ∪ v) = ξ(v , R ∪ v)

◮ It follows from β strictness: E [Rv |R] ≤ βE [Bv |R], and
E

[
∑

v∈D Rv
]

≤ β E
[
∑

v∈D Bv
]

≤ β E [M T (R)] ≤
βOPT (D)
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Approximation via Cost-sharing

◮ One way to obtain strict cost shares is to add extra edges
the solution of the subproblem.

◮ However, we like to obtain cost shares that are strict for a
solution of good quality for the subproblem

◮ The approximation we achieve depends on the trade-off
between the quality of the approximation to the
subproblem and strictness

The strictness theorem:

Theorem
If there exist cost-shares that are competitive and β-strict for an
α-approximate algorithm, then Sample-augment is
α + β-approximated.
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Multi-commodity rent-or-buy (MROB)
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1

Given:
◮ Network G = (V , E) with edge

costs ce for all e ∈ E
◮ Terminal pairs (s1, t1), . . . , (sk , tk )

◮ Each terminal pair (si , ti) wants to
send fi units of flow from si to ti

Goal: Install capacities on edges such
that all flows fi can be routed
simultaneously
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MROB
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Rent-or-Buy: On each edge e
◮ we can either rent capacity λ(e)

at cost λ(e) · ce,
◮ or buy infinite capacity at cost

M · ce

Example: M = 4
◮ Cost of capacity installation: 20
◮ Cost of capacity installation: 19
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MROB
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MROB
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Definition: Multicommodity Rent-or-Buy

Input:
◮ Graph G = (V , E), edge costs ce ≥ 0 for all e ∈ E
◮ Terminal pairs R = {(s1, t1), . . . , (sk , tk )} ⊆ V × V
◮ Flows f1, . . . , fk

(here: assume fi = 1 for all i)
◮ Economies of scale parameter M ≥ 1

Goal: Find Eb, Er ⊆ E s.t.
◮ F = Eb ∪ Er has an si , ti -path for all i ,
◮

∑

e∈Er
λ(e) · ce +

∑

e∈Eb
M · ce is minimum
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Special Cases

Steiner Forests (M = 1):
Given a graph G = (V , E), k terminal pairs (s1, t1), . . . , (sk , tk )
and non-negative edge costs ce for all e ∈ E .
Find a minimum-cost forest F in G that contains an si , ti -path
for all i .
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Results on MROB

Multicommodity Rent-or-Buy

Kumar, Gupta, Roughgarden ’02 O(1)
Gupta, Kumar, Pál, Roughgarden ’03 12
Becchetti, Könemann, L., Pál ’05 6.82

Theorem
There is a 5-apx for the multicommodity rent-or-buy problem.
Fleischer, Könemann, L., Schäfer’06

Key features:
◮ Use the framework of Gupta et al. ’03.
◮ Alternate view of Steiner forest algorithm by Agrawal, Klein

and Ravi ’95 gives much simpler analysis.
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Sample Augment for MROB[Gupta et al. ’03]
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M = 3

1: Mark each terminal pair with
probability 1/M. Marked terminal
pairs: D.

2: Buy the edges of a Steiner forest
Eb for D.

3: Rent cheapest set Er s.t.
F = Eb ∪ Er is feasible.

Total cost
M · c(Eb) +

∑

e∈Er
λ(F , e)ce = 23.
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Sample Augment for MRoB

SimpleMRoB [Gupta et al. ’03]:
1: Mark each terminal pair with probability 1/M. Let D be set

of marked terminal pairs.
2: Compute (approximate) Steiner forest F ′ = Eb for D and

buy all edges in Eb.
3: For all terminal pairs (s, t) /∈ D: Rent unit capacity on

shortest s, t-path in contracted graph G|F ′.
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A Randomized Framework for MRoB

Theorem
Given an α-approximate and β-strict Steiner forest algorithm,
SimpleMRoB returns a feasible solution F = Er ∪ Eb such that

E





∑

e∈Er

λ(e) · ce +
∑

e∈Eb

M · ce



 ≤ (α + β) · opt.
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Concept: Cost-Sharing

v w v̄ w̄2 2 2

4 − ǫ 4 − ǫ

ξ(v , v̄) =

ξ(w , w̄) =

◮ An example with 2 terminal pairs
R = {(v , v̄ ), (w , w̄)}.

◮ Steiner forest returned by
standard primal-dual algorithm
AKR is v , w̄ -path.

Cost-Sharing Method:
Want algorithm to compute cost-share
ξ(u, ū) for all (u, ū) ∈ R s.t.

∑

(u,ū)∈R

ξ(u, ū) ≤ optR
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ξ(u, ū) ≤ optR



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy Conclusion

Concept: Cost-Sharing

v w v̄ w̄2 2 2

4 − ǫ 4 − ǫ

ξ(v , v̄ ) = 1

ξ(w , w̄) = 4

◮ An example with 2 terminal pairs
R = {(v , v̄ ), (w , w̄)}.

◮ Steiner forest returned by
standard primal-dual algorithm
AKR is v , w̄ -path.

Cost-Sharing Method:
Want algorithm to compute cost-share
ξ(u, ū) for all (u, ū) ∈ R s.t.

∑

(u,ū)∈R
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Concept: Strictness

v w v̄ w̄2 2 2

4 − ǫ 4 − ǫ

ξ(v , v̄ ) = 3

ξ(w , w̄) = 3

Notation:
◮ R−uū : all pairs except (u, ū)

◮ F−uū : AKR forest for R−uū.

Ex: F−vv̄ .

◮ cG|F−uū
(z, z̄) : min-cost z, z̄-path
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Concept: Strictness

Definition
A Steiner forest algorithm AKR is β-strict if it returns a
cost-share ξst for all (s, t) ∈ R such that

1.
∑

(s,t)∈R ξst ≤ c(F ∗)

2. For any (s, t) ∈ R, cG|F−st
(s, t) ≤ β · ξst

Notation:
◮ F ∗ = min-cost Steiner forest for R
◮ F−st = apx Steiner forest for R−st = R \ {(s, t)} computed

by AKR
◮ G|F−st = graph obtained if all components of F−st are

contracted.
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Strictness: Once more...

◮ Run AKR on R to compute cost-shares ξst for all (s, t) ∈ R
◮ Cost-shares ξst must satisfy

∑

(s,t)∈R ξst ≤ c(F ∗)

◮ Pick an arbitrary terminal pair (s, t) ∈ R and let
R−st = R \ {(s, t)}

◮ Run AKR on R−st and let F−st be the computed solution
◮ AKR β-strict implies:

shortest s, t-path in G|F−st has cost at most β · ξst
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Remainder of this Lecture

Show that the standard primal-dual algorithm for Steiner forests
due to Agrawal, Klein and Ravi is 2-approximate and 4-strict.
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Steiner Cuts

S
1

1

◮ A subset S ⊆ V is called a
Steiner cut if S separates at least
one terminal pair

◮ Every feasible Steiner forest
needs to have one edge crossing
every Steiner cut

◮ Use U for the set of all Steiner
cuts
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Undirected Cut Relaxation

Primal LP Relaxation:

min
∑

e∈E

ce · xe

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ∈ U

xe ≥ 0 ∀e ∈ E

(δ(U) : Edges in the cut defined by U)

Dual LP:

max
∑

U∈U

yU

s.t.
∑

U:e∈δ(U)

yU ≤ ce ∀e ∈ E

yU ≥ 0 ∀U ∈ U
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Visualizing the Dual

S
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◮ The dual yS of Steiner-cut S is
visualized as moat around S of
radius yS

◮ The dual constraint for edge e is
tight if

∑

U:e∈δ(U)

yU = ce

Here: yS + yS̄ = ce
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Primal-Dual Algorithm

◮ Algorithm starts with an empty (infeasible) primal solution
F and dual (feasible) solution yU = 0 for all Steiner cuts
U ∈ U

◮ Goal: Compute feasible primal/dual pair (F , y) such that
cost of F is bounded within dual objective function value,
e.g.,

c(F ) ≤ α ·
∑

U∈U

yU

◮ By weak duality, computed solution F is α-approximate
Steiner forest
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Primal-Dual Algorithm
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◮ Initially: Raise duals for all
singleton Steiner cuts
simultaneously... until some
edge/path becomes tight

◮ Add tight segment to F
◮ Terminal is active if it is

separated from its mate
◮ Raise the duals of active

connected components
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Approximation Guarantee

Theorem (Agrawal, Klein, Ravi ’95)
The cost of the computed forest F is

c(F ) ≤ 2 ·
∑

U∈U

yU ≤ 2 · opt
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Primal-Dual Algorithm: Different View

u v
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P1
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◮ Can view execution of algorithm AKR as picking paths

P1, . . . , Pq

◮ When path Pi becomes tight
◮ passes through inactive moats S1

i , . . . , Sl
i

◮ segments P1
i , . . . , P l+1

i are added to existing forest
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Adding Strictness

1. Need to compute cost-shares ξst for all (s, t) ∈ R such that

∑

(s,t)∈R

ξst ≤ opt

◮ Final forest F = P1 ∪ . . . ∪ Pq has cost at most 2 · opt
◮ Whenever a path Pi becomes tight, can distribute half of the

cost of the added segments as cost-share
◮ This implies:

Total cost-share distributed is 1
2c(F ) ≤ opt.
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Adding Strictness

2. Need to augment forest F−st at cost

cG|F−st
(s, t) ≤ β · ξst

◮ Consider the unique s, t-path Pst in F
◮ Some segments of Pst might be missing in F

−st
◮ Use β · ξst to pay for adding missing segments
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Crucial Notion: Witnesses

w w̄
S1

i S2
i Sl

iS S̄

P1
i P2

i P l+1
i

◮ Suppose, AKR adds path Pi to connect S and S̄ at time τi .
◮ S and S̄ are active =⇒ both contain active terminals.

Witnesses:
Carefully chosen active terminals w and w̄ in S and S̄ that are
closest to Pi .
For all e ∈ Pi , let We = {w , w̄} be the set of its witnesses.
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Witnesses

Suppose s and t meet at time τst ≥ τi and use (parts of) Pi :

s t

w w̄
S1

i S2
i Sl

iS S̄

P1
i P2

i P l+1
i

Witness Lemma:
For all edges e in F that have been added before time τst :

e 6∈ F−st =⇒ s or t is a witness of e
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Consequences of Witness Lemma

◮ Consider s, t-path Pst in F
◮ Any edge e ∈ Pst must have been added at some time

τe ≤ τst during AKR(R)

◮ Therefore: edge e ∈ Pst missing =⇒ {s, t} ∩We 6= ∅
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Symmetric Cost-Sharing

w w̄
S1

i S2
i Sl

iS S̄

P1
i P2

i P l+1
i

◮ w , w̄ : witnesses for the edges in e in Pi

◮ The cost-share of witness v ∈ {w , w̄} for each edge
e ∈ P1

i ∪ . . . ∪ P l+1
i is

ξv (e) :=
1
4

ce

◮ Cost-share of terminal pair (s, t):
ξst :=

∑

e∈F (ξs(e) + ξt(e))
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Wrapping Up

Theorem: AKR is 2-approximate and 4-strict.

Proof.

◮ P̄st : set of edges in Pst not contained in F−st

◮ From Witness Lemma: e ∈ P̄st =⇒ {s, t} ∩We 6= ∅

◮ Cost of edge e is at most 4 · (ξe(s) + ξe(t))
◮ Cost to rebuild the path Pst is at most

∑

e∈P̄st

ce ≤ 4 ·
∑

e∈P̄st

(ξe(s) + ξe(t)) ≤ 4 · ξst
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Bad Examples and Insights

s1 s̄1 t1 t̄1
2 2

(i)
2

4 − ǫ 4 − ǫ

s1 s̄1 t1 t̄1
2 2

(ii)
2

4 − ǫ 4 − ǫ

◮ Analysis is tight:
Cost-share of (s1, t1) for path 〈s1, s̄1, t1〉 is 1.
Reconstruction of this path in F−s1t1 is 4.

◮ But we’re not using ξ(t1 t̄1)(t1)!

Total cost-share of (s1, t1) in our algorithm is 3
2 .

We could have shown 4
3/2 = 8

3 -strictness!

◮ Does the symmetric cost-sharing rule really lead to
8
3 -strictness?



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy Conclusion

Bad Examples and Insights

s1 s̄1 t1 t̄1
2 2

(i)
2

4 − ǫ 4 − ǫ

s1 s̄1 t1 t̄1
2 2

(ii)
2

4 − ǫ 4 − ǫ

◮ Analysis is tight:
Cost-share of (s1, t1) for path 〈s1, s̄1, t1〉 is 1.
Reconstruction of this path in F−s1t1 is 4.

◮ But we’re not using ξ(t1 t̄1)(t1)!

Total cost-share of (s1, t1) in our algorithm is 3
2 .

We could have shown 4
3/2 = 8

3 -strictness!

◮ Does the symmetric cost-sharing rule really lead to
8
3 -strictness?



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy Conclusion

Bad Examples and Insights

s1 s̄1 t1 t̄1
2 2

(i)
2

4 − ǫ 4 − ǫ

s1 s̄1 t1 t̄1
2 2

(ii)
2

4 − ǫ 4 − ǫ

◮ Analysis is tight:
Cost-share of (s1, t1) for path 〈s1, s̄1, t1〉 is 1.
Reconstruction of this path in F−s1t1 is 4.

◮ But we’re not using ξ(t1 t̄1)(t1)!

Total cost-share of (s1, t1) in our algorithm is 3
2 .

We could have shown 4
3/2 = 8

3 -strictness!

◮ Does the symmetric cost-sharing rule really lead to
8
3 -strictness?



Facility location problems Single-source Rent-or-buy Multi-commodity rent-or-buy Conclusion

It gets worse...

s1 s̄1 t1 t̄1
N 2 2

N + 2 − ǫ 4 − ǫ

s1 s̄1 t1 t̄1
N 2 2

N + 2 − ǫ 4 − ǫ

◮ Cost-shares of all terminal pairs

ξs1t1 = ξs̄1 t̄1 =
N
4

+ 1

◮ Reconnecting s1 and t1 costs N + 2.
◮ Reconnecting s̄1 and t̄1 costs 4 − ǫ

◮ Need to share cost of edges in asymmetric fashion!
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Conclusion and Open Issues

◮ This lecture: AKR is 4-strict =⇒ 6-apx for MRoB
◮ The analysis is tight but can be strengthened: replacing

symmetric by asymmetric cost-sharing rule leads to
3-strictness

◮ Can also show:
Current Steiner forest algorithms are no better than 8

3 strict.
Conjecture: AKR is 8

3 -strict.
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