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Introduction

 Online algorithms and competitive analysis
Deterministic

Randomized

« Review of important techniques

Randomized rounding
Dual fitting



What is an Online Algorithm?

Input is given "in pieces” over time, each piece is called a

“request”
Request sequence: {o = 01,09,...,0p,...}
Upon arrival of request o; :

 Online algorithm has to serve the request

 Previous decisions for requests oy, ..., 0,.; cannot be changed



Performance Evaluation: Competitive Factor

* How to evaluate performance of online algorithm A?

* For every request sequence o = oy, ... , o
compare cost of A to the cost of an optimal offline

algorithm that "knows" the request sequence in advance

« Competitive factor of online algorithm A is « if

For every request sequence o = oy, ... , o

A(O’l,...,O'n) < o
OPT(o1,...,0,) —




Example 1:The Ski Rental Problem

« Buying costs $B
« Renting costs $1 per day

Problem:

Number of ski days is not known in advance — each ski day
IS a request served by buying or renting

"ilyv

Goal: Minimize the total cost.



Ski Rental: Analysis

 Online Algorithm: rent for m days and then buy
* What is the optimal choice of m? m=B

« If # of skidays < B, cost(online) = OPT
« If # of ski days > B, cost(online) < 20PT

= Competitive ratio = 2



Example 2:The Paging Problem

Universe of of n pages
Cache of size k < n

Request sequence of pages: 1,6,4,1,4,7,6,1, 3, ..

If requested page is in cache: no penalty.

Else, cache miss! load requested page into cache, evicting
some other page.

Goal: minimize number of cache misses.

Question: which page to evict in case of a cache miss?



Paging: Analysis

* Online Algorithm LRU (Least Recently Used):
Upon cache miss, evict the page whose last access

was earliest (least recently used page).
Theorem 1: The competitive factor of LRU is k.

Theorem 2: The competitive factor of any
(deterministic) paging algorithm > k.



Proof of Theorem 1

» time
I Phase 1 I Phase 2 I

In each phase: LRU has precisely k misses

(OPT and LRU start from the same initial configuration)

Claim: Each phase has requests to k different pages
Proof: If the first miss in a phase is due to page x, then all
k-1 remaining pages in the cache will be evicted before

X, since x has a higher priority. [



Proof of Theorem 1 (contd.)

X - page that caused first miss in phase
S - pages that caused rest of cache misses in phase +

page that caused first miss in next phase

By claim, |S—{x}|=k
Since page x € OPT's cache, OPT has a cache miss

p - humber of full phases
cost of OPT > p
cost of LRU < k(p+1) ]



Randomization

Online algorithm A uses random bits r=ry, r,, ...

Expected cost of A ono: Exp.[A(o,r)]

. e . Exp,A(o,r)
A is a-competitive if, Vo OPT(o) =°

Oblivious adversary: knows online algorithm A,
request sequence o, but not the outcome of the

random bits r



Example: Randomized Paging Algorithm

* Marking Algorithm:
« Each requested page is marked
« Page miss: evict one of the unmarked pages,
chosen uniformly at random

« When all pages are marked, unmark them

Theorem 1: The competitive factor of the Marking
Algorithm is 2H,

Theorem 2: The competitive factor of any randomized

paging algorithm is H,=Q(logk)



Set Cover

e Elements: U ={1,2, ... ,n}
« Sets: S;,...S,, (each S, C {1,2,...,n})
« Each set S, has cost c;

 Goal: find a min cost collection of sets that cover U

set cover can be formulated as integer/linear program:

X; - indicator variable for choosing set S,

m
minimize E CiTs Relaxation: 0 < x, <1
i=1

 LP can be solved in poly time

for every element j: Z z; > 1 < LPprovides alower bound on

1|7 €5; optimal integral solutionl!!

T; € {0, 1}



Rounding a Fractional Solution (1)

 ForeachS:0<x <1

* For each element j: 2 x; > 1 (summed over x;, j € S;)

Randomized Rounding:

* For each set S;: pick it to the cover with probability x;

Analysis:

« Exp[cost of cover] = %, c; x; = LP cost

* Pr[element j is not covered] =

= IT -=) < (1zéxe>k< (1;)k<i

EIjESQ

Conclusion: probability of covering element j is at least a constant!




Rounding a Fractional Solution (2)

Amplify probability of success:

« Repeat experiment clogn times so that

clogn
1
Pr[element j is not covered] < (—) < —
e 2n

Analysis:

b | =

: 1
* Pr[some element is not covered] < n - 5 <

« Exp[cost of cover] = O(logn) %, c; x; = O(logn)(LP cost)

Conclusion: approximation factor is O(logn)




Set Cover: Greedy Algorithm

* TInitially: C is empty
 While there is an uncovered element:
« Add to C the set S; minimizing

c,/(# new elements covered)

Analysis: via dual fitting

m T
minimize Z CiXq maximize Z Yi
=1 J=1
for every element j: Z x; > 1 for every set S;: Z y; < ¢
zljesl JES;
x; >0 y; = 0

IV

Primal: covering Dual: packing



Dual Fitting (1)

Primal solution is feasible
Dual solution: if element j is covered by set S; then
y; = Ci//(# new elements covered by S;)
In the iteration in which S; is picked:
A primal = A dual = c;
since cost of S, is "shared” between the new elements
Thus, cost of primal solution = cost of dual solution

Is the dual solution feasible? Almost, but not quite ...



Dual Fitting (2)

For set S: suppose the order in which elements in S are

covered is ey, ... , €

c(S)
—i+1

When element e, is covered, Ye; = P

i L ¢(S) 1
Thus, D Ve <) — g <cS) ) 7<) Hk)

Dividing dual variables by H(n) ~ logn yields a feasible
solution
Greedy algorithm is an O(logh)-approximation:

primal < dual x H(n)



The Online Primal-Dual Framework

« Introduction: covering

« The ski problem

« The online set cover problem



Back to Ski Rental

« Buying costs $B
« Renting costs $1 per day

Problem:
Number of ski days is not known in advance

Goal: Minimize the total cost.




Ski Rental - Integer Program

X =1

1-Buy

0 - Don't Buy

7

1-Rentonday i
0 - Don't rent on day |

\

K
min Bx+ ) 7,
i=1

Subject to:

Foreachdayi: X+2 >1

X,z €{0,1}



Ski Rental - Relaxation

P: Primal Covering D: Dual Packing
K K
min Bx+ >z max >y,
i=1 i=1
Foreach day it x+z >1 For each day i: Y, <1
K
X,Z, >0 >y, <B
=1

Online setting:
* Primal: New constraints arrive one by one.

* Requirement: Upon arrival, constraints should
be satisfied.

* Monotonicity: Variables can only be increased.



Ski Rental - Algorithm

P: Primal Covering D: Dual Packing
k
min Bx+ >z maXZY.
=1
Foreach day it x+z >1 For each day i yI <1
X,z 20 Z y. <B
=1

Initially x¢ O

' Each new day (new constraint):

i x<ls
=z, < 1-x ;
= x €< x(1+1/B)+ 1/(c*B) -'c'later.

_______________________________________________________________________



Analysis of Online Algorithm

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, AP < (1+ 1/c)AD.
3. Dual is feasible.

Conclusion: Algorithm is (1+ 1/c)-competitive

______________________________________________________________________

' Initially x< O

Each new day (new constraint):

if x<1:
n 7. & 1-x ;
» x € x(1+1/B)+1/(c*B) - 'c'later. |



Analysis of Online Algorithm

1. Primal solution is feasible.
If x 21 the solution is feasible.
Otherwise set: z, < 1-x.

Al orl’rhm

> A9 !

Itx21, AP =AD= O  When new constraint

Otherwise: . arrives, if x<1:

+ Change in dual: 1 Z<1-x i
' x< x(1+1/B) + 1/c*B

* Change in primal: vt :

BAX + 7, = x+ 1/c+ 1-x = 1+1/g



Analysis of Online Algorithm

3. Dualis feasikble: E_A_léjé_ﬁi_’_rﬂ_rh_: """""""""" i
. ' When new constraint
Need to prove: Z_llyi <B T arrives, if x<l: -
" ' 2,€1-x
We prove that after B days x21 | x< x(1+ 1/B) + 1/c*B
yi<l

X iS @ SUM Of JEOMELHC SEQUENCE  ---rr-rrrmrwmrmmrmmemmmememecd
a, =1/(cB),q=1+1/B

\B B
(1+1 -1 (1+1j -1
1 B ) B
=B 1 B i‘> 1 e
cB (1+j—1 ¢ 1+=~ /




Randomized Algorithm_¢&==#
0 1 g@“g

X, X, Xi X,

X:

 Choose d uniformly in [0,1]
 Buy on the day corresponding to the “bin” d falls In
 Rent up to that day

Analysis:

* Probability of buying on the i-th day is x;
« Probability of renting on the i-th day Is at most z



Going Beyond the Ski Problem

« Ski problem: coefficients in the constraint
matrix belong to {0,1}

« What can be said about general constraint
matrices with coefficients from {0,1}?



The Online Set-Cover Problem

* elements: e, e,, ..., €,
» setsystem:s,, S,, ... S,
* costs: ¢(S,), ¢(S,), ... c(Sy)

Online Setting:

* Elements arrive one by one.
 Upon arrival elements need to be covered.

e Sets that are chosen cannot be “unchosen’.

Goal: Minimize the cost of the chosen sets.



Online Set-Cover: Lower Bound

« elements: 1, ... ,n

n

. sets: all ( ﬁ) subsets of cardinality Vn
e cost: unit cost

Adversary’s strategy:

* While possible: pick an element that is not covered
(# of elements offered = Vn)

Competitive ratio: \n (cost of online: = Vn, cost of OPT = 1)

But, ... vn ~log (\7/%) . So polylog(m,n) is not ruled out.



Set Cover — Linear Program

P: Primal Covering D: Dual Packing
min > c(s)x(s) max > y(e)
seS eck
VeeE Y x(s)=1 |VseS ) y(e)<c(s)
slees ees

Online setting:

* Primal: constraints arrive one by one.

* Requirement: each constraint is satisfied.
* Monotonicity: variables can only be increased.



Primal-Dual Algorithms

We will see two algorithms:

» “Discrete” algorithm — generalizing ideas
from the ski problem

« “Continuous” algorithm



Set Cover — Discrete Algorithm

P: Primal Covering D: Dual Packing
min > c(s)x(s) max > y(e)
scS eck

VeeE Y x(s)=1 |VseS ) y(e)<c(s)

slees ees

___________________________________________________________________________________

Initially x(s)< O

. When new element arrives, while Z X(s) <1:
. Y(e) & Y(e)"‘l slees

- Wslees xX(s) < X(s)(1+1/¢(s))+1/[m-c(s)]

___________________________________________________________________________________



Analysis of Online Algorithm

Proof of competitive factor:

1. Primal solution is feasible.
2. In each iteration, AP < 2AD.
3. Dual is (almost) feasible.

Conclusion: We will see later.

________________________________________________________________________________

Initially x(S)€< 0
' When new element e arrives, while Z X(s) <1:
- y(e) € y(e)l ees
Vslees x(s) <« x(s)(1+1/c(s))+1/[m-c(s)]



Analysis of Online Algorithm

1. Primal solution is feasible.
We increase the primal variables until the

constraint Is feasible. J

________________________________________________________________________________

Initially x(S)€< 0
' When new element e arrives, whilez X(s) <1:
E . y(e) & y(e)+1 slees
Vslees x(s) <« x(s)(1+1/c(s))+1/[m-c(s)]



Analysis of Online Algorithm

2. In each iteration, AP £ 2AD.
In each Iteration:

AD =1 X(s), 1
i | _ . X(S
AP = SleZEZSC(S) AX(s) Slezelsc(s)  c(s) ' m-c(s)_

= x(8)+ Y 1Um<2 \/
slees Slees

________________________________________________________________________________

Initially x(S)€< 0
' When new element e arrives, while Z X(s) <1:
E . y(e) & y(e)+1 slees
Vslees x(s) < x(s)(1+1/c(s))+1/[m-c(s)]



Analysis of Online Algorithm

Dual is (almost) feasible:

We prove that: VseS, ZY(G) < ¢(s)O(log m)

If y(e) increases, then x(s) iIncreases (forein S).
X(S) Is a sum of a geometric series:

a, = 1/[mc(s)], g = (1+ 1/c(s))

________________________________________________________________________________

Initially x(S)€< 0
When new element e arrives, whllez X(s) <1:

© y(e) € y(e)+l ses
Vslees x(s) < x(s)(1+1/c(s))+1/[m-c(s)]



Analysis of Online Algorithm

= After ¢(s)O(log m) rounds: |
1 ([2reE e -
X(s) =

m-c(s) [1+1/c(s)]-1

([1+1/c()] ™ 1)
= >1

m
We never increase a variable x(s)>1!

________________________________________________________________________________

Initially x(S)€< 0
' When new element e arrives, whilez X(s) <1:
E . y(e) & y(e)+1 slees
Vslees x(s) < x(s)(1+1/c(s))+1/[m-c(s)]




Conclusions

 The dual is feasible with cost 1/O(log m) of the primal.

=» The algorithm produces a fractional set cover that is
O(log m)-competitive.

 Remark: no online algorithm can perform better
(in the worst case).



Set Cover — Continuous Algorithm

Inl’rlally x(s)< 0,y(e)< O

g When new element e arrives:
- While Y x(s)<1:
i slees

'+ Increase variable y(e) continuously
.+ For each s|e € s,

x(s) % : {exp (m(i(_;m) : Z y(e')) = 1}

e'€s

_________________________________________________________________________________________



Analysis of Online Algorithm

Proof of competitive factor:
1. Primal solution is feasible
2. In the iteration corresponding to element e:

OP oD
(0 - 2In(1+m) - (o)

3. Dual solution feasible



Analysis of Online Algorithm

1. Primal solution is feasible.

We increase the primal variables until the
constraint is feasible.

v



Analysis of Online Algorithm

2. In each iteration:

0 oD
- 2In(1 +m) -
oy 2 By
«  Dual change: a@% =1

(variable y(e) is increased continuously)



Primal Change

\ o(s)
In(1+m) - Z (.:L‘(S) + %) < 2In(1+m).
slees




Analysis of Online Algorithm

3. Dual is feasible:

We prove that Vs : Z y(€e') < c(s)

e’'Es

X(S) <1 (otherwise s satisfies the violated constraint for e)

Hence, n(l +m
z(s) = % {exp (1 (i(—; ) | Zy(e’)) — 1} <1

e’ Es




Conclusions

 The primal is feasible
e The dual is feasible

« The ratio between primal change and dual change is
1/0(log m)

=» The algorithm produces a fractional set cover which is
O(log m)-competitive.



Discrete vs. Continuous

Both algorithms are essentially the same:

()~ ()

as long as c(s) is not too small. (c(s) 21)

Description of discrete algorithm is simpler

Analysis of continuous algorithm is simpler



Summary: Key ldea for Primal-Dual Update

Primal: Min 2, ¢; X, Dual: Max 2., b,V

Step t, new constraint: New variable y,

a;X; +aX, + ... tax b, + b, y; In dual objective
X, € (1+ a/c;) X; (mult. update) Y, € Y, + 1 (additive update)

A primal cost = > ¢;(Ax;) > ¢ (aimi)

(

= Zaz‘% < bt = A Dual Cost
i



Online Randomized Rounding

What about an integral solution?

« Round fractional solution:

— For set s, choose it with probability Ax(s) when incrementing
variable x(s)

— Repeat O(logn) times to amplify success probability
« Competitive ratio is O(logm logn)

 Can be done deterministically online [AAABNO3].



