
Seffi Naor

Computer Science Dept.

Technion

Haifa, Israel

9th Max-Planck Advanced Course on the

Foundations of Computer Science

(ADFOCS)

Primal-Dual Algorithms for Online

Optimization: Lecture 1

Introduction

• Online algorithms and competitive analysis

• Deterministic

• Randomized

• Review of important techniques

• Randomized rounding

• Dual fitting

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

What is an Online Algorithm?

• Input is given “in pieces” over time, each piece is called a

“request”

• Request sequence: { }

• Upon arrival of request ¾i :

• Online algorithm has to serve the request

• Previous decisions for requests ¾1, …, ¾i-1 cannot be changed

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

¾ = ¾1; ¾2; : : : ; ¾n; : : :

Performance Evaluation: Competitive Factor

• How to evaluate performance of online algorithm A?

• For every request sequence ¾ = ¾1, … , ¾n:

compare cost of A to the cost of an optimal offline

algorithm that “knows” the request sequence in advance

• Competitive factor of online algorithm A is ® if

For every request sequence ¾ = ¾1, … , ¾n:

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Example 1:The Ski Rental Problem

• Buying costs $B

• Renting costs $1 per day

Problem:

Number of ski days is not known in advance – each ski day
is a request served by buying or renting

Goal: Minimize the total cost.

Ski Rental: Analysis

• Online Algorithm: rent for m days and then buy

• What is the optimal choice of m? m=B

• If # of ski days · B, cost(online) = OPT

• If # of ski days > B, cost(online) · 2OPT

•) Competitive ratio = 2

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Example 2:The Paging Problem
Universe of of n pages

Cache of size k ¿ n

Request sequence of pages: 1, 6, 4, 1, 4, 7, 6, 1, 3, …

If requested page is in cache: no penalty.

Else, cache miss! load requested page into cache, evicting
some other page.

Goal: minimize number of cache misses.

Question: which page to evict in case of a cache miss?

Paging: Analysis

• Online Algorithm LRU (Least Recently Used):

Upon cache miss, evict the page whose last access

was earliest (least recently used page).

Theorem 1: The competitive factor of LRU is k.

Theorem 2: The competitive factor of any

(deterministic) paging algorithm ¸ k.

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Proof of Theorem 1

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

time

Phase 1 Phase 2

In each phase: LRU has precisely k misses

(OPT and LRU start from the same initial configuration)

Claim: Each phase has requests to k different pages

Proof: If the first miss in a phase is due to page x, then all

k-1 remaining pages in the cache will be evicted before

x, since x has a higher priority. 

Proof of Theorem 1 (contd.)

x – page that caused first miss in phase

S – pages that caused rest of cache misses in phase +

page that caused first miss in next phase

By claim, |S – {x}| ≥ k

Since page x 2 OPT‟s cache, OPT has a cache miss

p – number of full phases

cost of OPT ¸ p

cost of LRU · k(p+1) 

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Randomization

• Online algorithm A uses random bits r=r1, r2, …

• Expected cost of A on ¾: Expr[A(¾,r)]

• A is ®-competitive if, ¾:

• Oblivious adversary: knows online algorithm A,

request sequence ¾, but not the outcome of the

random bits r

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Example: Randomized Paging Algorithm

• Marking Algorithm:

• Each requested page is marked

• Page miss: evict one of the unmarked pages,

chosen uniformly at random

• When all pages are marked, unmark them

Theorem 1: The competitive factor of the Marking

Algorithm is 2Hk

Theorem 2: The competitive factor of any randomized

paging algorithm is Hk=(logk)

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Set Cover

• Elements: U ={1,2, … ,n}

• Sets: S1,…,Sm (each Si µ {1,2, … ,n})

• Each set Si has cost ci

• Goal: find a min cost collection of sets that cover U

set cover can be formulated as integer/linear program:

xi - indicator variable for choosing set Si

minimize

mX

i=1

cixi

for every element j:
X

ijj2Si

xi ¸ 1

xi 2 f0; 1g

Relaxation: 0 · xi · 1

• LP can be solved in poly time

• LP provides a lower bound on

optimal integral solution!!!

Rounding a Fractional Solution (1)

• For each Si: 0 · xi · 1

• For each element j: i xi ¸ 1 (summed over xi, j 2 Si)

Randomized Rounding:

• For each set Si: pick it to the cover with probability xi

Analysis:

• Exp[cost of cover] = i ci xi = LP cost

• Pr[element j is not covered] =

Conclusion: probability of covering element j is at least a constant!

Rounding a Fractional Solution (2)

Amplify probability of success:

• Repeat experiment clogn times so that

Pr[element j is not covered]

Analysis:

• Pr[some element is not covered]

• Exp[cost of cover] = O(logn) i ci xi = O(logn)(LP cost)

Conclusion: approximation factor is O(logn)

Set Cover: Greedy Algorithm

• Initially: C is empty

• While there is an uncovered element:

• Add to C the set Si minimizing

ci/(# new elements covered)

Analysis: via dual fitting

Primal: covering ¸ Dual: packing

Dual Fitting (1)

• Primal solution is feasible

• Dual solution: if element j is covered by set Si then

yj = ci/(# new elements covered by Si)

• In the iteration in which Si is picked:

¢ primal = ¢ dual = ci

since cost of Si is “shared” between the new elements

• Thus, cost of primal solution = cost of dual solution

• Is the dual solution feasible? Almost, but not quite …

Dual Fitting (2)

• For set S: suppose the order in which elements in S are

covered is e1, … , ek

• When element ei is covered,

• Thus,

• Dividing dual variables by H(n) ¼ logn yields a feasible

solution

• Greedy algorithm is an O(logn)-approximation:

primal · dual £ H(n)

The Online Primal-Dual Framework

• Introduction: covering

• The ski problem

• The online set cover problem

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Back to Ski Rental

• Buying costs $B

• Renting costs $1 per day

Problem:

Number of ski days is not known in advance

Goal: Minimize the total cost.

Ski Rental – Integer Program

Subject to:

For each day i:

1 - Rent on day i

0 - Don't rent on day i
iz


 


1 - Buy

0 - Don't Buy
x


 


1

min
k

i

i

Bx z




1ix z 

, {0,1}ix z 

D: Dual Packing

For each day i:

Ski Rental – Relaxation
P: Primal Covering

For each day i:

1

min
k

i

i

Bx z




1iy 

, 0ix z 

1

max
k

i

i

y




1ix z 

1

k

i

i

y B




Online setting:

• Primal: New constraints arrive one by one.

• Requirement: Upon arrival, constraints should
be satisfied.

• Monotonicity: Variables can only be increased.

D: Dual Packing

For each day i:

Ski Rental – Algorithm
P: Primal Covering

For each day i:

1

min
k

i

i

Bx z




1iy 

, 0ix z 

1

max
k

i

i

y




1ix z 

1

k

i

i

y B




Initially x 0
Each new day (new constraint):

if x<1:
 zi  1-x
 x  x(1+ 1/B) + 1/(c*B) - „c‟ later.
 yi  1

Analysis of Online Algorithm

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP ≤ (1+ 1/c)ΔD.

3. Dual is feasible.

Conclusion: Algorithm is (1+ 1/c)-competitive

Initially x 0
Each new day (new constraint):

if x<1:
 zi  1-x
 x  x(1+ 1/B) + 1/(c*B) - „c‟ later.
 yi  1

Analysis of Online Algorithm

1. Primal solution is feasible.

If x ≥1 the solution is feasible.

Otherwise set: zi  1-x.

2. In each iteration, ΔP ≤ (1+ 1/c)ΔD:

If x≥1, ΔP =ΔD=0

Otherwise:

• Change in dual: 1

• Change in primal:

BΔx + zi = x+ 1/c+ 1-x = 1+1/c

Algorithm:
When new constraint

arrives, if x<1:
zi1-x
x x(1+ 1/B) + 1/c*B
yi1

Analysis of Online Algorithm

3. Dual is feasible:

Need to prove:

We prove that after B days x≥1

x is a sum of geometric sequence

a1 = 1/(cB), q = 1+1/B

1

k

i

i

y B




1 1
1 1 1 1

1

1
1 1

B B

B B
x

cB c

B

   
      

     
 
  

 

1
1 1 1

B

c e
B

 
     
 

1
1

1

e

c e
 



Algorithm:
When new constraint

arrives, if x<1:
zi1-x
x x(1+ 1/B) + 1/c*B
yi1

Randomized Algorithm

• Choose d uniformly in [0,1]

• Buy on the day corresponding to the “bin” d falls in

• Rent up to that day

Analysis:

• Probability of buying on the i-th day is xi

• Probability of renting on the i-th day is at most zi

X1 X2 X3 X4

0 1
X:

Going Beyond the Ski Problem

• Ski problem: coefficients in the constraint

matrix belong to {0,1}

• What can be said about general constraint

matrices with coefficients from {0,1}?

The Online Set-Cover Problem

• elements: e1, e2, …, en

• set system: s1, s2, … sm

• costs: c(s1), c(s2), … c(sm)

Online Setting:

• Elements arrive one by one.

• Upon arrival elements need to be covered.

• Sets that are chosen cannot be “unchosen”.

Goal: Minimize the cost of the chosen sets.

Online Set-Cover: Lower Bound

• elements: 1, … ,n

• sets: all subsets of cardinality n

• cost: unit cost

Adversary’s strategy:

• While possible: pick an element that is not covered

(# of elements offered ≥ n)

Competitive ratio: n (cost of online: = n, cost of OPT = 1)

But, … . So polylog(m,n) is not ruled out.

µ
np
n

¶

p
n ¼ log

µ
np
n

¶

D: Dual Packing

Set Cover – Linear Program
P: Primal Covering

Online setting:

• Primal: constraints arrive one by one.

• Requirement: each constraint is satisfied.

• Monotonicity: variables can only be increased.

max ()
e E

y e




 () ()
e s

s S y e c s


  

min () ()
s S

c s x s




 () 1
s e s

e E x s


  

Primal-Dual Algorithms

We will see two algorithms:

• “Discrete” algorithm – generalizing ideas

from the ski problem

• “Continuous” algorithm

D: Dual Packing

Set Cover – Discrete Algorithm
P: Primal Covering

max ()
e E

y e




 () ()
e s

s S y e c s


  

min () ()
s S

c s x s




 () 1
s e s

e E x s


  

Initially x(s) 0
When new element arrives, while

• y(e)  y(e)+1
• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

Analysis of Online Algorithm

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP ≤ 2ΔD.

3. Dual is (almost) feasible.

Conclusion: We will see later.

Initially x(S) 0
When new element e arrives, while

• y(e)  y(e)+1

• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

Analysis of Online Algorithm

1. Primal solution is feasible.

We increase the primal variables until the

constraint is feasible.

Initially x(S) 0
When new element e arrives, while

• y(e)  y(e)+1

• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

Analysis of Online Algorithm
2. In each iteration, ΔP ≤ 2ΔD.

In each iteration:

• ΔD = 1

Initially x(S) 0
When new element e arrives, while

• y(e)  y(e)+1

• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

s|e s s|e s

(s) 1/m 2x
 

   
s|e s s|e s

() 1
 P = c(s) () c(s)

() ()

x s
x s

c s m c s 

 
     

 
 

Analysis of Online Algorithm
3. Dual is (almost) feasible:

• We prove that:

• If y(e) increases, then x(s) increases (for e in S).

• x(s) is a sum of a geometric series:

a1 = 1/[mc(s)], q = (1+ 1/c(s))

Initially x(S) 0
When new element e arrives, while

• y(e)  y(e)+1

• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

e S

 , y(e) c(s)O(log m)s S


  

Analysis of Online Algorithm
 After c(s)O(log m) rounds:

We never increase a variable x(s)>1!

Initially x(S) 0
When new element e arrives, while

• y(e)  y(e)+1

• .

 () 1:
s e s

x s




    s e s () () 1 1/ () 1/ ()x s x s c s m c s     

  
 

() (log)
1 1/ () 11

 ()
() 1 1/ () 1

c s O m
c s

x s
m c s c s

 


  

  () (log)
1 1/ () 1

1

c s O m
c s

m

 
 

Conclusions

• The dual is feasible with cost 1/O(log m) of the primal.

 The algorithm produces a fractional set cover that is

O(log m)-competitive.

• Remark: no online algorithm can perform better

(in the worst case).

Set Cover – Continuous Algorithm
Initially x(s) 0, y(e) 0

When new element e arrives:

While

• Increase variable y(e) continuously

• For each s|e 2 s,

• .

 () 1:
s e s

x s




Analysis of Online Algorithm

Proof of competitive factor:

1. Primal solution is feasible

2. In the iteration corresponding to element e:

3. Dual solution feasible

@P

@y(e)
· 2 ln(1 +m) ¢ @D

@y(e)

Analysis of Online Algorithm

1. Primal solution is feasible.

We increase the primal variables until the

constraint is feasible.

Analysis of Online Algorithm

2. In each iteration:

• Dual change:

(variable y(e) is increased continuously)

@P

@y(e)
· 2 ln(1 +m) ¢ @D

@y(e)

@D
@y(e)

= 1

Primal Change

Analysis of Online Algorithm
3. Dual is feasible:

• We prove that

• x(s) ≤ 1 (otherwise s satisfies the violated constraint for e)

• Hence,

Conclusions

• The primal is feasible

• The dual is feasible

• The ratio between primal change and dual change is

1/O(log m)

 The algorithm produces a fractional set cover which is

O(log m)-competitive.

Discrete vs. Continuous

• Both algorithms are essentially the same:

as long as c(s) is not too small. (c(s) ≥1)

• Description of discrete algorithm is simpler

• Analysis of continuous algorithm is simpler

Summary: Key Idea for Primal-Dual Update

Primal: Min i ci xi Dual: Max t bt yt

Step t, new constraint: New variable yt

a1x1 + a2x2 + … + ajxj ≥ bt + bt yt in dual objective

xi  (1+ ai/ci) xi (mult. update) yt  yt + 1 (additive update)

 primal cost =

=  Dual Cost

Online Randomized Rounding

What about an integral solution?

• Round fractional solution:

– For set s, choose it with probability Δx(s) when incrementing

variable x(s)

– Repeat O(logn) times to amplify success probability

• Competitive ratio is O(logm logn)

• Can be done deterministically online [AAABN03].

