
Seffi Naor

Computer Science Dept.

Technion

Haifa, Israel

9th Max-Planck Advanced Course on the

Foundations of Computer Science

(ADFOCS)

Primal-Dual Algorithms for Online

Optimization: Lecture 2

Contents

• Packing problems

• Routing

• Load balancing

• General covering/packing results

• More applications

OPT(I)

ALG(I)
¸ ®

a+ b

X

i

ai

a+ ba+ b

Online Virtual Circuit Routing

Network graph G=(V, E)

capacity function u: E Z+

Requests: ri = (si, ti)

• Problem: Connect si to ti by a path, or reject the
request.

• Reserve one unit of bandwidth along the path.

• No re-routing is allowed.

• Load: ratio between reserved edge bandwidth and
edge capacity.

• Goal: Maximize the total throughput.

Routing – Linear Program

s.t:

For each ri:

For each edge e:

(,)iy r p

()

max (,)
i i

i

r p P r

y r p

= Amount of bandwidth allocated for ri on path p

()iP r - Available paths to serve request ri

()

(,) 1
i

i

p P r

y r p

()

(,) ()
i i

i

r p P r e p

y r p u e

D: Dual Packing

Routing – Linear Program

P: Primal Covering

min () () ()
i

i

e E r

u e x e z r

, () :i ir p P r

Online setting:

• Dual: new columns arrive one by one.

• Requirement: each dual constraint is satisfied.

• Monotonicity: variables can only be increased.

()

max (,)
i i

i

r p P r

y r p

()

 (,) 1
i

i i

p P r

r y r p

()

: (,) ()
i i

i

r p P r e p

e y r p u e

 e p

x(e) () 1iz r

D: Dual Packing

Routing – Algorithm 1

P: Primal Covering

min () () ()
i

i

e E r

u e x e z r

, () :i ir p P r

()

max (,)
i i

i

r p P r

y r p

()

 (,) 1
i

i i

p P r

r y r p

()

: (,) ()
i i

i

r p P r e p

e y r p u e

 e p

x(e) () 1iz r

Initially x(e) 0

When new request arrives, if

 z(ri) 1

 .

 y(ri,p) 1

e p

(), x(e) 1:ip P r

1 1
: () () 1

() ()
e p x e x e

u e n u e

Analysis of Algorithm 1

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP ≤ 3ΔD.

3. Dual is (almost) feasible.

Conclusions: We will see later.

Initially x(e) 0

When new request arrives, if

 z(ri) 1

 .

 y(ri,p) 1

e p

(), x(e) 1:ip P r

1 1

: () () 1
() ()

e p x e x e
u e n u e

Analysis of Algorithm 1

1. Primal solution is feasible.

If the solution is feasible.

Otherwise: we update z(ri) 1
e p

(), x(e) 1:ip P r

Initially x(e) 0

When new request arrives, if

 z(ri) 1

 .

 y(ri,p) 1

e p

(), x(e) 1:ip P r

1 1
: () () 1

() ()
e p x e x e

u e n u e

Analysis of Algorithm 1

2. In each iteration: ΔP ≤ 3ΔD.

If ΔP = ΔD=0

Otherwise:

ΔD=1

e p

() : x(e) 1ip P r

() () ()i

e p

P u e x e z r

() 1

() 1 3
() ()e p

x e
u e

u e n u e

Initially x(e) 0

When new request arrives, if

 z(ri) 1

 .

 y(ri,p) 1

e p

(), x(e) 1:ip P r

1 1
: () () 1

() ()
e p x e x e

u e n u e

Analysis of Algorithm 1

3. Dual is (almost) feasible.

We prove:

• For each e, after routing u(e)O(log n) on e, x(e)≥1

x(e) is a sum of a geometric sequence

x(e)1 = 1/(nu(e)), q = 1+1/u(e)

 After u(e)O(log n) requests:

() (log) () (log)

1 1
1 1 1 1

() ()1
 () 1

() 1
1 1

()

u e O n u e O n

u e u e
x e

n u e n

u e

Conclusions: Algorithm 1

• The algorithm is 3-competitive, since ΔP ≤ 3ΔD

• Edge capacities are violated by at most a factor of

O(logn), since the dual is “almost” feasible.

D: Dual Packing

Routing – Algorithm 2

P: Primal Covering

min () () ()
i

i

e E r

u e x e z r

, () :i ir p P r

()

max (,)
i i

i

r p P r

y r p

()

 (,) 1
i

i i

p P r

r y r p

()

: (,) ()
i i

i

r p P r e p

e y r p u e

 e p

x(e) () 1iz r

Analysis of Algorithm 2

Proof of competitive factor:

1. Primal solution is feasible.

2. In each iteration, ΔP≈O(logn)ΔD.

3. Dual is feasible.

Analysis of Algorithm 2

1. Primal solution is feasible.

If the solution is feasible.

Otherwise: we update z(ri) 1
e p

(), x(e) 1:ip P r

Analysis of Algorithm 2

2. Ratio between ΔP and ΔD: If , ΔP = ΔD=0

Otherwise: ΔD=1 and

ΔP =

e p

() : x(e) 1ip P r

Analysis of Algorithm 2

- monotonically decreasing

Therefore, ΔP is at most:

since:

Thus, ΔP/ ΔD

Analysis of Algorithm 2

3. Dual is feasible. We prove:

– For each e, after routing u(e) requests, x(e)≥1

x(e) is a sum of a geometric sequence

 After u(e) requests:

Conclusions: Algorithm 2

• competitive

• It does not violate capacity constraints

• If then,

• This result was obtained by [AAP, 1993]

Further Results: Routing

We saw a simple algorithm which is:

• 3-competitive and violates capacities by O(log n) factor.

Can be improved [Buchbinder, N., FOCS06] to:

• 1-competitive and violates capacities by O(log n) factor.

Non Trivial.

Main ideas:

• Combination of ideas drawn from casting of previous
routing algorithms within the primal-dual approach.

• Decomposition of the graph.

• Maintaining several primal solutions which are used to
bound the dual solution, and for the routing decisions.

Further Results: Routing

Applications [Buchbinder, N, FOCS 06]:

• Can be used as “black box” for many objective

functions and in many routing models:

– Previous Settings [AAP93,APPFW94].

– Maximizing throughput.

– Minimizing load.

– Achieving better global fairness results

(Coordinate competitiveness).

Scheduling and Load Balancing

• Set of m machines

• Set of jobs

• Assigning a job to a machine incurs a load

Motivation and Objective

• Parallel processing of jobs on machines

• Assignments of packets to communication lines

• Distributing web cache files on web servers

Objective: minimize maximum load - makespan

Machines

Machine Scheduling Models

Identical machines:

• A job can be assigned to any machine, incurring the

same load

Restricted assignment:

• A job can be assigned to only a subset of the machines

• The load of a job on all allowed machines is the same

Unrelated machines: [our focus]

• Job i on machine j has load p(i,j)

Online Model

Online setting:

• Jobs arrive one-by-one

• Upon arrival of each job:

– reveals its load function

– needs to be assigned to a machine

• Assignments of jobs to machines are irreversible

Example

M1

M2

0 1 2 3 4 5

t = 0

M1

M2

0 1 2 3 4 5

Example

Example

M1

M2

0 1 2 3 4 5

t = 1

M1

M2

0 1 2 3 4 5

On-line solution

Example

M1

M2

0 1 2 3 4 5

M1

M2

0 1 2 3 4 5

On-line solution

Optimal solution

Example

Our Model

Unrelated machines:

• Job i on machine j has load p(i,j)

Linear program:

• we want to write a maximization program

• we assume that OPT’s max load α is known

• obtained by “doubling”:

– it guarantees α ≤ 2∙(OPT’s max load)

Doubling

• Initially: α ← minimum load (known)

• Our online algorithm keeps the invariant:

– either its max load ≤ α∙(competitive ratio)

– or it generates a certificate that OPT > α (“failure”)

• In case of failure:

– α ← 2 ∙ α (α ≤ 2∙OPT is maintained)

– “forget” about previous assignments

– assignments for different α-s are geometric:

[α∙(competitive ratio) + 2 α∙(competitive ratio) +

4 α∙(competitive ratio) + …]

– loss incurred is at most a factor of 4

Setting up the Linear Program (2)

• Normalized load of job j on machine i:

• Upon arrival of job j:

– machine i is eligible if

– no such machine exists: announce failure!

– clearly, OPT also cannot schedule with load ≤ α

y(i,j) – indicator for scheduling job i on machine j

Objective: maximize number of jobs scheduled

• If max load is correctly guessed, then all jobs can

be scheduled!

Linear Program: fixed α

Load Balancing Algorithm: fixed α

Analysis of Load Balancing Algorithm

We show:

• Load of assigned jobs on each machine is

O(α∙ logm)

• If algorithm returns failure: then there exists a

primal solution of value < N (# of jobs) – a

certificate that OPT> α

• Else: all jobs are scheduled with load O(α∙logm)

Bounding the Load on the Machines

The Primal Solution

The Primal Solution

Online Primal-Dual Approach: Summary

• Can the offline problem be cast as a linear

covering/packing program?

• Can the online process be described as:

– New rows appearing in a covering LP?

– New columns appearing in a packing LP?

Yes ??

• Upon arrival of a new request:

– Update primal variables in a multiplicative way.

– Update dual variables in an additive way.

Online Primal Dual Approach

Next Prove:

1. Primal solution is feasible (or nearly feasible).

2. In each round, ΔP ≤ c ΔD.

3. Dual is feasible (or nearly feasible).

Got a fractional solution, but need an integral

solution ??

• Randomized rounding techniques might work.

• Sometimes, even derandomization (e.g., method of

conditional probabilities) can be applied online!

Online Primal-Dual Approach

Advantages:

1. Generic ideas and algorithms applicable to many

online problems.

2. Linear Program helps detecting the difficulties of the

online problem.

3. General recipe for the design and analysis of online

algorithms.

4. No potential function appearing “out of nowhere”.

5. Competitiveness with respect to a fractional optimal

solution.

General Covering/Packing Results

What can you expect to get?

• For a {0,1} covering/packing matrix:

– Competitive ratio O(log D) [BN05]

(D – max number of non-zero entries in a constraint).

Remarks:

• Fractional solutions.

• Number of constraints/variables can be exponential.

• There can be a tradeoff between the competitive ratio

and the factor by which constraints are violated.

General Covering/Packing Results

• For a general covering/packing matrix [BN05] :

Covering:

– Competitive ratio O(log n)

(n – number of variables).

Packing:

– Competitive ratio O(log n + log [a(max)/a(min)])

a(max), a(min) – maximum/minimum non-zero entry

Remarks:

• Results are tight.

Further Results via P-D Approach

Covering Online Problems (Minimization):

• Dynamic TCP Acknowledgement

• Parking Permit Problem [Meyerson 05]

• Online Graph Covering Problems [AAABN04]:

– Non-metric facility location

– Generalized connectivity: pairs arrive online

– Group Steiner: groups arrive online

– Online multi-cut: (s,t)--pairs arrive online

