9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS)

Primal-Dual Algorithms for Online Optimization: Lecture 3

> Seffi Naor Computer Science Dept. Technion Haifa, Israel

Contents

• The ad-auctions problem

- Caching
 - Relationship with k-server
 - Weighted paging
 - Web caching

What are Ad-Auctions?

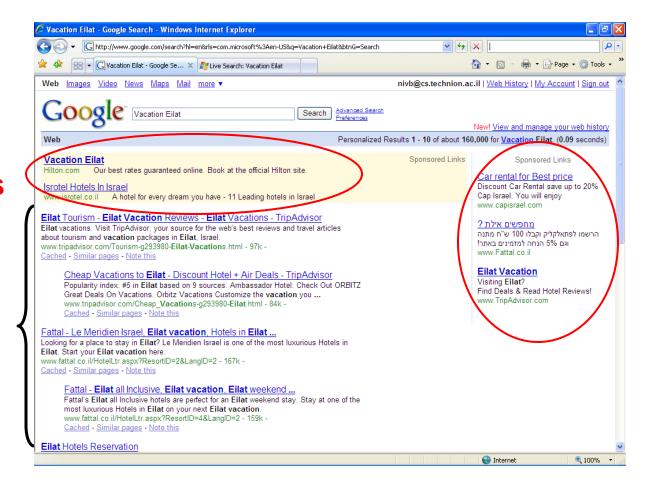
You type in a query:

Vacation Eilat

And ... Ad-auctions

You get:

Algorithmic Search results



How do search engines sell ads?

- Each advertiser:
 - Sets a daily budget
 - Provides bids on interesting keywords
- Search Engine (on each keyword):
 - Selects ads
 - Advertiser pays bid if user clicks on ad.

Goal (of search engine):

Maximize Revenue

How much does it cost?

Buying keyword like "divorce lawyer" may cost as much as \$40 per click

Estimates are for September 30th 2007

Edit View Favorites Tools Help		
🛠 🔡 👻 🌈 ALGO 2007	G Google AdWords: Key	wor ×
Keywords • Estimat	ed Avg. CPC ② Estima	ted Ad Position ②
luxury vacation	\$3.48	1 - 3
golf vacation	\$3.23	1 - 3
hotel vacation	\$2.66	1 - 3
scuba vacation	\$2.62	1 - 3
vacation tours	\$2.61	1 - 3
hotels vacation	\$2.61	1 - 3
vacation rentals spa vacation	\$2.40 \$2.39	1 - 3 1 - 3
ilat vacatio		\$2.36
παι νασαιιο		•
	\$2.24	1 - 3
	\$2.24 \$2.21	1 - 3 1 - 3
vacation traver hotels in eilat	\$2.21	
vacation traver hotels in eilat	\$2.21	1-3
hotels in eilat	\$2.21	1 - 3

Mathematical Model

- Buyer i:
 - has a daily budget B(i)
- Online Setting:

- items (keywords) arrive one-by-one.
- buyers bid on the items (bid can be zero)
- Algorithm:
 - Assigns each item to an interested buyer.

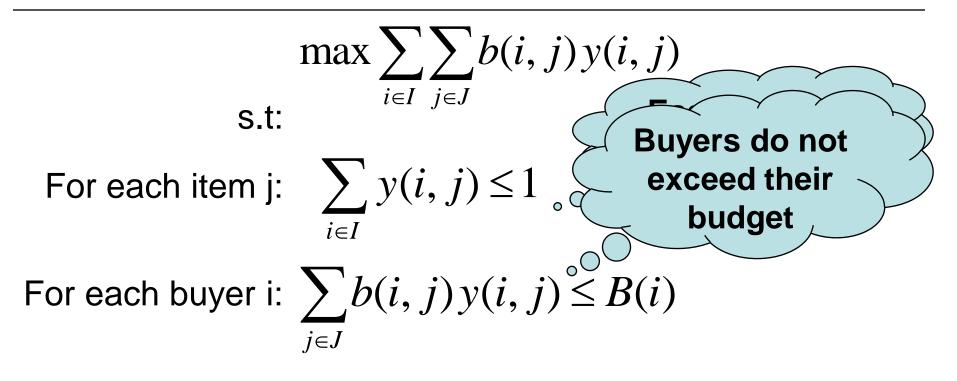
Assumption:

Each bid is small compared to the daily budget.

Ad-auctions – Linear Program

- I Set of buyers. B(i) Budget of buyer i
- J Set of items. b(i,j) bid of buyer i on item j

 $y(i, j) = 1 \Rightarrow j$ -th adword is sold to buyer i.



Ad-auctions: Primal and Dual P: Primal Covering $\min \sum_{i \in I} B(i)x(i) + \sum_{j \in J} z(j)$

For each item j and buyer i: $b(i, j)x(i) + z(j) \ge b(i, j)$

D: Dual Packing

$$\max \sum_{i \in I} \sum_{j \in J} b(i, j) y(i, j)$$

For each item j:
$$\sum_{i \in I} y(i, j) \le 1$$

For each buyer i:
$$\sum_{j \in J} b(i, j) y(i, j) \le B(i)$$

The Primal-Dual Algorithm

- Initially: for each buyer i: $x(i) \leftarrow 0$
- When new item j arrives:
- Assign the item to the buyer i that maximizes:

$$b(i,j) \big[1 - x(i) \big]$$

- if x(i)≥1 do nothing, otherwise:
 - $y(i, j) \leftarrow 1$

•
$$z(j) \leftarrow b(i, j) [1 - x(i)]$$

• $x(i) \leftarrow x(i) \left[1 + \frac{b(i, j)}{B(i)} \right] + \frac{b(i, j)}{B(i) [c-1]}$ - 'c' later

Proof of competitive factor:

- 1. Primal solution is feasible.
- 2. In each iteration, $\Delta P \leq (1 + 1/(c-1))\Delta D$.
- 3. Dual is feasible.

Conclusion:

Algorithm is (1+ 1/(c-1))-competitive

1. Primal solution is feasible.

For each item j and buyer i:

 $b(i, j)x(i) + z(j) \ge b(i, j)$

If $x(i) \ge 1$ the solution is feasible.

Else, $z(j) \leftarrow \max_{i} \{ b(i,j)(1-x(i)) \}$, and the solution is feasible

Increasing x(i) in the future maintains feasibility

2. In each iteration, $\Delta P \leq (1 + 1/(c-1))\Delta D$: If $x(i) \geq 1$, $\Delta P = \Delta D = 0$

Otherwise:

• $\Delta D = b(i,j)$

•
$$\Delta P = B(i)\Delta x(i) + z(j)$$

$$=B(i)\left[\frac{b(i,j)x(i)}{B(i)} + \frac{b(i,j)}{B(i)[c-1]}\right] + b(i,j)[1-x(i)] = b(i,j)\left[1 + \frac{1}{(c-1)}\right]$$
$$z(j) \leftarrow b(i,j)[1-x(i)] \quad x(i) \leftarrow x(i)\left[1 + \frac{b(i,j)}{B(i)}\right] + \frac{b(i,j)}{B(i)[c-1]}$$

3. Dual is feasible:

- The "last" item assigned to a buyer may exceed his budget
- The online algorithm loses the revenue from such an item
- This where the assumption that each individual bid is small with respect to the budget is used
- The maximum ratio between a bid of any buyer and its total budget: (b(i,j))

$$R = \max_{i \in I, j \in M} \left\{ \frac{b(i,j)}{B(i)} \right\}$$

It is easy to prove by induction that:

$$1 \ge x(i) \ge \frac{1}{c-1} \left[c^{\frac{\sum_{j} b(i,j)y(i,j)}{B(i)}} - 1 \right]$$

- if $x(i) \ge 1$, primal constraints of buyer i are feasible.
- ➔ No more items are assigned to the buyer.
- simplifying the inequality we get that the dual is almost feasible (up to the "last" item)

Competitive Factor

• Setting $c = (1+R)^{\frac{1}{R}}$

$$c \to e$$
 when $R \to 0$

• The competitive factor is

$$\left(1-\frac{1}{c}\right)\left(1-R\right) = \left(1-\frac{1}{e}\right) \text{ if } R \to 0$$

Result obtained by [MSVV, FOCS 2005]

Extensions – Getting More Revenue

- Seller wants to sell several advertisements
- There are ℓ slots on each page

- Bidders provide bids on keywords which are slot dependent
 b(i,j,k) – bid of buyer i on keyword j and slot k
- A slot can only be allocated to one advertiser

Linear Program

Dual (Packing)		
Maximize: Subject to: $\forall 1 \leq j \leq m, \ 1 \leq k \leq \ell$:	$\sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{\ell=1}^{k} b(i, j, \ell) y(i, j, \ell)$ $\sum_{i=1}^{n} y(i, j, k) \le 1$	
$\forall 1 \leq i \leq n:$	$\sum_{j=1}^{m} \sum_{k=1}^{\ell} b(i,j,k) y(i,j,k) \le B(i)$	
$\forall 1 \leq j \leq m, 1 \leq i \leq n:$	$\sum_{k=1}^{\ell} y(i,j,k) \leq 1$	
Primal (Covering)		
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\sum_{i=1}^{n} B(i)x(i) + \sum_{j=1}^{m} \sum_{k=1}^{\ell} z(j,k) + \sum_{i=1}^{n} \sum_{j=1}^{m} s(i,j)$ $b(i,j,k)x(i) + z(j,k) + s(i,j) \ge b(i,j,k)$	

Online Allocation Algorithm

Initially, $\forall i, x(i) \leftarrow 0$.

Upon arrival of a new item j:

- 1. Generate a bipartite graph H: n buyers on one side and ℓ slots on the other side. Edge $(i, k) \in H$ has weight b(i, j, k)(1 x(i)).
- 2. Find a maximum weight (integral) matching in H, i.e., an assignment to the variables y(i, j, k).
- 3. Charge buyer *i* the minimum between $\sum_{k=1}^{\ell} b(i, j, k) y(i, j, k)$ and its remaining budget.
- 4. For each buyer *i*, if there exists slot *k* for which y(i, j, k) > 0:

$$x(i) \leftarrow x(i) \left(1 + \frac{b(i,j,k)y(i,j,k)}{B(i)}\right) + \frac{b(i,j,k)y(i,j,k)}{(c-1) \cdot B(i)}$$

Remark: If $\ell = 1$, the maximum weight matching is a single edge maximizing b(i, j)(1 - x(i)).

Proof of competitive factor:

- 1. Primal solution is feasible.
- 2. In each iteration, $\Delta P \leq (1 + 1/(c-1))\Delta D$.
- 3. Dual is feasible.

Conclusion:

Algorithm is (1+ 1/(c-1))-competitive

Analysis: Crucial Fact

Dual (Packing)	Primal (Covering)
$\max \sum_{i} \sum_{k} b(i, j, k) \left(1 - x(i)\right) y(i, j, k)$	$\min \sum_{i=1}^{n} s(i,j) + \sum_{k=1}^{\ell} z(j,k)$
Subject to:	Subject to:
$\forall 1 \leq k \leq \ell$: $\sum_{i=1}^{n} y(i, j, k) \leq 1$	$\forall (i,k): \ s(i,j) + z(j,k) \geq b(i,j,k) \left(1 - x(i)\right)$
$\forall 1 \leq i \leq n$: $\sum_{k=1}^{\ell} y(i,j,k) \leq 1$	$\forall i,k: \qquad s(i,j), z(j,k) \geq 0$
$\forall i,k:$ $y(i,j,k) \ge 0$	

Figure 1: The LP for the matching problem solved for item j

- Primal variables are the same as in the allocation problem.
- There is an optimal primal solution and a dual **integral** solution satisfying:

$$\sum_{i=1}^{n} \sum_{k=1}^{\ell} b(i,j,k) \left(1 - x(i)\right) y(i,j,k) = \sum_{i=1}^{n} s(i,j) + \sum_{k=1}^{\ell} z(j,k).$$

• This solution defines the assignmet to the primal and dual variables

1. Primal solution is feasible.

for each buyer I, item j, slot k:

 $b(i, j, k)x(i) + z(j, k) + s(i, j) \ge b(i, j, k).$

this constraint is satisfied by the primal-dual solution to the weighted matching LP

Increasing x(i) in the future maintains feasibility

2. In each iteration, $\Delta P \leq (1 + 1/(c-1))\Delta D$:

$$\begin{split} \Delta P &= \sum_{i=1}^{n} z(j,i) + \sum_{k=1}^{\ell} s(i,j) + \sum_{i=1}^{n} B(i) \Delta x(i) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{\ell} b(i,j,k) \left(1 - x(i)\right) y(i,j,k) \\ &+ \sum_{i=1}^{n} \sum_{k=1}^{\ell} B(i) \left(\frac{b(i,j,k)x(i)y(i,j,k)}{B(i)} + \frac{b(i,j,k)y(i,j,k)}{(c-1) \cdot B(i)}\right) \\ &= \sum_{i=1}^{n} \sum_{k=1}^{\ell} b(i,j,k) y(i,j,k) \left(1 + \frac{1}{c-1}\right). \end{split}$$

Since $\Delta D = \sum_{i=1}^{n} \sum_{k=1}^{\ell} b(i, j, k) y(i, j, k)$, the claim follows.

$$\sum_{i=1}^{n} \sum_{k=1}^{\ell} b(i,j,k) \left(1-x(i)\right) y(i,j,k) = \sum_{i=1}^{n} s(i,j) + \sum_{k=1}^{\ell} z(j,k).$$

- 3. Dual is feasible:
- similar to the proof in the single slot case
- the competitive factor is

$$\left(1-\frac{1}{c}\right)\left(1-R\right) = \left(1-\frac{1}{e}\right)$$
 if $R \to 0$

Online Matching in Bipartite Graphs

Input: bipartite graph H=(U,V,E)

Goal: find a maximum matching in H

Online model:

- V is known
- the vertices of U arrive one by one and expose their neighbors in V (upon arrival)
- for each u ∈ U, upon arrival, online algorithm decides whether to match u to a vertex in V

Online Algorithms for Matching

- any algorithm that matches a vertex, if possible, achieves competitive ratio ½ since (maximal matching) ≥ ½ · (maximum matching)
- online algorithm of [KVV 1990]:
 - choose a random permutation π on V
 - assign each vertex $u \in U$ to the minimum index vertex in V with respect to π
 - competitive ratio: 1-1/e
- an online primal-dual algorithm can find a fractional matching with competitive ratio 1-1/e
- can an integral matching be computed via the primaldual method?

The Paging/Caching Problem

- Relationship to the k-Server Problem
- Weighted paging
- Web caching

The Paging/Caching Problem (Reminder)

Universe of of n pages Cache of size $k \ll n$

Request sequence of pages: 1, 6, 4, 1, 4, 7, 6, 1, 3, ...

If requested page is in cache: no penalty. Else, cache miss! load requested page into cache, evicting some other page.

Goal: minimize number of cache misses.

Question: which page to evict in case of a cache miss?

Known Results: Paging

Paging (Deterministic) [Sleator Tarjan 85]:

- Any online algorithm ≥ k-competitive.
- LRU is k-competitive (also other algorithms)
- LRU is k/(k-h+1)-competitive if optimal has cache of size $h \le k$.

Paging (Randomized):

- Rand. Marking O(log k) [Fiat, Karp, Luby, McGeoch, Sleator, Young 91].
- Lower bound H_k [Fiat et al. 91], tight results known.
- O(log(k/k-h+1))-competitive algorithm if optimal has cache of size h ≤ k [Young 91]

The Weighted Paging Problem

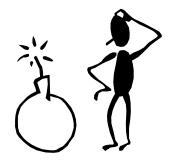
One small change:

- Each page i has a different fetching cost w(i).
- Models scenarios where cost of loading pages into the cache is not uniform:

Main memory, disk, internet ...

<u>Goal</u>

• Minimize the **total cost** of cache misses.



Weighted Paging

Paging

Deterministic

Randomized

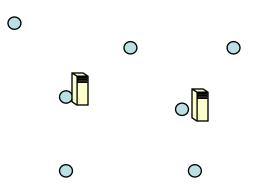
Weighted Paging

Lower bound k	
LRU k competitive	k-competitive [Chrobak, Karloff, Payne, Vishwanathan 91]
k/(k-h+1) if opt's cache size h	<mark>k/(k-h+1)</mark> [Young 94]
O(log k) Randomized Marking	O(log k) for two distinct weights [Irani 02]
O(log k/(k-h+1))	No o(k) algorithm known even for three distinct weights.

The k-server Problem (1)

- k servers are placed in an n-point metric space
- requests arrive at points in the metric
- serving a request: move a server to request point

Goal: minimize total distance traveled by the servers.



The k-server Problem

- Paging = k-server on a uniform metric
 - every page is a point
 - A page is in the cache iff a server is at the point
- Weighted paging = k-server on a weighted star metric

Deterministic Results:

- General metric spaces: (2k-1)-competitive work function
 algorithm [Koutsoupias-Papadimitriou 95]
- Tree metric: k-competitive algorithm [Chrobak et al. 91]

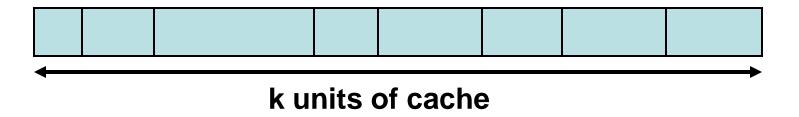
Randomized Results:

- No o(k) algorithm known (even for very simple spaces).
- Best lower bound $\Omega(\log k)$

Fractional Weighted Paging

Model:

- Fractions of pages are kept in cache: probability distribution over pages p₁,...,p_n
- The total sum of fractions of pages in the cache is at most k.
- If p_i changes by ε , cost = ε w(i)

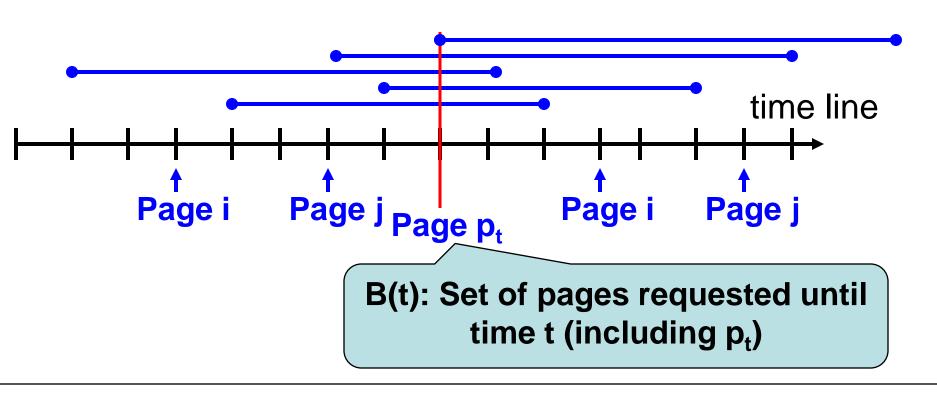


High level idea:

1. Design a primal-dual O(log k)-competitive algorithm for fractional weighted paging.

2. Obtain a **randomized algorithm** while losing only a **constant factor**.

Setting up the Linear Program



We can only keep **k pages** out of the **B(t) pages**

Evict \geq [|B(t)| - 1 - (k- 1)] = [|B(t)|-k] pages from B(t)\{p_t\}

Weighted paging – Linear Program $\min \sum_{i=1}^{n} \sum_{j=1}^{r(i,t)} w(i)x(i, j)$ $\forall t \quad \sum_{i \in B(t) \setminus \{p_t\}} x(i, r(i, t)) \ge |B(t)| - k$ $0 \le x(i, j) \le 1$

• Idea: charge for evicting pages instead of fetching pages

x(i,j) – indicator for the event that page i is evicted from the cache between the j-th and (j+1)-st times it is requested

r(i,t) - number of times page i is requested till time t, including t

Primal and Dual Programs

P: Primal Covering

$$\min \sum_{i=1}^{n} \sum_{j=1}^{r(i,t)} w(i)x(i,j)$$

$$\forall t \quad \sum_{i \in B(t) \setminus \{p_t\}} x(i,r(i,t)) \ge |B(t)| - k$$

$$0 \le x(i,j) \le 1$$

D: Dual Packing

$$\max \sum_{t} \left(|B(t)| - k \right) y(t) - \sum_{i=1}^{n} \sum_{j=1}^{r(i,t)} z(i,j)$$

For each page i and the *j* th time it was asked:

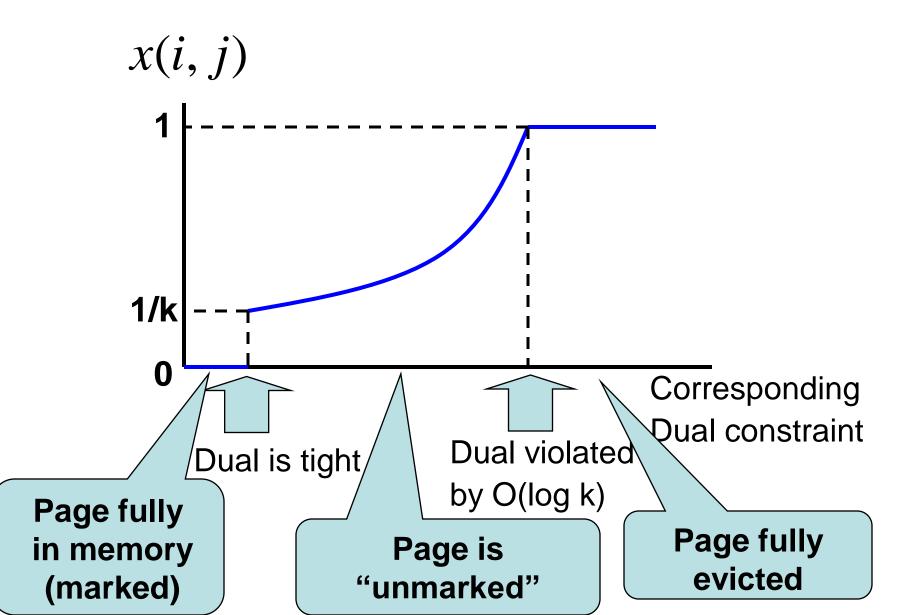
$$\left(\sum_{t=t(i,j)+1}^{t(i,j+1)-1} y(t)\right) - z(i,j) \le w(i)$$

Fractional Caching Algorithm (1)

At time t, when page p_t is requested:

- Set the new variable: $x(p_t, r(p_t, t)) \leftarrow 0$:
 - this guarantees that p_t is in the cache at time t.
 - this variable can only be increased at times t' > t.
- If the primal constraint corresponding to time t is satisfied, then do nothing.
- Else, increase variables x(i, j) as a function of y(t), details follow soon ...

The growth function of x(i,j)



Fractional Caching Algorithm (2)

- Else: increase primal and dual variables, till primal constraint corresponding to time t is satisfied:
 - 1. Increase variable y(t) continuously; for each variable x(p, j) that appears in the (yet unsatisfied) primal constraint that corresponds to time t:
 - 2. If x(p,j) = 1, then increase z(p,j) at the same rate as y(t).
 - 3. If x(p, j) = 0 and

$$\left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} y(t)\right) - z(p,j) = w(p),$$

then set $x(p, j) \leftarrow 1/k$.

4. If $1/k \le x(p, j) < 1$, increase x(p, j) by the following function:

$$\frac{1}{k} \cdot \exp\left(\frac{1}{w(p)} \left[\left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} y(t)\right) - z(p,j) - w(p) \right] \right)$$

Proof of competitive factor:

- 1. Primal solution is feasible.
- 2. Primal $\leq 2 \cdot \text{Dual}$

3. Dual is feasible up to a factor of O(log k)

Conclusion (weak duality): Algorithm is O(log k)-competitive

- 1. Primal solution is feasible. At time t:
 - for page p_t , $x(p_t,r(p_t,t)) \leftarrow 0$, i.e., p_t is in the cache
 - primal variables x(q,r(q,t)) corresponding to other pages q are increased till primal constraint is satisfied
 - for each page q, by the algorithm, x(q,r(q,t)) ≤ 1(increase in z balances out increase in y)

3. Dual is O(log k) feasible:

Consider any dual constraint. since x(i,j) ≤ 1 : $1 \geq x(i, j) = \frac{1}{k}e^{\frac{\sum_{t=t(i,j)+1}^{t(i,j+1)-1}y(t)}{w(i)} - z(i,j)}$

Simplifying, we get that:

$$\left(\sum_{t=t(i,j)+1}^{t(i,j+1)-1} y(t)\right) - z(i,j) \le w(i) [1+\ln k]$$

2. Primal $\leq 2 \cdot Dual$

This is done in two separate steps:

- C₁ contribution to the primal cost of the variables x(p,j) when increased from 0 to 1/k
- C₂ contribution to the primal cost of the variables x(p,j) when increased from 1/k to (at most) 1, according to the exponential function

Each contribution is upper bounded separately by the dual

Define:
$$\tilde{x}(p,j) = \min(x(p,j), \frac{1}{k})$$

Primal complementary slackness: if $\tilde{x}(p, j) > 0$,

$$\left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} y(t)\right) - z(p,j) \ge w(p)$$

• B'(t) - set of pages $p \in B(t)$ for which x(p, r(p, t)) = 1

Dual complementary slackness (1): if y(t) is being increased at time t then:

$$\sum_{p \in B(t) \setminus (B'(t) \cup \{p_t\})} \tilde{x}(p, r(p, t)) \le \frac{|B(t)| - 1 - |B'(t)|}{k} \le |B(t)| - k - |B'(t)|$$

• $|B(t)| - |B'(t)| \ge k + 1$ (else $|B'(t)| \ge |B(t)| - k$, satisfying constraint) • $\Rightarrow \frac{|B(t)| - 1 - |B'(t)|}{k} \le |B(t)| - k - |B'(t)|$

Dual complementary slackness (2): if z(p, j) > 0, then $x(p, j) \ge 1$

$$\begin{split} \sum_{p=1}^{n} \sum_{j=1}^{r(p,t)} w(p) \tilde{x}(p,j) &\leq \\ & (by \ primal \ complementary \ slackness) \\ &\leq \sum_{p=1}^{n} \sum_{j=1}^{r(p,t)} \left(\left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} y(t) \right) - z(p,j) \right) \tilde{x}(p,j) = \\ & (changing \ order \ of \ summation) \\ &= \sum_{t} \left(\sum_{i \in B(t) \setminus \{p_t\}} \tilde{x}(p,r(p,t)) \right) y(t) - \sum_{p=1}^{n} \sum_{j=1}^{r(p,t)} \tilde{x}(p,j) z(p,j) \end{split}$$

$$\sum_{t} \left(\sum_{i \in B(t) \setminus \{p_t\}} \tilde{x}(p, r(p, t)) \right) y(t) - \sum_{p=1}^{n} \sum_{j=1}^{r(p, t)} \tilde{x}(p, j) z(p, j)$$
$$\leq \sum_{t} \left(|B(t)| - k \right) y(t) - \sum_{p=1}^{n} \sum_{j=1}^{r(p, t)} z(p, j)$$

• The derivative of the LHS is:

$$\sum_{p \in B(t) \setminus (B'(t) \cup \{p_t\})} \tilde{x}(p, r(p, t)) \le |B(t)| - k - |B'(t)|$$

since z(p, j) increases at the same rate as y(t) when x(p, r(p, t)) = 1

• The derivative of the RHS is |B(t)| - k - |B'(t)|

Thus, C_1 is upper bounded by the dual solution

Reminder:

If $1/k \le x(p, j) < 1$, increase x(p, j) by the following function:

$$\frac{1}{k} \cdot \exp\left(\frac{1}{w(p)} \left[\left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} y(t)\right) - z(p,j) - w(p) \right] \right)$$

Variables y(t) and z(p, j) are raised at rate 1 with respect to virtual variable τ . • $\frac{dy(t)}{d\tau} = 1, \frac{dx(p,j)}{du(t)} = \frac{1}{w(p)} \cdot x(p, j)$

 $\frac{dC_2}{d\tau} = \sum_{p \in B(t) \setminus \{p_t\}, 1/k \le x(p,j) < 1} w(p) \cdot \frac{dx(p,r(p,t))}{dy(t)} \cdot \frac{dy(t)}{d\tau}$ $\sum x(p, r(p, t))$ = $p \in B(t) \setminus \{p_t\}, 1/k \leq x(p,j) \leq 1$ $\leq (|B(t)| - k) - \sum$ $p \in B(t) \setminus \{p_t\}, x(p,j) = 1$ $= (|B(t)| - k) \frac{dy(t)}{d\tau} - \sum \frac{dz(p,j)}{d\tau}$ $p \in B(t) \setminus \{p_t\}, x(p, j) = 1$ dual derivative

dual objective = $\sum_{t} (|B(t)| - k) y(t) - \sum_{p=1}^{n} \sum_{j=1}^{r(p,t)} z(p,j)$

Conclusion

- C₁ is upper bounded by a dual solution
- C₂ is upper bounded by a dual solution

Thus, primal $\leq 2 \cdot dual$

The algorithm is O(log k)-competitive

Rounding

Linear program provides a fractional view: Prob[p is in cache at time t] = 1-x(p,r(p,t))

Randomized alg.: distribution on cache states

Example: pages A,B,C,D k=2

LP state = (1/2, 1/2, 1/2, 1/2)Consistent distribution = $\frac{1}{2}(A,B) + \frac{1}{2}(C,D)$

Rounding – Need to be Careful

A,B have wt. 1, C,D have wt. M

LP state = (1/2, 1/2, 1/2, 1/2)Distribution = $\frac{1}{2}(A,B) + \frac{1}{2}(C,D)$

LP changes to (1,0,1/2,1/2)LP cost = $\frac{1}{2}$

randomized algorithm: only consistent distribution =

 $\frac{1}{2}(A,C) + \frac{1}{2}(A,D)$

cost of randomized algorithm: $(\frac{1}{2}(A,B) + \frac{1}{2}(C,D)) \implies (\frac{1}{2}(A,C) + \frac{1}{2}(A,D))$ $\Theta(M)$ – either C or D are (partly) evicted

Rounding – Main Ideas

- Partition the pages into weight classes:
 class i pages with size [2i, 2i+1]
- Define a **distribution** *D* on cache states
 - each cache state has *approximately* the same number of pages from each class.
- Show how to update the distribution on the cache states while paying at most 5 times the fractional cost.

Further Extensions of the Basic Model

First Extension:

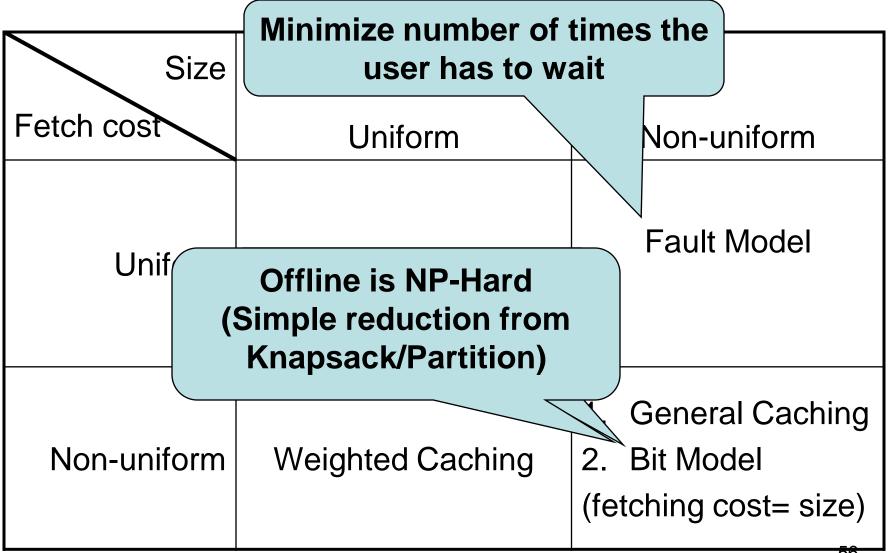
- Pages have different fetching costs.
- Models scenarios in which the fetching cost is not uniform:

Main memory, disk, internet ...

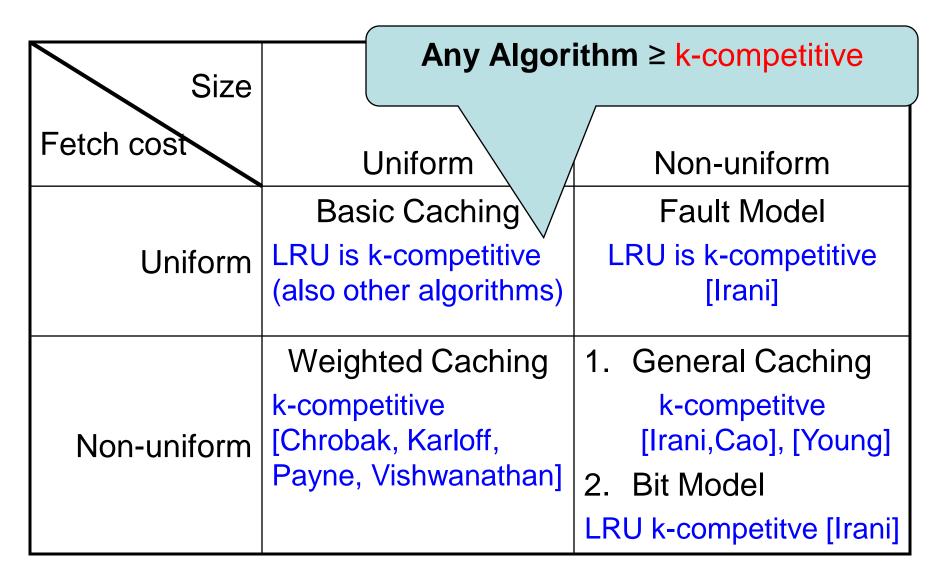
Second (Orthogonal) Extension:

- Pages have different sizes.
- Models web-caching problems (Proxy Servers, local cache in browser)

Caching Models



Deterministic Algorithms



Randomized Algorithms

Si	Other algorithms that optimal with consta	
Fetch cost	Uniform	Non-uniform
	Basic Caching	Fault Model
Uniform	Randomized Marking O(log k)-competitive [Fiat et al.]	O(log ² k)-competitive algorithm [Irani]
	Weighted Caching	1. General Caching
Non-uniform	O(log k)-competitive algorithm [Bansal, Buchbinder, Naor]	2. Bit Model O(log ² k)-competitive algorithm [Irani] ₅₈

Improved Results

Size		
Fetch cost	Uniform	Non-uniform
Uniform	Basic Caching Randomized Marking O(log k)-competitive [Fiat et al.]	Fault Model O(log ² k)-competitive O(log k)-competitive
Non-uniform	Weighted Caching O(log k)-competitive algorithm [Bansal, Buchbinder, Naor]	 General Caching O(log²k)-conjitive Bit Model O(log²k)-competitive O(log²k)-competitive

Basic Definitions: Generalized Caching

- n pages
- Cache of size k
- Size of page p: $w_p \in [1,k]$
- Fetching cost of page p: c_p (arbitrary)

Fractional solution:

- Algorithm maintains fractions of pages as long as the total size does not exceed k.
- Fetching ε fraction of page p costs εc_p

High level approach

First step:

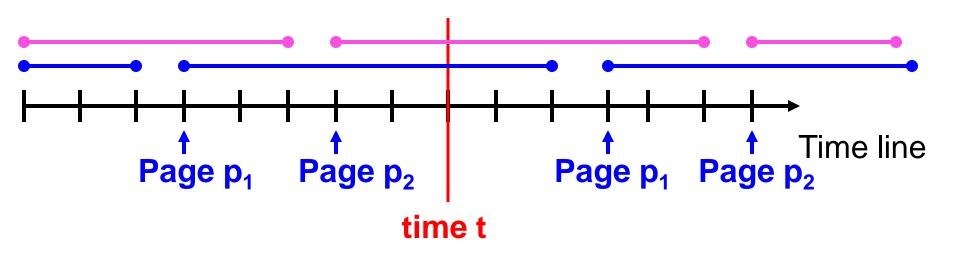
- General O(log k)-competitive algorithm for the fractional generalized caching.
- ➔ Maintains fractions on pages.

Second Step:

Transform **online** the fractional solution into Randomized algorithm:

- Maintain distribution on cache states that is "consistent" with the fractional solution.
- Simulation procedure maps changes in fractions on pages to distribution on cache states (w/ similar cost).
- O(1) simulation for Bit/Fault model
 O(log k) simulation for the general model.

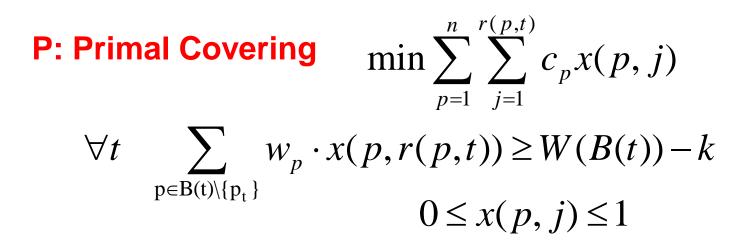
Generalized Caching – Linear Program



- Interval: Keep the page between the jth time it is requested and the (j+1) time it is requested.
- If interval present, no cache miss.
- At any time step t, total size of intervals (pages) is at most k.

Generalized Caching: 1st LP formulation

- x(p,j): How much of interval (p,j) evicted thus far
- **B(t)**: Set of pages requested until time t.
- W(B(t)): total size of pages in B(t).
- r(p,t): number of times page p requested until time t



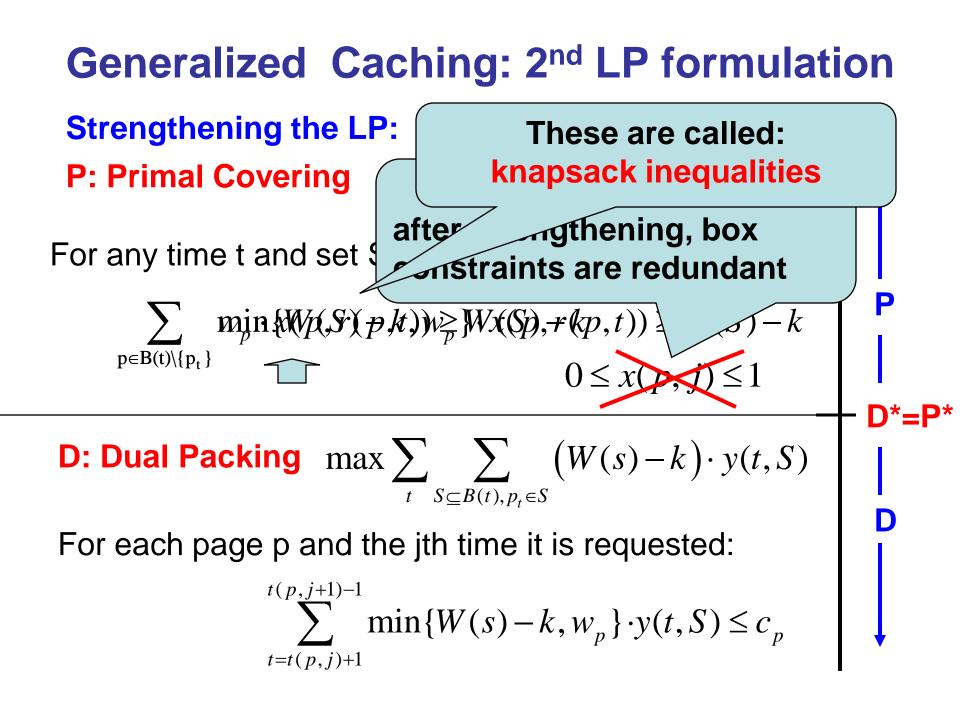
Problem with LP formulation

The formulation has unbounded integrality gap ...

Example:

- Two pages of size k/2+ε requested alternately.
- Integral solution: cache miss every turn
- Fractional solution:
 - Keeps almost one unit of each page.
 - Needs to fetch only O(ε/k) page every turn

P: Primal Covering $\min \sum_{p=1}^{n} \sum_{j=1}^{r(p,t)} c_p x(p,j)$ $\forall t \quad \sum_{p \in B(t) \setminus \{p_t\}} w_p \cdot x(p,r(p,t)) \ge W(B(t)) - k$ $0 \le x(p,j) \le 1$



Sketch of Primal-Dual algorithm

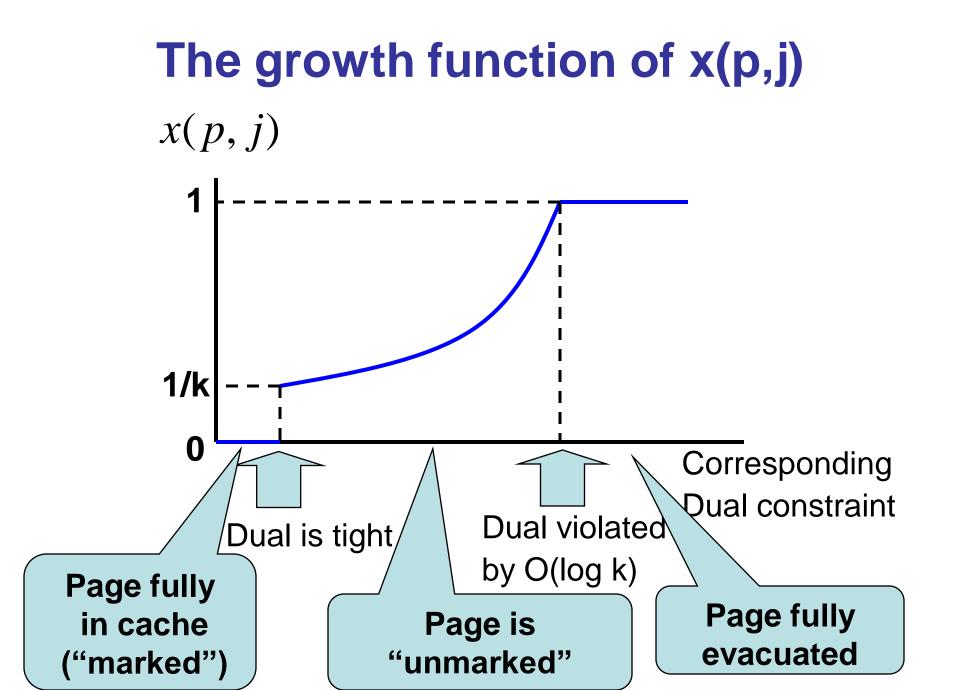
- While there exists an unsatisfied primal constraint of set of pages S and time t:
- Increase the dual variable y(t,S).

When dual constraint of variable x(p,j) is tight, x(p,j) = 1/k

$$\sum_{t=t(p,j)+1}^{t(p,j+1)-1} \min\{W(s) - k, w_p\} \cdot y(t,S) = c_p$$

From then on, increase x(p,j) exponentially (until x(p,j)=1)

$$x(p,j) = \left(\frac{1}{k}\right) \exp\left[\frac{1}{c_p} \left(\sum_{t=t(p,j)+1}^{t(p,j+1)-1} \min\{W(s) - k, w_p\} \cdot y(t,S)\right) - 1\right]$$



Proof of competitive factor:

- 1. Primal solution is feasible.
- 2. Primal \leq 2 Dual.

3. Dual is feasible up to O(log k) factor

Conclusion (weak duality): Algorithm is O(log k)-competitive

Analysis - sketch

1. Primal solution is feasible.

We increase x(p,j)'s until current primal constraint is feasible

- 2. Primal \leq 2 Dual:
 - a. Setting x(p,j) to 1/k analyzed using complementary slackness
 - b. During the exponential growth the primal derivative is at most dual derivative
- 3. Dual is O(log k) feasible:

$$x(p, j) = \left(\frac{1}{k}\right) \exp\left[\frac{1}{c_p} \left(\sum_{t=t(p, j)+1}^{t(p, j+1)-1} \min\{W(s) - k, w_p\} \cdot y(t, S)\right) - 1\right] \le 1$$

$$\sum_{t=t(p, j)+1}^{t(p, j+1)-1} \min\{W(s) - k, w_p\} \cdot y(t, S) \le c_p \left(1 + \ln(k)\right)$$

Concluding Remarks

• Primal-dual approach gives simple unifying framework for caching.

Open questions:

- 1. Improving to O(log k) for the general model.
- 2. o(k) randomized algorithms for k-server using primal-dual approach.
- 3. Extend primal-dual framework beyond packing/covering.

