
ADFOCS 2009: Exercises #1

Tim Roughgarden

Instructions:

(1) You should not necessarily try to not complete all the problems. Rather, pick one you find interesting,
and work on/discuss it until you feel like moving on to another (and then repeat).

(2) Collaboration with your fellow attendees is strongly encouraged.

Problem 1

Consider the following type of “bicriteria bound”: the cost of a Nash equilibrium is at most that of an
optimal outcome that has twice as many players. Such a bound holds in nonatomic selfish routing networks
(with arbitrary continuous, nondecreasing cost functions). The idea of the original proof is: take a flow at
Nash equilibrium f ; reset the cost functions to be max{ce(fe), ce(x)} on every edge; prove that, with these
new cost functions, every flow with double the traffic has at least double the original cost of f ; and prove
that these bigger cost functions only increase the cost of any flow by the original cost of f . [Possible exercise:
think through the details of this proof.]

What if the cost functions are restricted? In particular, prove the following: in nonatomic selfish routing
networks with affine cost functions, the cost of a flow at Nash equilibrium is at most that of an optimal flow
with 25% more traffic (for each commodity). Can you state and prove a general result, parametrized by an
arbitrary set of cost functions, that interpolates between the affine and unrestricted cases?

[Hint: think along the lines of the geometric proof from lecture that the POA is at most 4/3 in the affine
cost function case.]

Problem 2

This problem considers selfish routing in the atomic splittable model. The key difference between this model
and the usual atomic selfish routing model is that a player i is permitted to route its ri units of traffic
fractionally over the si-ti paths of the network. This model is also different from nonatomic selfish routing
games; for example, if there is only one player controlling all of the traffic in the network, then the player will
minimize its cost by routing this traffic optimally. More generally, a player takes into account the congestion
it causes for its own traffic, while ignoring the congestion it creates for other players.

Given an atomic splittable selfish routing game, we can obtain a new game by replacing a player that
routes ri units of traffic from si to ti by two players that each route ri/2 units of traffic from si to ti.
This operation does not change the cost of an optimal flow. Intuitively, since it decreases the amount of
cooperation in the network, it should only increase the cost of an equilibrium flow. Prove that this intuition
is incorrect: in multicommodity atomic splittable selfish routing networks, splitting a player in two can
decrease the price of anarchy.

For “extra credit”, show that the POA in atomic splittable selfish routing games with affine cost functions
is strictly more than 4/3. [A prominent open question is to precisely characterize the worst-case POA in the
atomic splittable model; this is open even for affine cost functions.]
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Problem 3

In this problem we consider nonatomic selfish routing networks with one source, one sink, one unit of selfish
traffic, and affine cost functions (of the form ce(x) = aex + be for ae, be ≥ 0). In parts (a)-(c), we consider
the objective of the maximum cost incurred by a flow f :

max
P : fP >0

∑
e∈P

ce(fe).

The price of anarchy is then defined in the usual way, as the ratio between the maximum cost of an equilibrium
flow and that of a flow with minimum-possible maximum cost. (Of course, in an equilibrium flow, all traffic
incurs exactly the same cost; this is not generally true in a non-equilibrium flow.)

(a) Prove that in a network of parallel links (each directly connecting the source to the sink), the price of
anarchy with respect to the maximum cost objective is 1.

(b) Prove that the price of anarchy with respect to the maximum cost objective can be as large as 4/3 in
general networks (with affine cost functions, one source and one sink).

(c) Prove that the price of anarchy with respect to the maximum cost objective is never larger than 4/3
(in networks with affine cost functions, one source and one sink).

(d) A flow that minimizes the average cost of traffic generally routes some traffic on costlier paths than
others. Prove that the ratio between the cost of the longest used path and that of the shortest used
path in a minimum-cost flow is at most 2 (in networks with affine cost functions, one source and one
sink). Prove that this bound can be achieved.

Problem 4

(a) Consider an atomic selfish routing game in which all players have the same source vertex and sink
vertex (and each controls one unit of flow). Assume that edge cost functions are nondecreasing, but
do not assume that they are affine. Prove that a (pure-strategy) Nash equilibrium (i.e., an equilibrium
flow) can be computed in polynomial time.

[Hint: Think about the potential function and the classical minimum-cost flow problem.]

(b) Prove that in an atomic selfish routing network of parallel links, every equilibrium flow minimizes the
potential function.

(c) Show by example that (b) does not hold in general networks, even when all players have a common
source and sink vertex.

Problem 5

Recall that in a mixed-strategy Nash equilibrium, each player picks a probability distribution over strategies
to maximize its expected payoff (equivalently, minimize its expected cost). Exhibit an atomic selfish routing
network and a mixed-strategy Nash equilibrium of it that has expected cost strictly larger than the cost of
every pure-strategy Nash equilibrium of the network. On the other hand, in the AAE example, show that
every mixed-strategy Nash equilibrium has expected cost at most 2.5 times that of an optimal solution (i.e.,
there are no mixed equilibria strictly worse than the worst pure equilibrium).
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ADFOCS 2009: Exercises #2

Tim Roughgarden

Instructions:

(1) You should not necessarily try to not complete all the problems. Rather, pick one you find interesting,
and work on/discuss it until you feel like moving on to another (and then repeat).

(2) Collaboration with your fellow attendees is strongly encouraged.

Problem 6

Recall our discussion of Bayesian-optimal and prior-free revenue-maximizing auctions.

(a) For prior-free multi-item auctions, prove that the “limited supply” case reduces to that of “unlimited
supply”, in the following sense. Let k and n denote the number of identical items and of bidders,
respectively. Suppose that, for some c ≥ 1, there is a (possibly randomized) truthful auction for the
k = n case with expected revenue at least a 1/c fraction of the fixed-price benchmark

F (2)(b) := max
2≤i≤n

i · bi,

for every bid vector b (we are assuming without loss that b1 ≥ b2 ≥ · · · ≥ bn).

Using this assumption, prove that, for every k ∈ {2, 3, . . . , n}, there is a (possibly randomized) truthful
auction for the case with only k identical goods that has expected revenue at least a 1/c fraction of

F (2,k)(b) := max
2≤i≤k

i · bi,

the optimal fixed-price revenue subject to the supply constraint.

(b) Use Myerson’s Lemma to prove that every deterministic truthful auction with identical goods is equiv-
alent to an auction of the following form: given bid vector b, offer each bidder i a posted price (a
“take-it-or-leave-it” offer) of ti(b−i), where ti is an arbitrary function of the other bids, with range
[0,+∞], and ties (when bi = ti(b−i)) broken arbitrarily.

(c) An auction of the form in (b) is symmetric if all of the functions t1(·), . . . , tn(·) are a common func-
tion t(·), which is itself symmetric (i.e., invariant under permutations of its arguments). Prove that
for every constant c > 1, no deterministic symmetric auction for digital goods (i.e., with k = n) is
c-competitive with respect to the fixed-price benchmark F (2)(b).

[Hint: Consider bid vectors with only “high” and “low” bids.]

(f) Instead of i.i.d. draws from a distribution F , suppose we know that the ith valuation vi is drawn from
the distribution Fi with positive density fi on [0, 1]. Assume that each Fi is regular in the sense of
lecture. Describe the Bayesian-optimal auction in this case.
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Problem 7

You may have heard of sponsored search, meaning the paid links that appear whenever you type a search
query into a search engine. These links are chosen using an auction mechanism, and the underlying allocation
problem can be thought of as follows. There are k slots and n bidders. Slot i has a “click-through-rate”
(or CTR) of αi. Assume that α1 ≥ α2 ≥ · · · ≥ αk. An auction accepts a bid from each player, assigns at
most k players to the slots, and charges various prices to the winners. The assumption is that if a player has
valuation v, receives slot i, and has to pay p, then its net utility is vαi − p. (The interpretation is that the
bidder has value v for a click, and αi is the probability that it gets a click given that it is displayed in slot i.)

Argue that ranking bidders by bid (i.e., with the highest bidder in the top slot, the next bidder in the
next slot, etc.) is a monotone allocation rule. Apply Myerson’s Lemma to this allocation rule to derive an
explicit formula for truthful payments. Notice p is the overall price; to express it in “price per click” units,
one would divide by αi.

Contrast the payments above to the more naive approach — which is not truthful but forms the basis
for the auctions used in practice — in which for each i, the ith bidder’s price per click is the bid (per click)
of the next bidder (so the top bidder pays the second-highest bid for each of its clicks, and so on).

Problem 8

Consider the following pricing problem. There is one consumer who wants at most one of n non-identical
goods. Assume that the consumer’s private valuations v1, . . . , vn for the n goods are i.i.d. draws from a
known regular prior distribution F . Our goal is to set prices p1, . . . , pn for the n goods (which can depend
on F but not the actual vi’s) to maximize expected revenue, assuming that the consumer responds to prices
by picking the good that maximizes vi − pi (or picking no good if pi > vi for every i).

(a) Prove that the maximum-achievable expected revenue is bounded above by the expected revenue of an
optimal single-good auction with n bidders with valuations drawn i.i.d. from F .

(b) Design a simple pricing algorithm that (for every regular distribution F ) obtains expected revenue
at least a constant fraction of that of an optimal single-good auction with n bidders with valuations
drawn i.i.d. from F . Do your best to optimize the constant.

Problem 9

The following open problem is a step toward prior-free revenue-maximizing auctions with non-identical
bidders (which corresponds to a Bayesian setting with non-i.i.d. distributions). The setting is digital goods,
so there are n bidders and n identical items (each bidder i only wants one item and it has a private valuation
vi for it). For a given input v, define M(v) as the maximum revenue that can be obtained from using a
nonincreasing vector of take-it-or-leave-it offers. So if the price for bidder #1 (who is not necessarily the
highest bidder) is 100, then every other bidder’s price is at most 100. Notice that v can be anything, and need
not be nonincreasing in the bidder index. So for example, if v is increasing (i.e., sorted in the wrong way),
then M(v) is equivalent to the maximum revenue that can be obtained from the bidders using a common
take-it-or-leave-it offer. (If v is sorted in the right way, then M(v) is just the sum of the valuations.)

The open problem is to design a truthful auction that, for every input v (sorted or not), achieves revenue
at least c ·M(v)−h, where c > 0 is a constant and h is the maximum possible valuation. (Actually, it should
be possible to do this with h replaced by the difference between the largest and second-largest valuations
of v.) [For a weaker result, see Aggarwal-Hartline, SODA 06.]
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