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Exercises

1. Consider the 2-stage stochastic set covering problem in the polynomial-scenario model. Show that this
problem can be reformulated as (or equivalently, reduced to) the deterministic set covering problem
(albeit with a larger family of sets over a larger ground set).

2. In the deterministic minimum multicut problem, the input consists of a graph where each edge has a
specified non-negative cost, and pairs of nodes(s1, t1), . . . , (sk, tk); the aim is to select a subset of
edges of minimum total cost so that after deleting those edges, none of the given pairs has both nodes
in the same connected component. For the special case in which the input graph is a tree, there an
LP-based algorithm (using the most natural LP) that has a performance guarantee of 2.

(a) Formulate a 2-stage stochastic optimization problem with recourse that is a natural extension of
this problem.

(b) Derive as good an approximation algorithm for this problem as you can.

3. Consider the 2-stage stochastic uncapacitated facility location problem, and derive a2ρUFL-approximation
algorithm in the polynomial-scenario model, whereρUFL is the performance guarantee for the deter-
ministic varaint. (Here are some hints to get you started. This will be a variant on the LP rounding
technique, though a bit more complicated. Take the optimal solutionx∗A,ij and decompose it into
xI

A,ij +xII
A,ij , wherexI

A,ij ≤ y∗i andxII
A,ij ≤ y∗A,i. Use this to conclude, for each scenarioA and client

j that either ∑
i

xI
A,ij ≥ 1/2,

or else ∑
i

xII
A,ij ≥ 1/2.

For each clientj, let Sj be those scenarios for which the above inequality holds for the first stage.
This will allow us to devise a stage I input, in which we must simulate the fact thatSj corresponds
(roughly) to the demand that must be satisfied in stage I, and yet must also be able to get a feasible
fractional solution for this deterministic LP relaxation. From the fractional solution, we can obtain
an integer one for the (deterministic) stage I problem. Repeat for stage II. Piece both parts together.)
Where do you use that it is the polynomial scenario model?

4. The boosted sampling technique can be generalized to apply to a broad range of optimization prob-
lems. Consider the following general optimization problem; there is a universeU of requirement, and
there is a setX of elements that can be purchased. For anyF ⊆ X, let c(F ) denote the (linear) cost
of F . For any subsetS ⊆ U , the possible feasible solutions is a setSol(S) which is a subset of the
power set ofX. In the deterministic setting, the aim is, for a specified setS, to choose A member of
Sol(S) of minimum cost; letOPT (S) denote an optimal solution forS.

The optimization problem must besubadditive, in the following sense. IfS andS′ are two requirement
sets, andF andF ′ are feasible solutions for them, respectively, thenS ∪ S′ defines another set of
requirements, for whichF ∪ F ′ is a feasible solution.

The 2-stage variant again has a probability distribution over subsets of requirements, and allows one
to buy some elementse ∈ X in stage I based only on the distributional information, at a cost ofce,
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and then after there is a realized set of requirements drawn from the distribution, one can purchase
additional elementse ∈ X at a cost ofλce.

The next key element is a cost-sharing mechanism that is given with respect to an approximation algo-
rithm for the deterministic problem. We say that anα-approximation algorithmA for the optimization
problem admits aβ-strict cost sharing mechanismif there is a functionξ : 2U × U 7→ R≥0 such that
for everyS, T ⊆ U with S ∩ T = ∅, (i) ξ(S, u) = 0 for u /∈ S; (ii)

∑
u∈S ξ(S, u) ≤ c(OPT (S));

and (iii) there is a procedureAugA that augments the solutionA(S) constructed byA on inputS to a
solution inSol(S ∪ T ) incurring costc

(
AugA(S, T )

)
≤ β

∑
u∈T ξ(S ∪ T, u).

(a) Show that the minimum-cost rooted Steiner tree problem falls into this framework in which we
can provide the requisite algorithms withα = β = 2.

(b) Provide a boosted sampling algorithm for this general framework that yields an(α+β)-approximation
algorithm for the 2-stage stochastic optimization problem in the black-box model.

5. In the vertex cover problem, the input is a graphG = (V,E) in which each vertexv has a nonnegative
weightwv; the aim is to select a minimum-cost subset of vertices such that for each edge at least one
of its endpoints has been selected. There is a well-known primal-dual approximation algorithm for
this problem. (A primal-dual algorithm uses the LP framework for its analysis, but does not require
solving the LP; for a minimization problem, if we find an feasible integer solution along with a feasible
dual solution for its LP relaxation, and the cost of integer solution is at mostα times the (dual) cost
of the feasible dual solution, then one can conclude that the resulting algorithm has a performance
guarantee ofα.) In the dual problem, one has a valueye for each edge, and a solution is feasible if,
for each vertex, the sum of the values associated with its incident edges is at mostwv; the objective
is to maximize the sum of the dual variables. The primal-dual algorithm works as follows, always
maintaining a feasible dual solution: start with all dual variablesy = 0; choose any edgee, and
increase its dual variable until the constraint for one of its endpoints becomes tight; add each vertex
with a tight dual constraint to the primal solution (i.e., include it in the cover), delete that vertex (or
vertices), and all incident edges, and repeat until no edges remain.

(a) Prove that this is a 2-approximation algorithm for the deterministic vertex cover problem.

(b) Generalize this algorithm to derive a 2-approximation algorithm for 2-stage stochastic vertex
cover problem in the polynomial-scenario model.

6. Consider the following alternative2-stage stochastic generalization of the scheduling problem1|rj |
∑

wjUj

(which might call an augmentation version). More precisely, we are given a set ofn jobs, each with
a release daterj before which we cannot process the job, along with a due datedj by which time
we are to complete processing the job; furthermore, each jobj has a corresponding weightwj . In
the deterministic variant of the problem, we want to schedule the jobs so as to minimize the total
weight of the jobs that do not complete on time, or equivalently, maximize the weight of the jobs that
are scheduled within their specified time-window. In this 2-stage stochastic variant, we also have a
probability distribution over subsets of jobs that specifies which jobs are active. Suppose that in the
first stage, we select a set of jobs that we are committed to serve. In the second stage, for a given
scenario, we must schedule each job selected in the first stage, and we may augment this solution by
scheduling additional jobs that are active in this scenario. We wish to maximize is the total expected
profit (where it is now natural to assume that the profit obtained for an instance in the second stage is
less than the corresponding profit in the first).

Prove that if there is aρ-approximation algorithm for the augmentation2-stage stochastic1|rj |
∑

wjUj ,
then there is aρ-approximation algorithm for maximum independent set problem (which is the prob-
lem of selected a maximum-size subset of nodes such no pair of them are adjacent). (And since
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we know strong inapproximability results for the maximum independent set problem, these yield
identically strong inapproximability results for this 2-stage stochastic optimization problem.) (Hint:
construct a reduction from the maximum independent set problem, and let jobs correspond to nodes,
and scenarios correspond to edges.)

7. Complete the details for the result of Charikar, Chekuri, and Pál that shows that the optimal solution
for the sample average approximation with polynomial samples for the 2-stage stochastic set covering
problem is a near-optimal solution for the true underlying distribution.
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