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This lecture is based on the following paper:
Stefan Kratsch and Magnus Wahlström, Representative Sets and Irrelevant

Vertices: New Tools for Kernelization, FOCS 2012, 450-459.
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

Want: A subfamily pF of F such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is a subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Lovász, 1977
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Given: A a matroid (M, I), and a family of p-sized subsets from I:

S1, S2, . . . , St

There is an efficiently computable subfamily pF of F of size at most
(
p+q
p

)
such that:

For any X Ď [n] of size at most q,

if there is a set S in F such that X X S = H and X Y S P I,
then there is a set pS in pF such that X X pS = H and X Y pS P I.

Márx (2009) and Fomin, Lokshtanov, Saurabh (2013)
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Summary.

We have at hand a p-uniform collection of independent sets, F and a number q.
Let X be any set of size at most q. For any set S P F, if:

a X is disjoint from S, and
b X and S together form an independent set,

then a q-representative family pF contains a set pS that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a q-representative family for the given family.
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Digraph Pair Problem
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Digraph Pair Cut Problem
Input: A directed graph D = (V,A), a source vertex s P V and a set P of
pairs of vertices.
Parameter: k
Question: Does there exist a setX Ď V \ {s} of size at most k such that every
pair in P is not reachable from s inD \ X?
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Reachability of vertex pairs
Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.

S

u

v
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Reachability of vertex pairs
Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.
Want to delete vertexw.

S

u

v

w
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Reachability of vertex pairs
Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.
Deletingw makes the pair (u, v) non-reachable from S.

S

u

v
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Digraph Pair Cut Problem
Input: A directed graph D = (V,A), a source vertex s P V and a set P of
pairs of vertices.
Parameter: k
Question: Does there exist a setX Ď V \ {s} of size at most k such that every
pair in P is not reachable from s inD \ X?
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Important Observation

s

a
b

c
d

e
f

g
h

•
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• Let X be a solution to the problem.

11



Important Observation

s

a
b

c
d

e
f

g
hT = {a, c, f, g}

• Let X be a solution to the problem.
• Clearly no pair (u, v) P P is reachable from s inD \ X.
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Important Observation

s

a
b

c
d

e
f

g
hT = {a, c, f, g}

• Let X be a solution to the problem.
• Let T be a set consisting of vertices, say u P {u, v}, from each pair (u, v),

such that there is no path from s to u inD \ X.
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Important Observation

s

a
b

c
d

e
f

g
hT = {a, c, f, g}

• Let X be a solution to the problem.
• Clearly, X is a s-T separator inD. In fact, X could be any minimum cut

between s and T inD.
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Important Observation

s

a
b

c
d

e
f

g
h

• Let X be a solution to the problem and T = {a, c, f, g}.
• Clearly, X is a s-T separator inD. In fact, X could be any minimum cut

between s and T inD.
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A first attempt at an FPT algorithm: Branching Algorithm

(D, s, T = ∅)

..1 Initialise a set T = H
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A first attempt at an FPT algorithm: Branching Algorithm

(D, s, T = ∅)

..1 Initialise a set T = H

..2 If the size of the (s, T)-minimum cut is at least k+ 1, then we stop and
say NO.

..3 If there is an (s, T)-minimum cut C of size at most k such that no pairs of
P are reachable from s, return YES.
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A first attempt at an FPT algorithm: Branching Algorithm
(D, s, T = ∅)

(D, s, T = {u}) (D, s, T = {v})

..1 Initialise a set T = H

..2 If the size of the (s, T)-minimum cut is at least k+ 1, then we stop and
say NO.

..3 If there is an (s, T)-minimum cut C of size at most k such that no pairs of
P are reachable from s, return YES.

..4 Else, there is a pair (u, v) P P which is reachable from s inD \ C

..5 Pick any such reachable pair and make a two-way branch for adding u or v
to T . Return to step 2
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Drawbacks

We do not know how many iterations are required before all pairs of P
become nonreachable from s. The algorithm could take 2|P| time.
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A new strategy

• Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.
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A new strategy

• Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

• Parameter be µ = k− λ. Here λ is the size of a (s, T)-minimum cut for
the local T of an iteration.
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A new strategy

(D, s, T = ∅)

(D, s, T = {u}) (D, s, T = {v})

• Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

• Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u, v) inD \ C.
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A new strategy

(D, s, T = ∅)

(D, s, T = {u}) (D, s, T = {v})

• Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

• Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u, v) inD \ C.

• Look at any one of the branches (say the one which picks u for T ). The size
of the minimum cut in the (i+ 1)st iteration could be of the same size as
C.
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A new strategy

(D, s, T = ∅)

(D, s, T = {u}) (D, s, T = {v})

• Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

• Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u, v) inD \ C.

• Is there a minimum cut which will strictly increase in size in every step of
the iteration, on both the branches?
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Yes there is!

s

a
b

c
d

e
f

g
h

�
T = {g}

• Input is a digraphD = (V,A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.
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• Input is a digraphD = (V,A) and a set S of vertices (here S = {s}) that
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disconnecting other pairs.

• It seems natural that find a minimum cut that is “closest” to S – as this may
help in disconnecting other pairs.
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Yes there is!

• Input is a digraphD = (V,A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

• Closest set : A set X Ď V is closest to S if X is the unique (S, X)-mincut .
That is, the only cut of size at most |X|, for paths from S to X, is X itself. X
is called closest set.
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Yes there is!

• Input is a digraphD = (V,A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

• Closest set : A set X Ď V is closest to S if X is the unique (S, X)-mincut .
That is, the only cut of size at most |X|, for paths from S to X, is X itself. X
is called closest set.

• Closest set of a set T : For any set of vertices T , the induced closest set
C(T) is the unique (S, T)-mincut which is closest to S. Clearly, if X is
closest set then C(X) = X.
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Example
• S is the source set; X 1 is the closest set of X; X 1 is a closest set.

• Analogy with important separators.

S

XX’
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Example
• S is the source set; X 1 is the closest set of X; X 1 is a closest set.
• Analogy with important separators.

S

XX’
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Improved Branching Algorithm

(D, s, T = ∅)

..1 Initialise a set T = H
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Improved Branching Algorithm

(D, s, T = ∅)

..1 Initialise a set T = H

..2 If the size of the (s, T)-mincut is at least k+ 1, then we stop and say NO.

..3 If there is an closest (s, T)-set C(T) of size at most k such that no pairs of
P are reachable from s, return YES.
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Improved Branching Algorithm

(D, s, T = ∅)

(D, s, T = {u}) (D, s, T = {v})

..1 Initialise a set T = H

..2 If the size of the (s, T)-mincut is at least k+ 1, then we stop and say NO.

..3 If there is an closest (s, T)-set C(T) of size at most k such that no pairs of
P are reachable from s, return YES.

..4 Else, there is a pair (u, v) P P which is reachable from s inD \ C(T)

..5 Pick any such reachable pair and make a two-way branch for adding u or v
to T . Return to step 2
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Analysis

C(T ) Tu

s

R(s, C(T ))

• In iteration i let C(T) = C be the closest (s, T) set and let (u, v) P P be
reachable from s inD \ C.

• Pick any branch (say the branch where u is picked in T ). Any minimum cut
C 1 of (s, T Y u) is also a cut for (s, T), so |C 1| ě |C|. Want to show
|C 1| ą |C|
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Analysis

C(T ) Tu

s

R(s, C(T ))

• Consider a mincut between s-C Y {u} inD[R(s, T) Y C] – say Z.
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Analysis

C(T ) Tu

s

R(s, C(T ))

• Consider a mincut between s-C Y {u} inD[R(s, T) Y C] – say Z.

• Clearly |Z| ě |C|. Suppose |Z| = |C|. Then clearly Z ‰ C – else it can
not disconnect path from s to u. But then it contradicts that C(T) is
closest set to s.
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Analysis

C(T ) Tu

s

R(s, C(T ))

• Consider a mincut between s-C Y {u} inD[R(s, T) Y C] – say Z.

• Suppose |Z| ą |C|. Then there are |Z|+ 1 internally vertex disjoint paths
from s to C Y {u} inD[R(s, T) Y C].

• Using this we get that there are |C|+ 1 internally vertex disjoint paths
from s to T Y {u}. Thus, |C 1| ą |C|.
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Abstracting out a statement from the proof..

LetD be a digraph S and T be two vertex sets and C(T) be the induced closest
set. Furthermore, let R(S,C(T)) denotes the set of vertices that are reachable
from S inD \ C(T).

19



Abstracting out a statement from the proof..

LetD be a digraph S and T be two vertex sets and C(T) be the induced closest
set. Furthermore, let R(S,C(T)) denotes the set of vertices that are reachable
from S inD \ C(T). Then

for every vertex u P R(S,C(T)) we have that there are |C|+ 1

vertex disjoint paths (internally vertex disjoint if S = {s}) from S to
C Y {v} inD[R(S,C(T)) Y C(T)].
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Analysis:

• If the algorithm finds a set of size at most k then that is a solution for the
Digraph Pair Cut problem.

• Suppose the answer returned is NO. Can there be a solution set that the
algorithm has missed? (Think about it!)

• Algorithm runs in 2knO(1) time.
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Digraph Pair Cut Problem: Kernel

• The number of pairs in the input set P could be as large as O(n2).

• Notice that if we have a solution X of size at most k, then the closest set
C(X) from s is also a solution.
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Digraph Pair Cut Problem: Kernel

• The number of pairs in the input set P could be as large as O(n2).
• Notice that if we have a solution X of size at most k, then the closest set
C(X) from s is also a solution.
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First attempt

s

⇒

S

• LetU be the set of vertices that appear in pairs of P. Need to make sure
that we find a solution which does not contain s: we make k+ 1 copies of
s (and give the same adjacencies) and call this set S the source set.
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First attempt

• Look at the gammoid (D,S,U) (source set S = S and sink set T = U)
and look at its representation matrixA.

• Consider a subset of columns which correspond to a setW of vertices such
that @(u, v) P P,W X (u, v) ‰ H and such that the rank of these
columns is at most k, then we know that the minimum (S,W) cut is a
solution to the Digraph Pair cut problem.

• But, sinceU could be a very large set, the representation matrixA could be
large!
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• Suppose we knew that the size of P was small, then the representation of
the gammoid (D,S,U) is a compression for Digraph Pair cut .

• If |P| is very large, then we want to find a small subset of P, such that
making this set of pairs non-reachable is as good as making all pairs of P
nonreachable.
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• Suppose we knew that the size of P was small, then the representation of
the gammoid (D,S,U) is a compression for Digraph Pair cut .

• If |P| is very large, then we want to find a small subset of P, such that
making this set of pairs non-reachable is as good as making all pairs of P
nonreachable.

WeSEEM to be looking for something like a

representative set for the set P of pairs.
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Mantra of Representative Sets Based Kernelization

Keep a certificate for every k sized
subset that tells why it can not a

solution.
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What does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover
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• An edge that it does not cover – or intersects!
• So keep a subset of edges, sayW , such that every for every k-sized subset

that is not a solution there is a corresponding witness inW .
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What does it mean?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

• What is a certificate that a particular k-sized subset is not a solution?
• An edge that it does not cover – or intersects!
• So keep a subset of edges, sayW , such that every for every k-sized subset

that is not a solution there is a corresponding witness inW .

Idea is to find this desiredW using appropriate matroids.
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What does it mean continues with refinement..?

• Sometimes we can also describe a potential solution by saying a subset of
size at most k that looks like ¨ ¨ ¨ .
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What does it mean continues with refinement..?

• Sometimes we can also describe a potential solution by saying a subset of
size at most k that looks like ¨ ¨ ¨ .

Keep a certificate for every k sized subset that looks like ¨ ¨ ¨ that tells why it can
not be a solution.
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What does it mean continues with refinement..?

• Sometimes we can also describe a potential solution by saying a subset of
size at most k that looks like ¨ ¨ ¨ .

Idea is to find this desiredW using appropriate matroids.
• The idea is to encode the desired witness as an independent set of an

appropriate matroid. Clearly, the size of the solution + constraint gives a
lower bound on the rank of the matroid.
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Applying the idea to Digraph Pairs

DigraphD, vertex sets S and pairs P.
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Applying the idea to Digraph Pairs

DigraphD, vertex sets S and pairs P.
• Solution are k-sized subset. In fact if X is a solution then induced closest

set C(X) is also a solution.

• Let us keep witness for why a particular closest set X (of size at most k) to
S is not a solution.

• A set X is not a solution because a pair (u, v) P P is reachable from S in
D \ X.

• So there are |X|+ 1 vertex disjoint paths from S to X Y {u} in
D[R(S, X)YX] as well as |X|+ 1 vertex disjoint paths from S to XY {v}

inD[R(S, X) Y X].
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Applying the idea to Digraph Pairs

DigraphD, vertex sets S and pairs P.
• Solution are k-sized subset. In fact if X is a solution then induced closest

set C(X) is also a solution.
• Let us keep witness for why a particular closest set X (of size at most k) to
S is not a solution.

• A set X is not a solution because a pair (u, v) P P is reachable from S in
D \ X.

• So there are |X|+ 1 vertex disjoint paths from S to X Y {u} in
D[R(S, X)YX] as well as |X|+ 1 vertex disjoint paths from S to XY {v}

inD[R(S, X) Y X].

A closest set X is not a solution if and only if there exists a pair
(u, v) P P such that S is linked to X Y {u} and S is linked to
X Y {v}.
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Applying the idea to Digraph Pairs

DigraphD, vertex sets S and pairs P.

A closest set X is not a solution if and only if there exists a pair
(u, v) P P such that S is linked to X Y {u} and S is linked to
X Y {v}.

So we encode this to get our desiredW .

27



Defining the problem in terms of a Matroid

• Build a matroidM, consisting of 2 disjoint copies of the gammoid (D,S).
Call the first gammoid –M1 – (D1, S1) and the second –M2 –
(D2, S2). Refer to all objects of gammoid i with superscript i. Thus,
M = M1 ‘ M2.

• Let
Pm = {(u1, v2) | (u, v) P P}.

Compute 2k-representative for Pm. There is a representative set pPm of
Pm that extends all independent sets ofM of size at most 2k. Size of pPm

is at most O(k2).
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Defining the problem in terms of a Matroid

• Build a matroidM, consisting of 2 disjoint copies of the gammoid (D,S).
Call the first gammoid –M1 – (D1, S1) and the second –M2 –
(D2, S2). Refer to all objects of gammoid i with superscript i. Thus,
M = M1 ‘ M2.

• Let
Pm = {(u1, v2) | (u, v) P P}.

Compute 2k-representative for Pm. There is a representative set pPm of
Pm that extends all independent sets ofM of size at most 2k. Size of pPm

is at most O(k2).

Let P 1 be the set of pairs in P whose corresponding pairs are in pPm.
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Finishing the proof...

Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.
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Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.⇒ Obvious as P 1 Ď P.

29



Finishing the proof...

Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.⇐ Let X be a solution to the problem – assume that X is a closest set to S.

29



Finishing the proof...

Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.⇐ Let X be a solution to the problem – assume that X is a closest set to S. If X
is not a solution then there exists a pair (u, v) P P such that S is linked to
X Y {u} and S is linked to X Y {v}.

29



Finishing the proof...

Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.⇐ Let X be a solution to the problem – assume that X is a closest set to S. If X
is not a solution then there exists a pair (u, v) P P such that S is linked to
X Y {u} and S is linked to X Y {v}. Since P 1 corresponds to 2k representative
we have that there exists a pair (u 1, v 1) P P 1 such that S is linked to X Y {u 1}

and S is linked to X Y {v 1}.

29
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Lemma
(G,P, k) is a yes instance if and only if (G,P 1, k) is a yes instance.⇐ Let X be a solution to the problem – assume that X is a closest set to S. If X
is not a solution then there exists a pair (u, v) P P such that S is linked to
X Y {u} and S is linked to X Y {v}. Since P 1 corresponds to 2k representative
we have that there exists a pair (u 1, v 1) P P 1 such that S is linked to X Y {u 1}

and S is linked to X Y {v 1}. Contradiction that X is a solution to (G,P 1, k)!
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Cut-Covering Problem
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Cut-Covering Problem

Cut-Covering Problem
Input: A digraphD and vertex subsets S and T .
Question: Find a setZ such that for anyA Ď S, B Ď T ,Z contains aminimum
(A,B)-cut.
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Cut-Covering Problem

Cut-Covering Problem
Input: A digraphD and vertex subsets S and T .
Question: Find a setZ such that for anyA Ď S, B Ď T ,Z contains aminimum
(A,B)-cut.

Clearly Z = V(D) suffices!
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Cut-Covering Problem

Cut-Covering Problem
Input: A digraphD and vertex subsets S and T .
Question: Find a setZ (as small as possible) such that for anyA Ď S, B Ď T ,
Z contains a minimum (A,B)-cut.

It is not yet clear what this small should be. We will see at the end that it is

not too large.
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Cut-Covering Problem
Input: A digraphD and vertex subsets S and T .
Question: Find a setZ (as small as possible) such that for anyA Ď S, B Ď T ,
Z contains a minimum (A,B)-cut.

• Which vertices must be in the set Z?
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Cut-Covering Problem
Input: A digraphD and vertex subsets S and T .
Question: Find a setZ (as small as possible) such that for anyA Ď S, B Ď T ,
Z contains a minimum (A,B)-cut.

• Which vertices must be in the set Z?

We will show that just having these“essential vertices in Z are almost
sufficient.”

More precisely we will show that (a) either all the vertices are essential; or (b) we
can obtain an equivalent instance of the problem with strictly smaller number of
vertices.
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• Question 1: How to find the set of essential vertices?
• Question 2: If there are non-essential vertices then how do we obtain the

equivalent instance.
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• Question 1: How to find the set of essential vertices?
• Question 2: If there are non-essential vertices then how do we obtain the

equivalent instance.

We first answer Question 2.

33



Dealing with nonessential vertices

S T

v
N−(v) N+(v)

• Let v be a non-essential vertex.
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Dealing with nonessential vertices

S TN−(v) N+(v)

Transformed Digraph

• Delete v and transformD to digraphD 1 such that there is a complete
bipartite graph between the in-neighboursN−(v) and out-neighbours
N+(v) of v, with edges directed fromN−(v) toN+(v).
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Want to argue that the size of minimum cuts remains exactly the same forD and
D 1. In fact, we show that a minimum cut in the new graphD 1 is actually a

minimum cut inD itself.
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Want to argue that the size of minimum cuts remains exactly the same forD and
D 1. In fact, we show that a minimum cut in the new graphD 1 is actually a

minimum cut inD itself.

This implies our construction.

Since for everyA Ď S and B Ď T there is a minimum cut that avoids v, we have
thatD andD 1 are equivalent instance of Cut-Covering Problem.
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Bounding the cut inD 1

A B

CBCA C

• Take a minimum cut C of (A,B) inD that did not contain v. Such a cut
exists. Let CA, CB be the components containingA and B respectively in
D \ C.
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Bounding the cut inD 1

A B

CBCA C

u w

D�

• Suppose this is not a cut ofA,B inD 1. This implies that the
transformation introduced an edge from a vertex u P CA tow P CB.

• This happens if u P N−(v) andw P N+(v).
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Bounding the cut inD 1

A B

CBCA C

u w

D

v

• This implies that there was a path fromA to B through u, v,w inD \ C

(contradiction to C being an (A,B)-cut inD).
• So, for any (A,B) size of a minimum cut inD 1 is at most the size of a

minimum cut inD.
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Bounding the cut inD

A B

C �
A C �

BC �

• Take a cut C 1 of (A,B) inD 1.
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Bounding the cut inD

A B

u w

D

v C � C �
BC �

A

P

• Suppose this is not a cut ofA,B inD. This implies there is a path P from
A to B inD \ C 1 and v P P.

• This happens if u P N−(v) X P andw P N+(v) X P and u,w R C 1.
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Bounding the cut inD

A B

u w

D�
C �

A C � C �
B

P �

• InD 1 there was an arc a = (u,w) and a path P 1 = PuawP fromA to
B avoiding C 1 (contradiction to C 1 being an (A,B)-cut onD 1).

• So, for any (A,B) size of a minimum cut inD 1 is equal to the size of a
minimum cut inD.
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Algorithm for finding setZ

• Start from the given graphD.

• Iteratively throw out a nonessential vertex of the present graph and make
the above transformation, that preserves the size of the minimum cut
between anyA Ď S, B Ď T .

• Stop when there are no more nonessential vertices in the current graph.
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Remarks

• Notice that there may a nonessential vertex ofD that became essential in
one of the iterations.

• An essential vertex remains essential throughout the algorithm: we showed
that by the property of the transformation fromD toD 1, any minimum cut
ofD 1 is a minimum cut ofD.

• By the property of the transformation, the final graph contains a minimum
cut inD for anyA,B.
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• Question 1: How to find the set of essential vertices?
• Question 2: If there are non-essential vertices then how do we obtain the

equivalent instance.

40



• Question 1: How to find the set of essential vertices?
• Question 2: If there are non-essential vertices then how do we obtain the

equivalent instance.

We now answer Question 1.
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Essential Vertices

• Recall that we have a directed graphD = (V, E) and two sets of vertices
S and T . A vertex is called essential forA Ď S and B Ď T if it occurs in
every minimum (A,B) cut
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How do essential vertices look like

G

TS

B

v

C
A
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Properties of Essential Vertices

Lemma
Suppose that v is essential forA and B and let C be any minimum (A,B) cut.
Then,

..1 there is a set of |C|+ 1 paths fromA to C in R(A,C) which are pairwise
vertex disjoint, except for 2 of these paths which intersect in v and

..2 there is a set of |C|+ 1 paths from C to B inNR(A,C) which are
pairwise vertex disjoint, except for 2 of these paths which intersect in v.
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Essential Vertices

G
S v'

C
A

v

• Construct the graphG 1 by takingG[R(A,C)] Y C and adding a new
vertex v 1 and adding all arcs from the in-neighborhood of v to v 1.
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Essential Vertices

G
S v'

C
A

v

• What is the value of the maximum flow fromA to C Y v 1 inG 1?

• If this value is |C|+ 1, then we are done!
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S v'

C
A

v

• What is the value of the maximum flow fromA to C Y v 1 inG 1?
• If this value is |C|+ 1, then we are done!

45



Essential Vertices

G
S v'

C
A

v

• Value of the max flow is not |C|+ 1 =⇒ anA-(C Y v 1) separator Z of
size at most |C|.
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Essential Vertices

G
S v'

C
A

v

• Value of the max flow is not |C|+ 1 =⇒ anA-(C Y v 1) separator Z of
size at most |C|.

• If Z contains v and v 1, then at least one of the vertex disjoint paths fromA

to C \ v is not hit. =⇒ Z does not contain both v and v 1.
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Essential Vertices

G
S v'

C
A

v

• Value of the max flow is not |C|+ 1 =⇒ anA-(C Y v 1) separator Z of
size at most |C|.

• If Z contains neither v nor v 1, then Z is a minimum (A,B) cut disjoint
from v =⇒ contradiction.
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Essential Vertices

G
S v'

C
A

v

• Value of the max flow is not |C|+ 1 =⇒ anA-(C Y v 1) separator Z of
size at most |C|.

• If Z contains v but not v 1, then v 1 is reachable fromA inG 1 \ Z =⇒
contradiction.
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Proof of Cut Covering Lemma

• Recall that we have a directed graphG(V, E) and two sets of vertices S
and T . A vertex is called essential if it occurs in every minimum (A,B) cut,
for someA P S and B P T .

G

TS

B

v

C
A

• We wish to compute the set of essential vertices, Z in the graphG.
• It will be sufficient to compute a set R(G) such that Z Ď R(G), and R(G)

is of bounded size.
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Proof of the Cut Covering Lemma

Observe the following :
Let r the size of the minimum (S, T) cut. Observe that the size of any (A,B) cut
is bounded by r.

• We will describe a linear matroidM.
• Then we will describe a family F of independent sets of rank 3, such that

each independent set corresponds to a vertex ofG.
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Constrcution of the MatroidM

The MatroidM is a direct-sum of the following three matroids.

• M[0] is the uniform matroid of rank r.
• M[1] is a gammoid defined using S.
• M[2] is a gammoid defined using T .
• Observe that the rank ofM is |S|+ |T |+ r.
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Proof: The familyF and the setR(G)

• The set F is defined as follows,

• For vertex v P V let f(v) = {v[0], v[1] 1, v[2] 1}.
• Observe that, f(v) is an independent set of rank 3 inM.
• F = {f(v) | v P V \ (S Y T)}.

• We compute pF which is a |S|+ |T |+ r− 3 representative set for F.
• Let R(G) = {v P V |f(v) P pF}

• We have to show that every essential vertex is in R(G).
• It is sufficient to show the following :

• f(q) and Cq are disjoint, and f(q) Y Cq is an independent set inM.
• For any other vertex s P V ,

• either f(s) Y Cq is not independent,
• or f(s) and Cq are not disjoint.
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Proof: The setCq.

• Let q be an essential vertex inG,
w.r.tA Ď S and B Ď T . And let
C be aA,B minumum cut.

G
TS

B
A

q

C
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C be aA,B minumum cut.

• Recall that by Proposition
|C| ď |A|, |B|.

• Let Cq be the union of
(C[0] \ {q[0]}),
(S[1] \A[1]) Y C[1] and
(T [2] \ B[2]) Y C[2].

G
TS

B
A

q

C

51



Proof: The setCq.

• Let q be an essential vertex inG,
w.r.tA Ď S and B Ď T . And let
C be aA,B minumum cut.

• Recall that by Proposition
|C| ď |A|, |B|.

• Let Cq be the union of
(C[0] \ {q[0]}),
(S[1] \A[1]) Y C[1] and
(T [2] \ B[2]) Y C[2].

• Observe that Cq is an
independent set of rank at most
(|S|+ |T |+ r− 3).
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Proof: The setCq.

• Observe that
f(q) = {q[0], q[1] 1, q[2] 1} and
Cq are disjoint.
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Proof: The setCq.

• We will show that f(q) Y Cq is
an independent set.

• q[0] Y (C[0] \ q[0]) is
independent inM[0].

• By Proposition there are two
vertex disjoint paths fromA to
q inG \ (C \ {q}).

• Similarly,
(T [2]\B[2])YC[2]Y {q[2] 1}

is an independent set.
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Proof: The setCq.

• Now for any other vertex s, one of
the following three cases happen,

• Either s P C.
• Or s is not reachable fromA in
G \ C.

• Or s is not reachable from B in
G \ C.
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Proof: The setCq.

• Now for any other vertex s, one of
the following three cases happen,

• Either s P C.
Therefore, f(s) and Cq have
s[0] as a common element.
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• Or s is not reachable from B in
G \ C.
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Proof: The setCq.

• Now for any other vertex s, one of
the following three cases happen,

• Either s P C.
• Or s is not reachable fromA in
G \ C.

• Or s is not reachable from B in
G \ C.
Therefore, all paths from B[2]

to q[2] 1 must pass through
C[2]. So f(s) Y Cq is not an
independent set.
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Proof: The setCq.

• Therefore for every essential vertex q, f(q) is present in pF and q itself is
present in R(G).

• Since the size of pF is bounded by (|S|+ |T |+ r)3, we have that the size of
R(G) is bounded by the same quantity.
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Theorem
LetG be a directed graph and X Ď V a set of terminals. In polynomial time one
can identify a set Z of O(|X|3) vertices such that for any S, T, R Ď X, a
minimum (S, T)-vertex cut inG \ R is contained in Z.
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Odd Cycle Transversal: GetQ – the approximate solution of size O(k1.5) and
compute Z. Delete all the vertices ofG \ Z and take parity torso for Z. Return
this as an equivalent instance.
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Theorem
LetG be a directed graph and X Ď V a set of terminals. In polynomial time one
can identify a set Z of O(|X|3) vertices such that for any S, T, R Ď X, a
minimum (S, T)-vertex cut inG \ R is contained in Z.
Odd Cycle Transversal: GetQ – the approximate solution of size O(k1.5) and
compute Z. Delete all the vertices ofG \ Z and take parity torso for Z. Return
this as an equivalent instance.
Digraph Pair

Exercise :D

52



Final Slide

Thank You!
Any Questions?
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