Chapter 5. Open Problems

Danupon Nanongkai

KTH, Sweden

ADFOCS 2018 Last edited: Aug. 12, 2018

<u>Challenge #1</u>: Use amortization & randomization to minimize update time.

Non-trivial Polylog

Non-trivial Single-Source Distances?

<u>Known</u>: Incremental/decremental O(n)-time [Even-Shiloach'81] (Next!) <u>Easier(?)</u>: (1+ε)-approx [Sankowski FOCS'04+COCOON'05], [HKN FOCS'14], [BrandNS'17]

Also: Exact Global Mincut

Polylog (2- ε)-approximate max bipartite matching?

Known: n^{1/k}-update time (2-1/100^k)-

approx [BhattacharyNH STOC'16]. Also see [Gupta-Peng FOCS'13], [Bernstein-Stein ICALP'15, SODA'16]

Also: 3-edge connectivity, approx global min-cut, max-flow, sparsest cut, effective resistance, etc.

n =# of nodes, m =# of edges

Challenge #2: Close oblivious-adaptivedeterministic gaps

Problems	Oblivious adv. 🗼	Adaptive adv.	Deterministic
Spanning Forest (worst case)	polylog n [Kapron King Mountjoy SODA'13]	<i>n^{o(1)}</i> [NSW FOCS'17]	\sqrt{n} [EGIN FOCS'92]
Dec. Single-Source Shortest Path (decremental approximate amortized)	n ^{o(1)} [HKN FOCS'14]	$\min(\frac{n^2}{m}, \frac{3}{n^4})$ [Bernstein, Chechik STOC'16, SODA'17, ICALP'17]	$\min(\frac{n^2}{m}, \frac{3}{n^4})$ [Bernstein, Chechik STOC'16, SODA'17, ICALP'17]
(Δ +1)-coloring	polylog(n) [BCHN SODA'18]	n [Trivial]	n [Trivial]
Dec. Directed Single- Source Shortest Paths (decremental amortized)	n ^{0.9} [HKN STOC'14] Light reading	π [Even Shiloach JACM'81]	${\cal N}$ [Even Shiloach JACM'81]
Maximal Matching	0(1) [Solomon FOCS'16]	\sqrt{m} [Neiman Solomon STOC'13]	\sqrt{m} [Neiman Solomon STOC'13]
Cut Sparsifier (worst-case)	polylog n [ADKKP FOCS'16]	m [trivial]	m [trivial]
Spanner (amortized) # of nodes, <i>m</i> =# of edges	polylog n [BKS ESA06, SODA'08]	m [trivial]	m [trivial]

Randomized Dynamic Algorithms

- Las Vegas: Expected update time
- Monte Carlo: Wrong output with small probability

Assumption: Oblivious adversary.

from hard disk

De-randomization Applications

Dynamic algorithm as data structure:

Example [Garg-Konemann FOCS'98]:

Dyn. Shortest Paths \rightarrow Max Flow

<u>Known</u>: rand. **n**^{o(1)} update time for weighted (1+ε)approx decremental st-shortest path [HenzingerKN. FOCS'14]

Garg-Konemann [FOCS'98], Madry [STOC'10]:

de-randomized $\rightarrow n^{1+o(1)}$ -time (1+ ε)-approx max flow

Randomized algorithm against adaptive adversary is also enough.

Other examples: Interior point method, Tree packing, Interval packing, Traveling Salesperson.

Power of Randomization Oblivious adversary takes **a long time** to destroy random solution

Example 1: 2Δ -coloring (Δ =max degree)

<u>Goal</u>: Maintain 2Δ -vertex-coloring

<u>Algorithm</u>: **Recolor** node with a **random color** from $\geq \Delta$ available colors.

<u>Cost</u>: $O(\Delta)$ to recolor a node, i.e. to find available colors.

Adaptive adversary can force us to recolor and pay $O(\Delta)$

Oblivious adversary takes more time to force a node to recolor

*Lots of details are hidden

Challenge #3 Worst-case update time

Weighted APSP (all-pairs shortest paths):

Maintain distances between every pair of nodes

Amortization may give more power!

Known amortized: $O(n^2)$ [Demetrescul FOCS'00]

Known worst-case: $O(n^{2+2/3})$ [AbhrahamCK SODA'17]

Conjecture:
$$\Theta(n^{2.5})$$

Some others:

Problems	Amortized	Worst-Case	Light
2-edge connectivity	polylog(n) [HLT STOC'98]	O(m ^{1/2}) [Frederickson FOCS'91]	reading
Incremental SSSP	O(n) [EvenS JACM'81]	O(m)	Light reading

Challenge #4: New Conjectures or Techniques to Separate

worst-case from amortized bounds

2-edge connectivity: polylog(n) amortized [HLT STOC'98] but **O(n^{1/2})** worst case [Frederickson FOCS'91]

deterministic from randomized algorithms

Dec. Single-Source Shortest Paths: $n^{o(1)}$ randomized [HKN FOCS'14] but $min(\frac{n^2}{m}, n^{\frac{3}{4}})$ deterministic [Bernstein, Chechik STOC'16, SODA'17, ICALP'17]

incremental from decremental algorithms

Single-source Reachability: (amortized) polylog(n) incremental but O(n^{1/2}) decremental [ChechikHILP STOC'16]

Cash Opportunities*

- 5,000 SEK (ca. 500 Euros): Prove or disprove the OMv conjecture
- 2. 3,000 SEK

Prove or disprove the *v-hinted Mv*

Related to tight ⊙(**n**^{1.407}) bound for st-reach, etc

conjecture

v-hinted OMv (informal)

Input: Phase 1: Boolean matrix **M**, Phase 2: Boolean matrix **V**, Phase 3: index i<u>Output</u> the matrix-vector product MV_i , where V_i is the i-th column of **V**. **Naïve algorithm:** Compute MV in phase 2 or MV_i in phase 3. **Conjecture:** Nothing better than the naive algorithm.