Chapter 5.
 Open Problems

Danupon Nanongkai

KTH, Sweden

Challenge \#1: Use amortization \& randomization to minimize update time.

Non-trivial Single-Source

 Distances?Light reading

Known: Incremental/decremental O(n)-time [Even-Shiloach'81] (Next!)

Easier(?): $(1+\varepsilon)$-approx [Sankowski

 FOCS'04+COCOON'05], [HKN FOCS'14], [BrandNS'17]
Also: Exact Global Mincut

Polylog (2-ع)-approximate max bipartite matching?

Known: $\mathbf{n}^{1 / k}$-update time (2-1/100 ${ }^{\mathbf{k}}$ approx [BhattacharyNH STOC'16]. Also see [GuptaPeng FOCS'13], [Bernstein-Stein ICALP'15, SODA'16]

Also: 3-edge connectivity, approx global min-cut, max-flow, sparsest cut, effective resistance, etc.

Challenge \#2: Close oblivious-adaptivedeterministic gaps

Problems	Oblivious adv.		Adaptive adv.	Deterministic
Spanning Forest (worst case)	polylog n [Kapron King Mountjoy SODA'13]		$n^{o(1)}$ [NSW FOCS'17]	$\underset{\text { [EGIN FOCS'92] }}{\sqrt{n}}$
Dec. Single-Source Shortest Path (decremental approximate amortized)	$n^{o(1)}$ [HKN FOCS'14]		$\min \left(\frac{n^{2}}{m}, n^{\frac{3}{4}}\right)$ [Bernstein, Chechik STOC'16, SODA'17, ICALP'17]	$\min \left(\frac{n^{2}}{m}, n^{\frac{3}{4}}\right)$ [Bernstein, Chechik STOC'16, SODA'17, ICALP'17]
($\Delta+1$)-coloring	polylog(n) [BCHN SODA'18]	Light reading	n [Trivial]	n [Trivial]
Dec. Directed SingleSource Shortest Paths (decremental amortized)	$\begin{aligned} & n^{0.9} \\ & \text { [HKN STOC'14] } \end{aligned}$		n [Even Shiloach JACM'81]	n [Even Shiloach JACM'81]
Maximal Matching	$O(1)$ [Solomon FOCS'16		\sqrt{m} [Neiman Solomon STOC'13]	\sqrt{m} [Neiman Solomon STOC'13]
Cut Sparsifier (worst-case)	polylog n [ADKp Focs'16]		m [trivial]	m
Spanner (amortized)	polylog n [BKS ESA06, SODA'08]		m [trivial]	$\underset{\text { [trivial] }}{m}$

Randomized Dynamic Algorithms

- Las Vegas: Expected update time
- Monte Carlo: Wrong output with small probability

Assumption: Oblivious adversary.

De-randomization Applications

Dynamic algorithm as data structure:

Example [Garg-Konemann FOCs'98]:

Dyn. Shortest Paths \rightarrow Max Flow

Known: rand. $\mathrm{n}^{\circ(1)}$ update time for weighted (1+ $)$ approx decremental st-shortest path [Henzingerkn. FOCS'14]

Garg-Konemann [Focs'98], Madry [sToc'10]: de-randomized $\rightarrow \mathrm{n}^{1+o(1)}$-time ($1+\varepsilon$)-approx max flow

Randomized algorithm against adaptive adversary is also enough.

Other examples: Interior point method, Tree packing, Interval packing, Traveling Salesperson.

Power of Randomization
 Oblivious adversary takes a long time
 to destroy random solution

Example 1: 2Δ-coloring ($\Delta=$ max degree)

Goal: Maintain 2Δ -
vertex-coloring

Algorithm: Recolor node with a random color from $\geq \Delta$ available colors.
Cost: $\mathbf{O}(\Delta)$ to recolor a node, i.e. to find available colors.

Adaptive adversary can force us to recolor and pay $\mathbf{O}(\Delta)$

Oblivious adversary takes more time to force a node to recolor

Example 2: maximal matching ${ }_{\text {[Baswana, }}$ Gupta, Sen Focs'11]

- Degree(v) time to rematch node v

- Adaptive adversary can force us to always pay degree(v)

Adaptive Adversary

- Solution: Match randomly. Non-oblivious adversary will take some time to delete matched edge.

Oblivious Adversary

Challenge \#3 Worst-case update time

Weighted APSP (all-pairs shortest paths):
Maintain distances between every pair of nodes
Amortization may give more power!
Known amortized: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ [Demetrescul Focs'o0]
Known worst-case: $\mathrm{O}\left(\mathrm{n}^{2+2 / 3}\right)$ [AbhrahamCK SODA'17]

Conjecture: $\Theta\left(n^{2.5}\right)$

Some others:

Problems	Amortized	Worst-Case
2-edge connectivity	polylog(n) [HLT STOC'98]	$\mathrm{O}\left(\mathrm{m}^{1 / 2}\right)$ [Frederickson FOCS'91]
Incremental SSSP	$\mathrm{O}(\mathrm{n})$ [EvenS JACM'81]	$\mathrm{O}(\mathrm{m})$

Challenge \#4: New Conjectures or Techniques to Separate

worst-case from amortized bounds
2-edge connectivity: polylog(n) amortized [HLT STOC'98] but $\mathbf{O}\left(\mathbf{n}^{1 / 2}\right)$ worst
case [Frederickson FOCS'91]
deterministic from randomized algorithms
Dec. Single-Source Shortest Paths: $\mathbf{n}^{\mathbf{0 (1)}}$ randomized [HKN FOCS'14] but

incremental from decremental algorithms
Single-source Reachability: (amortized) polylog(n) incremental but $\mathbf{O}\left(\mathbf{n}^{1 / 2}\right)$ decremental [ChechikHILP STOC'16]

Cash Opportunities*

1. 5,000 SEK (ca. 500 Euros): Prove or disprove the OMv conjecture

2. 3,000 SEK Prove or disprove the \boldsymbol{v}-hinted $\mathbf{M v}$ conjecture

Related to tight $\Theta\left(\mathbf{n}^{1.407}\right)$ bound for st-reach, etc
v-hinted OMv (informal)
Input: Phase 1: Boolean matrix M, Phase 2: Boolean matrix V, Phase 3: index i Output the matrix-vector product $\boldsymbol{M} \boldsymbol{V}_{\boldsymbol{i}}$, where V_{i} is the i -th column of \mathbf{V}.
Naïve algorithm: Compute $M V$ in phase 2 or $M V_{i}$ in phase 3.
Conjecture: Nothing better than the naive algorithm.

