informatik

Fine-Grained Complexity Hardness in P

Lecture 2: APSP

Karl Bringmann

Landscape of Polytime Problems

Landscape of Polytime Problems

Subcubic Reductions

A subcubic reduction from P to Q is
an algorithm A for P with oracle access to Q s.t.:

problem Q
instance I_{1} size n_{1}
instance I_{k} size n_{k}
Properties:
for any instance I, algorithm $A(I)$ correctly solves problem P on I A runs in time $r(n)=O\left(n^{3-\gamma}\right)$ for some $\gamma>0$ for any $\varepsilon>0$ there is a $\delta>0$ s.t. $\sum_{i=1}^{k} n_{i}{ }^{3-\varepsilon} \leq n^{3-\delta}$

Problem Definitions

Problem All-Pairs-Shortest-Paths (APSP):
given a weighted directed graph G, compute the (length of the) shortest path between any pair of vertices

APSP-Hypothesis:
each edge has a weight in $\left\{1, . ., n^{c}\right\}$
$\forall \varepsilon>0$: APSP has no $O\left(n^{3-\varepsilon}\right)$-time algorithm
there exists $c>0$ such that

Algorithms:
$O\left(n^{3}\right)$
$O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$
[Williams'14]

Problem Definitions

Problem All-Pairs-Shortest-Paths (APSP):

given a weighted directed graph G, compute the (length of the) shortest path between any pair of vertices

APSP-Hypothesis:
$\forall \varepsilon>0$: APSP has no $O\left(n^{3-\varepsilon}\right)$-time algorithm

Problem Min-Plus Matrix Product: each entry in $\left\{1, . ., n^{c}, \infty\right\}$
given $n \times n$-matrices A, B, define their min-plus product as the $n \times n$-matrix C with

$$
C_{i, j}=\min _{1 \leq k \leq n} A_{i, k}+B_{k, j}
$$

Naive algorithm: $O\left(n^{3}\right)$

Subcubic Equivalences

compute all pairwise distances in a graph
compute matrix C with

$$
C_{i, j}=\min _{1 \leq k \leq n} A_{i, k}+B_{k, j}
$$

Problem NegTriangle:

Given a weighted directed graph G
Decide whether there are vertices i, j, k s.t.
$w(j, i)+w(i, k)+w(k, j)<0$

non-trivial $O\left(n^{3}\right)$-algorithm, output size n^{2}
trivial $O\left(n^{3}\right)$-algorithm, output size n^{2}

Easy Application: Minimum Weight Cycle

Given a weighted directed graph G,
find the smallest weight of any (directed) cycle

MinWeightCycle

 APSP
compute all pairwise distances $d(u, v)$,
the minimum weight of any cycle is $\min _{(u, v) \in E} w(u, v)+d(v, u)$
NegTriangle
MinWeightCycle
Let $M \geq w(i, j)$ for all i, j
Add $10 \cdot M$ to each edge weight
Then a cycle with k edges has length in $[9 \cdot M \cdot k, 11 \cdot M \cdot k$]
So any triangle has smaller length than any 4-cycle, 5 -cycle, ...
So minimum weight of any cycle is $<30 \cdot M$ iff there is a negative triangle

More Applications

[Vassilevska-Williams,Williams'10]

I. Equivalence of APSP and NegTriangle

II. Example Applications
III. Further Topics
IV. Conclusion

Subcubic Equivalences

APSP \Leftrightarrow Min-Plus-Product

Thm: If APSP is in time $T(n)$ then Min-Plus Product is in time $O(T(n))$.

Proof: Given matrics A, B, construct graph:

APSP \Leftrightarrow Min-Plus-Product

Thm: If APSP is in time $T(n)$ then Min-Plus Product is in time $O(T(n))$.

Thm: If Min-Plus Product is in time $T(n)$ then APSP is in $O(T(n) \log n)$.

Proof: Given graph G with adjacency matrix A

Add selfloops with cost 0 , this yields adjacency matrix \hat{A}

Square $\lceil\log n\rceil$ times using Min-Plus Product:

$$
B:=\hat{A}^{2}{ }^{[\log n]}
$$

Then $B_{i, j}$ is the length of the shortest path from i to j

Property: $\left(\hat{A}^{k}\right)_{i, j}=$ length of shortest path from i to $j u s i n g \leq k$ hops

APSP \Leftrightarrow Min-Plus-Product

Thm: If APSP is in time $T(n)$ then Min-Plus Product is in time $O(T(n))$.

Thm: If Min-Plus Product is in time $T(n)$ then APSP is in $O(T(n) \log n)$.

APSP and Min-Plus Product are subcubic equivalent

Cor: APSP has an $O\left(n^{3-\varepsilon}\right)$ algorithm for some $\varepsilon>0$ if and only if Min-Plus Product has an $O\left(n^{3-\delta}\right)$ algorithm for some $\delta>0$

Cor: Min-Plus Product is in time $O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)$

Subcubic Equivalences

Triangle Problems

Negative Triangle

each edge has a weight in $\left\{-n^{c}, \ldots, n^{c}\right\}$

Given a weighted directed graph G
Decide whether there are vertices $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ s.t.

$$
w(j, i)+w(i, k)+w(k, j)<0
$$

Naive algorithm: $O\left(n^{3}\right)$

Intermediate problem:

All-Pairs-Negative-Triangle

Given a weighted directed graph G with vertex set $V=I \cup J \cup K$
Decide for every $\boldsymbol{i} \in \boldsymbol{I}, \boldsymbol{j} \in \boldsymbol{J}$ whether there is a vertex $\boldsymbol{k} \in \boldsymbol{K}$ s.t.

$$
w(j, i)+w(i, k)+w(k, j)<0
$$

Subcubic Equivalences

Neg-Triangle to Min-Plus-Product

Given a weighted directed graph G on vertex set $\{1, \ldots, n\}$
Adjacency matrix A :
$A_{i, j}=$ weight of edge (i, j), or ∞ if the edge does not exist

1. Compute Min-Plus Product $B:=A * A$:

$$
B_{i, j}=\min _{k} A_{i, k}+A_{k, j}
$$

$\infty \infty 4 \infty$
2. Compute $\min _{i, j} A_{j, i}+B_{i, j}$
$15 \infty 2$
$=\min _{i, j, k} A_{j, i}+A_{i, k}+A_{k, j}$
$2 \infty 71$
$=$ the smallest weight of any triangle
thus we solved Negative Triangle
Running Time: $\quad T_{\text {NegTriangle }}(n) \leq T_{\text {MinPlus }}(n)+O\left(n^{2}\right)$
\rightarrow subcubic reduction

Subcubic Equivalences

Min-Plus to All-Pairs-Neg-Triangle

Add all edges from J to I with (carefully chosen) weights $w(j, i)$
Run All-Pairs-Negative-Triangle algorithm
Result: for every i, j, is there a k such that $w(j, i)+w(i, k)+w(k, j)<0$?

$$
\Leftrightarrow w(i, k)+w(k, j)<-w(j, i)
$$

WANTED: Min-Plus: for every $i, j: \min _{k} w(i, k)+w(k, j)$
$=$ minimum number z s.t. there is a k s.t. $w(i, k)+w(k, j)<z+1$

Min-Plus to All-Pairs-Neg-Triangle

binary search via $w(j, i)$! simultaneous for all i, j !
need that all (finite) weights are in $\left\{-n^{c}, \ldots, n^{c}\right\}$
each entry of Min-Plus Product is in $\left\{-2 n^{c}, \ldots, 2 n^{c}, \infty\right\}$
binary search takes $\log _{2}\left(4 n^{c}+1\right)=O(\log n)$ steps

Min-Plus to All-Pairs-Neg-Triangle

binary search via $w(j, i)$! simultaneous for all i, j !
for all i, j : initialize $m(i, j):=-2 n^{c}$ and $M(i, j):=2 n^{c}$
repeat $\log \left(4 n^{c}\right)$ times:
for all i, j : set $w(j, i):=-\lceil(m(i, j)+M(i, j)) / 2\rceil$
compute All-Pairs-Negative-Triangle
for all i, j : if i, j is in negative triangle: $M(i, j):=-w(j, i)-1$ otherwise: $m(i, j):=-w(j, i)$

Min-Plus to All-Pairs-Neg-Triangle

```
3 1 \infty \infty
\infty 4 \infty
\infty \infty 2
\infty \infty \infty 1

\begin{tabular}{cccc}
5 & \(\infty\) & \(\infty\) & \(\infty\) \\
7 & \(\infty\) & \(\infty\) & \(\infty\) \\
\(\infty\) & 2 & \(\infty\) & \(\infty\) \\
\(\infty\) & \(\infty\) & \(\infty\) & 4 \\
\multicolumn{4}{c}{\(B\)}
\end{tabular}
\[
n=4 \text { in the picture }
\]
binary search takes \(\log _{2}\left(4 n^{c}+1\right)=O(\log n)\) steps
\(T(n)\) algorithm for All-Pairs-Neg-Triangle yields \(O(T(n) \log n)\) algorithm for Min-Plus Product

In particular: \(O\left(n^{3-\varepsilon}\right)\) algorithm for All-Pairs-Neg-Triangle for some
\(\varepsilon>0\) implies \(O\left(n^{3-\varepsilon}\right)\) algorithm for Min-Plus Product for some \(\varepsilon>0\)
IIIUII
max planck institut
informatik
\(\rightarrow\) subcubic reduction

\section*{Subcubic Equivalences}


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Negative Triangle Given graph \(G\)
Decide whether there are vertices \(i, j, k\) such that
\[
w(j, i)+w(i, k)+w(k, j)<0
\]

All-Pairs-Negative-Triangle Given graph \(G\) with vertex set \(V=I \cup J \cup K\)
Decide for every \(i \in I, j \in J\) whether there is a vertex \(k \in K\) such that
\[
w(j, i)+w(i, k)+w(k, j)<0
\]

Split \(I, J, K\) into \(n / s\) parts of size \(s\) :
\[
I_{1}, \ldots, I_{n / s}, J_{1}, \ldots, J_{n / s}, K_{1}, \ldots, K_{n / s}
\]

For each of the \((n / s)^{3}\) triples \(\left(I_{x}, J_{y}, K_{z}\right)\) : consider graph \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Initialize \(C\) as \(n \times n\) all-zeroes matrix
For each of the \((n / s)^{3}\) triples of parts \(\left(I_{x}, J_{y}, K_{z}\right)\) :
While \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle:
Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)


Set \(C[i, j]:=1\)
Set \(w(i, j):=\infty\)
\((i, j)\) is in no more negative triangles
\(\checkmark\) guaranteed termination:
can set \(\leq n^{2}\) weights to \(\infty\)
\(\boldsymbol{\checkmark}\) correctness:
if \((i, j)\) is in negative triangle, we will find one


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
How to find a negative triangle if we can only decide whether one exists?

Partition \(I_{x}\) into \(I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}\) into \(J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}\) into \(K_{z}{ }^{(1)}, K_{z}{ }^{(2)}\)
Since \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle, at least one of the \(2^{3}\) subgraphs
\[
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right]
\]
contains a negative triangle
Decide for each such subgraph whether it contains a negative triangle
Recursively find a triangle in one subgraph


\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)
How to find a negative triangle if we can only decide whether one exists?

Partition \(I_{x}\) into \(I_{x}{ }^{(1)}, I_{x}{ }^{(2)}, J_{y}\) into \(J_{y}{ }^{(1)}, J_{y}{ }^{(2)}, K_{z}\) into \(K_{z}{ }^{(1)}, K_{z}{ }^{(2)}\)
Since \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle, at least one of the \(2^{3}\) subgraphs
\[
G\left[I_{x}{ }^{(a)} \cup J_{y}{ }^{(b)} \cup K_{z}{ }^{(c)}\right]
\]
contains a negative triangle

Running Time:
\(T_{\text {FindNegTriangle }}(n) \leq\)
\(2^{3} \cdot T_{\text {DecideNegTriangle }}(n)\)
\(+T_{\text {FindNegTriangle }}(n / 2)\)
\(=O\left(T_{\text {DecideNegTriangle }}(n)\right)\)

\section*{All-Pairs-Neg-Triangle to Neg-Triangle}

Initialize \(C\) as \(n \times n\) all-zeroes matrix
For each of the \((n / s)^{3}\) triples of parts \(\left(I_{x}, J_{y}, K_{z}\right)\) :
While \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\) contains a negative triangle:
Find a negative triangle \((i, j, k)\) in \(G\left[I_{x} \cup J_{y} \cup K_{z}\right]\)

\[
(*)
\]

Set \(w(i, j):=\infty\)

\section*{Running Time:}
\[
(*)=O\left(T_{\text {FindNegTriangle }}(s)\right)=O\left(T_{\text {DecideNegTriangle }}(s)\right)
\]

Total time: \(((\#\) triples \()+(\#\) triangles found \()) \cdot(*)\)
\[
\leq\left((n / s)^{3}+n^{2}\right) \cdot T_{\text {DecideNegTriangle }}(s)
\]

Set \(s=n^{1 / 3}\) and assume \(T_{\text {DecideNegTriangle }}(n)=O\left(n^{3-\varepsilon}\right)\)

\section*{Subcubic Equivalences}


\title{
I. Equivalence of APSP and NegTriangle
}

\section*{II. Example Applications}
III. Further Topics
IV. Conclusion

\section*{Subcubic Equivalences}


\section*{Radius}
\(G\) is a weighted directed graph
\(d(u, v)\) is the distance from \(u\) to \(v\) in \(G\)
Radius: \(\min _{u} \max _{v} d(u, v)\)

\(u\) is in some sense the most central vertex

compute all pairwise distances, then evaluate definition of radius in time \(O\left(n^{2}\right)\)
\(\rightarrow\) subcubic reduction
\(\Rightarrow\) Radius is in time \(O\left(n^{3} / 2^{\Omega(\log n)^{1 / 2}}\right)\)

\section*{Negative Triangle to Radius}

Negative Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

1) Make four layers with \(n\) nodes
2) For any edge \((i, j)\) : Add \(\left(i_{A}, j_{B}\right)\), \(\left(i_{B}, j_{C}\right),\left(i_{C}, j_{D}\right)\) with weight \(M+w(i, j)\)

\section*{Negative Triangle to Radius}

Negative Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

\((i, j, k)\) has weight \(W\)
1) Make four layers with \(n\) nodes
2) For any edge \((i, j)\) : \(\operatorname{Add}\left(i_{A}, j_{B}\right)\), \(\left(i_{B}, j_{C}\right),\left(i_{C}, j_{D}\right)\) with weight \(M+w(i, j)\)

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

\(\rightarrow \exists i_{A}, j_{B}, k_{C}, i_{D}\)-path of length \(\leq 3 M-1\) ?

\section*{Negative Triangle to Radius}

Negative Triangle instance:
graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

\((i, j, k)\) has weight \(W\)
1) Make four layers with \(n\) nodes
2) For any edge ( \(i, j\) ): Add \(\left(i_{A}, j_{B}\right)\), \(\left(i_{B}, j_{C}\right),\left(i_{C}, j_{D}\right)\) with weight \(M+w(i, j)\)
3) Add edges of weight \(3 M-1\) from any \(i_{A}\) to all nodes except \(i_{D}\)

Radius: \(\min \max d(u, v)\)
IIDI

Radius instance:
\(\longrightarrow\) graph \(H\) with \(\mathrm{O}(n)\) nodes, edge-weights in \(\left\{0, \ldots, O\left(n^{c}\right)\right\}\)

\(\rightarrow \exists i_{A}, j_{B}, k_{C}, i_{D}\)-path of length \(\leq 3 M-1\) ?
Claim: Radius of \(H\) is \(\leq 3 M-1\) iff there is a negative triangle in \(G\)

\section*{Subcubic Equivalences}


\section*{MaxSubmatrix}

\section*{MaxSubmatrix:}
given an \(n \times n\) matrix \(A\) with entries in \(\left\{-n^{c}, . ., n^{c}\right\}\)
\(\Sigma(B):=\) sum of all entries of matrix \(B\)
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\)


Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama'98]
[Backurs,Dikkala,Tzamos'16]
there are \(O\left(n^{4}\right)\) possible submatrices \(B\) computing \(\Sigma(B): O\left(n^{2}\right)\)
trivial running time: \(O\left(n^{6}\right)\)

Exercise: design an \(O\left(n^{3}\right)\) algorithm

\section*{MaxSubmatrix}

\section*{MaxSubmatrix:}
given an \(n \times n\) matrix \(A\) with entries in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)
\(\Sigma(B):=\) sum of all entries of matrix \(B\)
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\)


Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama'98]
[Backurs,Dikkala,Tzamos'16]

\section*{MaxCenteredSubmatrix:}
compute maximum \(\Sigma(B)\) over all submatrices \(B\) of \(A\) containing the center of \(A\)
i.e. we require \(x_{1} \leq n / 2<x_{2}\) and \(y_{1} \leq n / 2<y_{2}\)

Thm: MaxCenteredSubmatrix is subcubic equ. to APSP
we only prove: NegativeTriangle \(\leq\) MaxCenteredSubmatrix
Exercise: MaxCenteredSubmatrix \(\leq\) APSP


\section*{NegTriangle to MaxCentSubmatrix}

Positive Triangle instance: graph \(G\) with \(n\) nodes, edge-weights in \(\left\{-n^{c}, \ldots, n^{c}\right\}\)

MaxCenteredSubmatrix:
\(\longrightarrow 2 n \times 2 n\)-matrix \(A\) entries in \(\left\{-n^{O(c)}, \ldots, n^{O(c)}\right\}\)

Claim: MaxCentSubmatrix of \(A\) is \(>M\)
\(M:=2 n^{c+3}\)

In quadrant II we want for any \(k, i\) :
\[
\sum_{y=k}^{n} \sum_{x=i}^{n} A_{y, x}=w(k, i)
\]
this is satisfied by defining:
\[
\begin{aligned}
A_{k, i}:= & w(k, i)-w(k+1, i) \\
& -w(k, i+1)+w(k+1, i+1)
\end{aligned}
\]
(where \(w(x, y):=0\) for \(x>n\) or \(y>n\) )
 iff \(G\) has a positive triangle


\title{
I. Equivalence of APSP and NegTriangle
}
II. Example Applications

\author{
III. Further Topics
}

\author{
IV. Conclusion
}

\section*{Weighted k-Clique}

\section*{Problem Negative-k-Clique:}

Given weighted directed graph \(G\)
is there a \(k\)-Clique with negative total edge-weight?

Neg-k-Clique-Hypothesis:
\(\forall \varepsilon>0, k \geq 3\) : Neg- \(k\)-Clique has no \(O\left(n^{k-\varepsilon}\right)\) algorithm

"Yields more lower bounds since the input is sparser"

\section*{APSP}


Negative Triangle


Neg-kClique

\section*{Tree Edit Distance \\ Input size: \(O\left(n+|\Sigma|^{2}\right)\)}
on two rooted ordered trees \(T, T^{\prime}\) with nodes labeled by \(\Sigma\)
determine minimum cost of edit operations transforming \(T\) into \(T^{*}\)


\section*{Tree Edit Distance}

Input size: \(O\left(n+|\Sigma|^{2}\right)\)
on two rooted ordered trees \(T, T^{\prime}\) with nodes labeled by \(\Sigma\)
determine minimum cost of edit operations transforming \(T\) into \(T^{\prime}\)
first algorithm: \(O\left(n^{6}\right)\)
[Tai'79]
a series of papers improved to: \(O\left(n^{3}\right)\)
[Demaine,Mozes,Rossman,Weimann'07]

\section*{Thm:}
[B.,Mozes,Gawrychowski,Weimann'18]
For alphabet \(|\Sigma|=\Omega(n)\), a truly subcubic algorithm for tree edit distance implies a truly subcubic algorithm for APSP.

For \(|\Sigma|=O(1)\), a truly subcubic algorithm for tree edit distance implies an \(O\left(n^{k-\varepsilon}\right)\) algorithm for Neg- \(k\)-Clique.
other applications: Max-Weight-Rectangle, Viterbi, ...

\section*{Weighted k-Clique}

\section*{Problem Negative-k-Clique:}

Given weighted directed graph \(G\)
is there a \(k\)-Clique with negative total edge-weight?

Neg-k-Clique-Hypothesis:
\(\forall \varepsilon>0, k \geq 3\) : Neg- \(k\)-Clique has no \(O\left(n^{k-\varepsilon}\right)\) algorithm

\section*{APSP}

[Abboud,B,Dell,
OV
Negative Triangle

If OVH fails then Neg- \(k\)-Clique is in time \(O\left(n^{k-\varepsilon}\right)\)

Neg-kClique

\section*{(Weighted) k-Clique in Hypergraphs}
\(r\)-hypergraph:
\(G=(V, E)\) with \(\mathrm{E} \subseteq\binom{V}{r}\)
note: 2-hypergraph = graph
\(k\)-Clique in \(r\)-hypergraph:
vertices \(v_{1}, \ldots, v_{k}\) s.t.

for any \(e \subseteq\left\{v_{1}, \ldots, v_{k}\right\}\) of size \(r\) we have \(e \in E\)
\(O\left(n^{0.79 k}\right)\) known for \(\boldsymbol{k}\)-Clique in graphs [NP'85]
\(O\left(n^{k-\varepsilon}\right)\) not known for Neg- \(\boldsymbol{k}\)-Clique in graphs or \(\boldsymbol{k}\)-Clique in 3-hypergraphs
OVH fails:

[ABDN‘18]
\[
O\left(n^{k-\varepsilon}\right) \text { for Neg- } \boldsymbol{k} \text {-Clique in } \boldsymbol{r} \text {-hypergraphs }
\]
\[
\text { for any } k \gg r \text { and weights bounded by } n^{f(k)}
\]

\section*{Proof Outline}


\section*{Proof Outline - Step (2)}

Removing weights by increasing the arity

\section*{ExactWeight-k-Clique}

Given target \(t\), graph \(G\), weights \(w\), is there a \(k\)-clique of weight \(t\) ?

\section*{\(k\)-Clique}

4-hypergraph \(G^{\prime}\)
assume weights bounded by \(W=O\left(n^{f(k)}\right)\)

Consider \(k\)-clique \(C\) with \(\sum_{e \subseteq C} w(e)=t\)
Base- \(B\) expansion: \(t=\sum_{\ell} t_{\ell} \cdot B^{\ell}, w(e)=\sum_{\ell} w_{\ell}(e) \cdot B^{\ell}\)
we have \(\sum_{e \subseteq C} w(e)=t\)
\(\Leftrightarrow \exists\) carries \(c_{\ell} \in\left\{0, \ldots, O\left(k^{2}\right)\right\}\) such that \(c_{\ell}+\sum_{e \subseteq C} w_{\ell}(e)=t_{\ell}+c_{\ell+1} \cdot B \quad \forall \ell\)
guess carries: blowup of \(O\left(k^{2}\right)^{\log W / \log B}=n^{o(1)}\) for \(B:=\log n\)

\section*{Proof Outline - Step (2)}
\[
W=O\left(n^{f(k)}\right)
\]

Removing weights by increasing the arity
\[
B:=\log n
\]

\section*{ExactWeight-k-Clique}

Given target \(t\), graph \(G\), weights \(w\), is there a \(k\)-clique of weight \(t\) ?

\section*{\(k\)-Clique}

4-hypergraph \(G^{\prime}\)

New problem after guessing carries:
Find \(k\)-clique \(C\) with \(c_{\ell}+\sum_{e \subseteq C} w_{\ell}(e)=t_{\ell}+c_{\ell+1} \cdot B \quad \forall \ell\)
\[
\begin{aligned}
& \Leftrightarrow \sum_{e \subseteq C} w_{\ell}^{\prime}(e)=0 \quad \forall \ell \quad \text { with } w_{\ell}^{\prime}(e):=c_{\ell}+\binom{k}{2} w_{\ell}(e)-t_{\ell}-c_{\ell+1} \cdot B \\
& \Leftrightarrow \sum_{\ell}\left(\sum_{e \subseteq C} w_{\ell}^{\prime}(e)\right)^{2}=0 \\
& \Leftrightarrow \sum_{e_{1}, e_{2} \subseteq C} \sum_{\ell} w_{\ell}^{\prime}\left(e_{1}\right) \cdot w_{\ell}^{\prime}\left(e_{2}\right)=0
\end{aligned}
\]
\[
\Leftrightarrow \sum_{h \subseteq C,|h|=4} W^{\prime \prime}(h)=0 \quad \text { with weights bounded by } O\left(B^{2} \frac{\log W}{\log B}\right)=\text { polylog } n
\]

\section*{Proof Outline - Step (2)}
\[
W=O\left(n^{f(k)}\right)
\]

Removing weights by increasing the arity
\[
B:=\log n
\]

\section*{ExactWeight-k-Clique}

Given target \(t\), graph \(G\), weights \(w\), is there a \(k\)-clig of weight \(t\) ? \(r\)-hypergraph


New problem after guessing carries:
Find \(k\)-clique \(C\) with \(c_{\ell}+\sum_{e \subseteq C} w_{\ell}(e)=t_{\ell}+c_{\ell+1} \cdot B \quad \forall \ell\)
\[
\begin{aligned}
& \Leftrightarrow \sum_{\ell}\left(c_{\ell}+\sum_{e \subseteq C} w_{\ell}(e)-t_{\ell}-c_{\ell+1} \cdot B\right)^{2}=0 \\
& \Leftrightarrow \sum_{\ell}\left(\sum_{e \subseteq C} w_{\ell}^{\prime}(e)\right)^{2}=0 \quad \text { with } w_{\ell}^{\prime}(e):=c_{\ell}+\binom{k}{2} w_{\ell}(e)-t_{\ell}-c_{\ell+1} \cdot B \\
& \Leftrightarrow \sum_{e_{1}, e_{2} \subseteq C} \sum_{\ell} w_{\ell}^{\prime}\left(e_{1}\right) \cdot w_{\ell}^{\prime}\left(e_{2}\right)=0
\end{aligned}
\]
\[
\Leftrightarrow \sum_{h \subseteq C,|h|=4} w^{\prime \prime}(h)=0 \quad \text { with weights bounded by } O\left(B^{2} \frac{\log W}{\log B}\right)=\operatorname{polylog} n
\]

\section*{Proof Outline - Putting it together}
\begin{tabular}{c} 
Neg-2k-Clique \\
\(\boldsymbol{r}\)-hypergraphs
\end{tabular}
\(r\)-hypergraph
\(G=(V, E)\)

(3)
\[
\begin{aligned}
& n=o\left(|V|^{k}\right) \\
& d=o\left(|V|^{2 r}\right)
\end{aligned}
\]

OV-Hypothesis: (moderate dimension)
\[
\forall \varepsilon, \delta>0: \mathrm{OV} \text { in } d=n^{\delta} \text { has no } O\left(n^{2-\varepsilon}\right) \text {-time algorithm }
\]

If OVH fails, then for some \(\varepsilon, \delta\) OV is in time \(O\left(n^{2-\varepsilon}\right)\) in \(d=n^{\delta}\)
Then for any \(r\) and \(k \geq 2 r / \delta\), Neg-2k-Clique in \(r\)-hypergraphs is in \(O\left(|V|^{2 k-\varepsilon k}\right)\)

\title{
I. Equivalence of APSP and NegTriangle
}
II. Example Applications
III. Further Topics

\author{
IV. Conclusion
}

\section*{Conclusion}
```

