
Fine-Grained Complexity -
Hardness in P

Karl Bringmann

Lecture 2: APSP

Landscape of Polytime Problems
SETH-hard

3SUM-hard

APSP-hard

SETH

[Backurs,Indyk’16][B,Künnemann’15]

[Impagliazzo][B,Künnemann’15,
Abboud,Backurs,

V-Williams’15]

[Backurs,Indyk’15]

[B,Künnemann’15,Abboud,
Backurs,V-Williams’15][V-Williams,Roditty’13]

[B’14]

[Williams’05]

[Abboud,B,Hermelin,
Shabtay’17+]

[B,Gawrychowski,
Mozes,Weimann’18]

[Backurs,Dikkala,
Tzamos’16]

[V-Williams,
Williams’10]

[Gajentaan,Overmars’95]

3SUM !"

X+Y !" GeomBase !"

Separator !"

PlanarMotion
Planning !"

Colinear !"

APSP !#

Radius !#

Metricity !#

Betweenness
Centrality !#

NegTriangle !#

Maximum
Submatrix !#

Tree Edit
Distance !#

OV !"k-DomSet !$

LCS !"

Frechet !"

Diameter !"

NFA-Acceptance !"

Dynamic Time Warping !"

Edit Distance !"

SubsetSum
! + &

RegExp Matching !"Longest Palindromic
Subsequence !"

SAT 2(
[Patrascu,

Williams’10]

Landscape of Polytime Problems
SETH-hard

3SUM-hard

APSP-hard

SETH

[Backurs,Indyk’16][B,Künnemann’15]

[Impagliazzo][B,Künnemann’15,
Abboud,Backurs,

V-Williams’15]

[Backurs,Indyk’15]

[B,Künnemann’15,Abboud,
Backurs,V-Williams’15][V-Williams,Roditty’13]

[B’14]

[Williams’05]

[Abboud,B,Hermelin,
Shabtay’17+]

[B,Gawrychowski,
Mozes,Weimann’18]

[Backurs,Dikkala,
Tzamos’16]

[V-Williams,
Williams’10]

[Gajentaan,Overmars’95]

3SUM !"

X+Y !" GeomBase !"

Separator !"

PlanarMotion
Planning !"

Colinear !"

APSP !#

Radius !#

Metricity !#

Betweenness
Centrality !#

NegTriangle !#

Maximum
Submatrix !#

Tree Edit
Distance !#

OV !"k-DomSet !$

LCS !"

Frechet !"

Diameter !"

NFA-Acceptance !"

Dynamic Time Warping !"

Edit Distance !"

SubsetSum
! + &

RegExp Matching !"Longest Palindromic
Subsequence !"

SAT 2(
[Patrascu,

Williams’10]

Subcubic Reductions

an algorithm ! for " with oracle access to # s.t.:

for any instance $, algorithm !($) correctly solves problem " on $
! runs in time '(() = *((+,-) for some . > 0
for any 1 > 0 there is a 2 > 0 s.t. ∑4567 (4+,8 ≤ (+,:

Properties:

A subcubic reduction from P to Q is

problem ;

total time
'(()

size (6

reduction instance $1
problem =

size (

instance $

size (7
instance $>

…

…

Problem Definitions

Problem All-Pairs-Shortest-Paths (APSP):

APSP-Hypothesis:
each edge has a weight in {1, . . , %&}

given a weighted directed graph (, compute the (length of the)
shortest path between any pair of vertices

there exists) > 0 such that

∀- > 0: APSP has no .(%012)-time algorithm

.(%0)

. %0/26(789 :);/<

...

Algorithms:

[Floyd‘62,Warshall’62]

[Williams‘14]

Problem Definitions

Problem All-Pairs-Shortest-Paths (APSP):

APSP-Hypothesis:

given a weighted directed graph !, compute the (length of the)
shortest path between any pair of vertices

∀# > 0: APSP has no &(()*+)-time algorithm

given (×(-matrices ., 0, define their min-plus product as the
(×(-matrix 1 with

Naive algorithm: &(())

12,3 = min89:9; .2,: + 0:,3

each entry in {1, . . , (@,∞}Problem Min-Plus Matrix Product:

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative
Triangle

⟺

non-trivial " #$ -algorithm,
output size #%

trivial " #$ -algorithm,
output size #%

trivial " #$ -algorithm,
output size 1

compute all pairwise
distances in a graph

compute matrix ' with
'(,* = min/0102 3(,1 + 51,*

this is surprising!

this is useful!

Problem NegTriangle:

Decide whether there are
vertices 6, 7, 8 s.t.

Given a weighted directed
graph 9

: 7, 6 + : 6, 8 + : 8, 7 < 0

Easy Application: Minimum Weight Cycle
Given a weighted directed graph !,

find the smallest weight of any (directed) cycle

APSPMinWeightCycle

compute all pairwise distances "($, &),
the minimum weight of any cycle is min+,, ∈. / $, & + " &, $

$

&
/($, &)

MinWeightCycleNegTriangle

Let 1 ≥ /(3, 4) for all 3, 4
Add 10 ⋅ 1 to each edge weight
Then a cycle with 8 edges has length in 9 ⋅ 1 ⋅ 8, 11 ⋅ 1 ⋅ 8
So any triangle has smaller length than any 4-cycle, 5-cycle, ...

So minimum weight of any cycle is < 30 ⋅ 1 iff there is a negative triangle

Can assume that there are no
double edges, since input graph

is tripartite

More Applications

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum
Submatrix

Betweenness
Centrality

2nd Shortest
Path

MedianMetricity
⟺

⟺

[Vassilevska-Williams,Williams’10]
[Abboud,Grandoni,Vassilevska-Williams’15]

Negative
Triangle

⟺

this is surprising!

this is useful!

I. Equivalence of APSP and NegTriangle

IV. Conclusion

III. Further Topics

II. Example Applications

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺

APSP ⇔ Min-Plus-Product

⋮ ⋮
⋮# ##

$ %, ' =)[%, '] $ ', , = -[', ,]

Given matrics), -, construct graph:Proof:

Thm: If APSP is in time . # then Min-Plus Product is in time / . # .

„APSP is very powerful“

APSP ⇔ Min-Plus-Product

Thm: If APSP is in time " # then Min-Plus Product is in time $ " # .

Proof:

Thm: If Min-Plus Product is in time " # then APSP is in $ " # log # .

Given graph (with adjacency matrix)

Add selfloops with cost 0, this yields adjacency matrix *)

Square log # times using Min-Plus Product:

Then +,,. is the length of the shortest path from / to 0

+ ≔ *)2 345 6

Property: *)7 ,,. = length of shortest path from / to 0 using ≤ : hops

Cor:

APSP ⇔ Min-Plus-Product

Cor: APSP has an "($%&') algorithm for some) > 0 if and only if
Min-Plus Product has an "($%&,) algorithm for some - > 0

APSP and Min-Plus Product are subcubic equivalent

Min-Plus Product is in time " $%/20(123 4)5/6

Thm: If APSP is in time 7 $ then Min-Plus Product is in time " 7 $.

Thm: If Min-Plus Product is in time 7 $ then APSP is in " 7 $ log $.

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺
⟺

Negative
Triangle

⟺

Triangle Problems

Decide whether there are vertices !, #, $ s.t.

Naive algorithm: %('()

each edge has a weight in {−',, . . , ',}

Given a weighted directed graph /

0 1, 2 + 0 2, 4 + 0 4, 1 < 0

Intermediate problem:

All-Pairs-Negative-Triangle

Decide for every ! ∈ 8, # ∈ 9 whether there is a vertex $ ∈ : s.t.
Given a weighted directed graph / with vertex set ; = = ∪ ? ∪ @

0 1, 2 + 0 2, 4 + 0 4, 1 < 0

Negative Triangle

2

1
0(2, 1)

4

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺
⟺

Neg-Triangle to Min-Plus-Product

Given a weighted directed graph ! on vertex set {1, … , &}

Adjacency matrix (:
(),* = weight of edge ,, - , or ∞ if the edge does not exist

1. Compute Min-Plus Product / ≔ (∗ (:
/),* = min

5
(),5 + (5,*

2. Compute min
),*

(*,) + /),*

= min
),*,5

(*,) + (),5 + (5,*

= the smallest weight of any triangle

thus we solved Negative Triangle

789:;<=>?:@9 & ≤ 7B=?C@DE & + F(&H)

→ subcubic reduction

Running Time:

3 1 ∞ ∞
∞ ∞ 4 ∞
1 5 ∞ 2
2 ∞ 7 1

(:

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺
⟺

Min-Plus to All-Pairs-Neg-Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

()

3 1

4
2
1

5
7
2
4

*

+

,−2

−7
Add all edges from , to * with (carefully chosen) weights .(0, 2)
Run All-Pairs-Negative-Triangle algorithm
Result: for every 2, 0, is there a 4 such that . 0, 2 + . 2, 4 + . 4, 0 < 0?

⇔ . 2, 4 + . 4, 0 < −. 0, 2

WANTED: Min-Plus: for every 2, 0: min< . 2, 4 + . 4, 0
= minimum number = s.t. there is a 4 s.t. . 2, 4 + . 4, 0 < = + 1

binary search via . 0, 2 ! simultaneous for all 2, 0!

> = 4 in the picture

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Min-Plus to All-Pairs-Neg-Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

()

3 1

4
2
1

5
7
2
4

*

+

,−2

−7
binary search via . /, 1 ! simultaneous for all 1, /!
need that all (finite) weights are in {−34, … , 34}
each entry of Min-Plus Product is in {−234, … , 234,∞}
binary search takes log: 434 + 1 = =(log 3) steps

3 = 4 in the picture

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Min-Plus to All-Pairs-Neg-Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

()

3 1

4
2
1

5
7
2
4

*

+

,−2

−7
binary search via . /, 1 ! simultaneous for all 1, /!
for all 1, /: initialize 2 1, / ≔ −245 and 6(1, /): = 245

4 = 4 in the picture

repeat log(445) times:
for all 1, /: set . /, 1 ≔ − (2 1, / + 6(1, /))/2
compute All-Pairs-Negative-Triangle
for all 1, /: if 1, / is in negative triangle: 6 1, / ≔ −. /, 1 − 1

otherwise: 2 1, / ≔ −. /, 1
(missing: handling of ∞)

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Min-Plus to All-Pairs-Neg-Triangle

3 1 ∞ ∞
∞ ∞ 4 ∞
∞ ∞ ∞ 2
∞ ∞ ∞ 1

5 ∞ ∞ ∞
7 ∞ ∞ ∞
∞ 2 ∞ ∞
∞ ∞ ∞ 4

()

3 1

4
2
1

5
7
2
4

*

+

,−2

−7

binary search takes log1 423 + 1 = 6(log 2) steps

9(2) algorithm for All-Pairs-Neg-Triangle yields
6(9(2) log 2) algorithm for Min-Plus Product

→ subcubic reduction

2 = 4 in the picture

In particular: 6(2;<=) algorithm for All-Pairs-Neg-Triangle for some
> > 0 implies 6(2;<=) algorithm for Min-Plus Product for some > > 0

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺
⟺

All-Pairs-Neg-Triangle to Neg-Triangle

Decide whether there are vertices !, #, $ such that
% #, ! + % !, $ + % $, # < 0

Negative Triangle

All-Pairs-Negative-Triangle
Decide for every ! ∈ *, # ∈ + whether there is a vertex $ ∈ , such that

% #, ! + % !, $ + % $, # < 0

Given graph -

Given graph - with vertex set . = * ∪ + ∪ ,

Split *, +, , into 1/3 parts of size 3:

For each of the (1/3)6 triples (*7, +8, ,9):
consider graph -[*7 ∪ +8 ∪ ,9]

*<, … , *>/?, +< , … , +>/?, ,<,… , ,>/?

*7

,9

+8

*

,

+

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

All-Pairs-Neg-Triangle to Neg-Triangle

For each of the ("/$)& triples of parts ('(, *+, ,-):
While .['(∪ *+ ∪ ,-] contains a negative triangle:

Find a negative triangle (2, 3, 4) in .['(∪ *+ ∪ ,-]

Initialize 5 as "×" all-zeroes matrix

Set 5 2, 3 ≔ 1
Set 9(2, 3) ≔ ∞

(2, 3) is in no more negative triangles

'(

,-

*+

'

,

*� guaranteed termination:

� correctness:

can set ≤ "< weights to ∞

if (2, 3) is in negative triangle,
we will find one

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

All-Pairs-Neg-Triangle to Neg-Triangle

Find a negative triangle (", $, %) in '[)* ∪ ,- ∪ ./]

How to find a negative triangle
if we can only decide whether one exists?

Partition)* into)*(1),)*(2), ,- into ,-(1), ,-(2), ./ into ./(1), ./(2)

)*

./

,-

Since '[)* ∪ ,- ∪ ./] contains a negative triangle,
at least one of the 24 subgraphs

'[)*(5) ∪ ,-(6) ∪ ./(7)]
contains a negative triangle

Decide for each such subgraph whether
it contains a negative triangle

Recursively find a triangle in one subgraph

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

All-Pairs-Neg-Triangle to Neg-Triangle

Find a negative triangle (", $, %) in '[)* ∪ ,- ∪ ./]

How to find a negative triangle
if we can only decide whether one exists?

Partition)* into)*(1),)*(2), ,- into ,-(1), ,-(2), ./ into ./(1), ./(2)

Since '[)* ∪ ,- ∪ ./] contains a negative triangle,
at least one of the 24 subgraphs

'[)*
(5) ∪ ,-

(6) ∪ ./
(7)]

contains a negative triangle

Decide for each such subgraph whether
it contains a negative triangle

Recursively find a triangle in one subgraph

89:;<=>?@A:B;?C> D ≤

24 ⋅ 8G>H:<>=>?@A:B;?C>(D)

+ 89:;<=>?@A:B;?C> D/2

= L(8G>H:<>=>?@A:B;?C> D)

Running Time:

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

All-Pairs-Neg-Triangle to Neg-Triangle

For each of the ("/$)& triples of parts ('(, *+, ,-):

While .['(∪ *+ ∪ ,-] contains a negative triangle:

Find a negative triangle (2, 3, 4) in .['(∪ *+ ∪ ,-]

Initialize 5 as "×" all-zeroes matrix

Set 5 2, 3 ≔ 1

Set 9(2, 3) ≔ ∞

(∗) = =(>?@ABCDEFG@HAEID($)) = =(>JDK@BDCDEFG@HAEID($))

Running Time:

(∗)

Total time: #triples + #triangles found ⋅ (∗)

≤ "/$ & + "^ ⋅ >JDK@BDCDEFG@HAEID($)

Set $ = "_/& and assume >JDK@BDCDEFG@HAEID " = =("&`a)

Total time: = "^ ⋅ "_`a/& = =("&`a/&)

APSP

Min-Plus
Product

⟺

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

⟺

Negative
Triangle

⟺
⟺

I. Equivalence of APSP and NegTriangle

IV. Conclusion

III. Further Topics

II. Example Applications

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum
Submatrix

Betweenness
Centrality

2nd Shortest
Path

MedianMetricity

Negative
Triangle

⟺
⟺

⟺

Radius

! is a weighted directed graph
"($, &) is the distance from $ to & in !

Radius: min+ max. "($, &)

$ is in some sense the most central vertex

APSPRadius

compute all pairwise distances,
then evaluate definition of radius in time /(01)

⟹ Radius is in time / 03/26(789 :);/<

$

&
=($, &)

→ subcubic reduction

Negative Triangle to Radius

Negative Triangle instance:
graph ! with " nodes,
edge-weights in {−"%, … , "%}

)

*
+(), *)

Radius instance:
graph . with O(") nodes,
edge-weights in {0, … , 1("%)}

2 ∶= 3"%

6 7 8 9

):);)<)=

*: *; *< *=

1) Make four layers with " nodes
2) For any edge (), *): Add):, *; ,
);, *< ,)<, *= with weight 2 ++(), *)

Negative Triangle to Radius

Negative Triangle instance:
graph ! with " nodes,
edge-weights in {−"%, … , "%}

)

*
+(), *)

Radius instance:
graph . with O(") nodes,
edge-weights in {0, … , 1("%)}

2 ∶= 3"%

6 7 8 9

):);

*<
=>

1) Make four layers with " nodes
2) For any edge (), *): Add):, *< ,
)<, *> ,)>, *; with weight 2 ++(), *)

=
(), *, =) has weight @

⇔ path has length 32 +@
→ ∃):, *<, =>,);-path of length ≤ 32 − 1?

Negative Triangle to Radius

Negative Triangle instance:
graph ! with " nodes,
edge-weights in {−"%, … , "%}

Radius instance:
graph) with O(") nodes,
edge-weights in {0, … , .("%)}

/ ∶= 3"%

3 4 5 6

78 79

:;

<=

1) Make four layers with " nodes
2) For any edge (7, :): Add 78, :; ,

7;, := , 7=, :9 with weight / +?(7, :)

(7, :, <) has weight @

⇔ path has length 3/ +@

→ ∃78, :;, <=, 79-path of length ≤ 3/ − 1?3) Add edges of weight 3/ − 1 from
any 78 to all nodes except 79

Radius: min
I
max
L
M(N, O) Radius of) is ≤ 3/ − 1 iff

there is a negative triangle in !
Claim:

7

:

?(7, :)

<

Subcubic Equivalences

APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum
Submatrix

Betweenness
Centrality

2nd Shortest
Path

MedianMetricity

Negative
Triangle

⟺
⟺

⟺

MaxSubmatrix

given an !×! matrix # with entries in {−!&, . . , !&}
Σ + ≔ sum of all entries of matrix +
compute maximum Σ + over all submatrices + of #

there are -(!/) possible submatrices +
computing Σ + : -(!1)
trivial running time: -(!2)

Exercise: design an -(!3) algorithm

MaxSubmatrix:

Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama’98]

[Backurs,Dikkala,Tzamos’16]

#

+
45 41

65
61

MaxSubmatrix

given an !×! matrix # with entries in {−!&, . . , !&}
Σ + ≔ sum of all entries of matrix +
compute maximum Σ + over all submatrices + of #

#

+
-. -/

0.
0/

MaxSubmatrix:

Thm: MaxSubmatrix is subcubic equivalent to APSP
[Tamaki,Tokuyama’98]

[Backurs,Dikkala,Tzamos’16]

compute maximum Σ + over all submatrices + of # containing the center of #
MaxCenteredSubmatrix:

#

+

i.e. we require -. ≤ !/2 < -/ and 0. ≤ !/2 < 0/

Thm: MaxCenteredSubmatrix is subcubic equ. to APSP

we only prove: NegativeTriangle ≤ MaxCenteredSubmatrix

Exercise: MaxCenteredSubmatrix ≤ APSP

NegTriangle to MaxCentSubmatrix !

"

#$ #%

&$

&%

Positive Triangle instance:
graph ' with (nodes,
edge-weights in {−(+, … , (+}

MaxCenteredSubmatrix:
2(×2(-matrix !
entries in {−(1(+), … , (1(+)}

4 ≔ 2(+67

4
4

4
4

4
4

−4%

0
&% − (= :

#$ = :

&$ = ;

#% − (= <

III

III IV

Σ ">>

= ?(;, :)
Σ ">

= ?(<, ;)

Σ ">@

= ?(:, <)

In quadrant II we want for any ;, ::

A
BCD

E

A
FCG

E

!B,F = ?(;, :)

this is satisfied by defining:
!D,G ≔ ? ;, : − ? ; + 1, :

−? ;, : + 1 + ?(; + 1, : + 1)

(where ? #, & ≔ 0 for # > (or & > ()

:

<

?(:, <)

;

MaxCentSubmatrix of ! is > 4
iff ' has a positive triangle

Claim:

I. Equivalence of APSP and NegTriangle

IV. Conclusion

III. Further Topics

II. Example Applications

Weighted k-Clique

Neg-!-
Clique

⟹

Problem Negative-!-Clique:

Neg-!-Clique-Hypothesis:
∀$ > 0, (≥ 3: Neg-(-Clique has no ,(./01) algorithm

Given weighted directed graph 3
is there a (-Clique with negative total edge-weight?

-5

3
-1

2
1

-2
4-2

3 -1

0

3

1

APSP⟺

Negative
Triangle

“Yields more lower bounds
since the input is sparser”

Tree Edit Distance

on two rooted ordered trees !, !‘ with nodes labeled by Σ

%

&

relabel a node,
cost+,-(%, &)

delete a node,
cost0,-(%)

insert a node,
cost123(%)

edit operations:

determine minimum cost of edit operations transforming ! into !‘

Input size: 4 5 + Σ 7

Tree Edit Distance

on two rooted ordered trees !, !‘ with nodes labeled by Σ

determine minimum cost of edit operations transforming ! into !‘

a series of papers improved to: %('()

first algorithm: %('*) [Tai’79]

[Demaine,Mozes,Rossman,Weimann’07]

Thm:
For alphabet Σ = Ω('), a truly subcubic algorithm for tree edit
distance implies a truly subcubic algorithm for APSP.

[B.,Mozes,Gawrychowski,Weimann’18]

For |Σ| = %(1), a truly subcubic algorithm for tree edit distance
implies an %('/01) algorithm for Neg-2-Clique.

Input size: % ' + Σ 4

other applications: Max-Weight-Rectangle, Viterbi, ...
[Backurs,Dikkala,Tzamos’16] [Backurs, Tzamos’17]

Weighted k-Clique

Neg-!-
Clique

⟹

Problem Negative-!-Clique:

Neg-!-Clique-Hypothesis:
∀$ > 0, (≥ 3: Neg-(-Clique has no ,(./01) algorithm

Given weighted directed graph 3
is there a (-Clique with negative total edge-weight?

-5

3
-1

2
1

-2
4-2

3 -1

0

3

1

APSP⟺

Negative
TriangleOV

⟹

[Abboud,B,Dell,
Nederlof‘18]

“Neg-(-Clique unifies OV and APSP”

If OVH fails then
Neg-(-Clique is
in time , ./01

(Weighted) k-Clique in Hypergraphs

!(#$%&) not known for Neg-(-Clique in graphs or (-Clique in 3-hypergraphs

)-hypergraph:
* = (,, .) with E ⊆ ,

1

(-Clique in)-hypergraph:

vertices 23, … , 2$ s.t.
for any 5 ⊆ {23, … , 2$} of size 1 we have 5 ∈ .

note: 2-hypergraph = graph

!(#9.;<$) known for (-Clique in graphs

!(#$%&) for Neg-(-Clique in)-hypergraphs
for any = ≫ 1 and weights bounded by #?($)

⟹
[ABDN‘18]

OVH fails:

[NP’85]

Proof Outline

Neg-!"-Clique
#-hypergraphs

ExactWeight-!"-Clique
#-hypergraphs

!"-Clique
!#-hypergraphs

OV
(1) (2) (3)

From testing “≤”
to testing “=“

Removing weights by
increasing the arity

Implementing Constraint
Satisfaction Problems by

Orthogonal Vectors

Proof Outline – Step (2)

!-Clique

4-hypergraph "#

Consider $-clique % with ∑'⊆) *(,) = /

assume weights bounded by 0 = 1 23 4

ExactWeight-!-Clique

Given target /, graph ", weights *,
is there a $-clique of weight /?

Base-5 expansion: / = ∑ℓ /ℓ ⋅ 5
ℓ , *(,) = ∑ℓ*ℓ , ⋅ 5ℓ

we have ∑'⊆) *(,) = /

⟺ ∃ carries :ℓ ∈ {0, … , 1 $@ } such that :ℓ + ∑'⊆) *ℓ(,) = /ℓ + :ℓCD ⋅ 5 ∀ℓ

guess carries: blowup of 1($@)FGHI/ FGH K = 2L(D) for 5 ≔ log 2

Removing weights by increasing the arity

Proof Outline – Step (2)

Find !-clique " with #ℓ + ∑'⊆) *ℓ(,) = /ℓ + #ℓ01 ⋅ 3 ∀ℓ

New problem after guessing carries:

⟺∑'⊆) *ℓ
6 , = 0 ∀ℓ

⟺ ∑ℓ ∑'⊆) *ℓ
6 , 8 = 0

⟺ ∑'9,';⊆) ∑ℓ*ℓ
6 ,1 ⋅ *ℓ

6 ,8 = 0

with *ℓ6 , ≔ #ℓ +
!
2 *ℓ , − /ℓ − #ℓ01 ⋅ 3

⟺ ∑?⊆), ? @A*66 ℎ = 0 with weights bounded by C 38 DEFG
DEF H

= polylog N

guess all weights: polylog N O PQ = NR(1) blowup

3 ≔ logN

S = C NT P

Removing weights by increasing the arity

U-Clique

4-hypergraph V6

ExactWeight-U-Clique

Given target /, graph V, weights *,
is there a !-clique of weight /?

Proof Outline – Step (2)

Find !-clique " with #ℓ + ∑'⊆) *ℓ(,) = /ℓ + #ℓ01 ⋅ 3 ∀ℓ

New problem after guessing carries:

⟺∑ℓ #ℓ + ∑'⊆) *ℓ , − /ℓ − #ℓ01 ⋅ 3 7 = 0

⟺ ∑ℓ ∑'⊆) *ℓ
9 , 7 = 0

⟺ ∑':,'<⊆) ∑ℓ*ℓ
9 ,1 ⋅ *ℓ

9 ,7 = 0

with *ℓ9 , ≔ #ℓ +
!
2 *ℓ , − /ℓ − #ℓ01 ⋅ 3

⟺ ∑?⊆), ? @A*99 ℎ = 0 with weights bounded by C 37 DEFG
DEF H

= polylog N

guess all weights: polylog N O P< = NQ(1) blowup

3 ≔ logN

R = C NS P

Removing weights by increasing the arity

T-Clique

4-hypergraph U9

ExactWeight-T-Clique

Given target /, graph U, weights *,
is there a !-clique of weight /?

V-hypergraph 2V-hypergraph

Proof Outline – Putting it together

!-hypergraph
" = (%, ')

) = * % +

, = * % -.

Neg-/0-Clique
1-hypergraphs

ExactWeight-/0-Clique
1-hypergraphs

/0-Clique
/1-hypergraphs

OV
(1) (2) (3)

OV-Hypothesis: (moderate dimension)
∀3, 4 > 0: OV in , =)8 has no *()-9:)-time algorithm

If OVH fails, then for some 3, 4 OV is in time *()-9:) in , =)8

Then for any ! and ; ≥ 2!/4, Neg-/0-Clique in 1-hypergraphs is in *(|%|-+9:+)

I. Equivalence of APSP and NegTriangle

IV. Conclusion

III. Further Topics

II. Example Applications

Conclusion
APSP

Min-Plus
Product

All-Pairs-
Negative-
Triangle

Radius
Maximum
Submatrix

Betweenness
Centrality

2nd Shortest
Path

MedianMetricity

Negative
Triangle

⟺
⟺

⟺

classic
result

simultaneous
binary search

from many to
one output

Open: Diameter equivalent to APSP?

Unifying hypothesis that implies
OV-H, APSP-H and 3SUM-H?

Neg-"-
Clique

⟹
OV ⟹

