Exercises for ADFOCS 2018-Sheet 2

Exercise 1 Metricity Problem: Given an $n \times n$ matrix A with entries in $\left\{0, \ldots, n^{c}\right\}$ (for some large constant $c>0$), decide whether for all $i, j, k \in[n]$ we have $A_{i j} \leq A_{i k}+A_{k j}$.

Prove that Metricity is equivalent to APSP under subcubic reductions.

Exercise $2 \mathbf{X}+\mathbf{Y}$ problem: Given sets X and Y consisting of n integers, decide whether the set $X+Y=\{a+b \mid a \in X, b \in Y\}$ contains n^{2} distinct integers or whether there are duplicates.

Show that if the $\mathbf{X}+\mathbf{Y}$ problem can be solved in time $O\left(n^{2-\epsilon}\right)$ for some $\epsilon>0$, then $\mathbf{3 S U M}$ can be solved in time $O\left(n^{2-\delta}\right)$ for some $\delta>0$.

Exercise 3 Hitting Set Problem: Given sets $S_{1}, \ldots, S_{n}, T_{1}, \ldots, T_{n} \subseteq\{1, \ldots, d\}$, determine whether there is a set S_{i} that intersects every set T_{j} (in this case S_{i} is called a "hitting set").
Clearly this problem can be solved in time $O\left(n^{2} d\right)$. The Hitting set Hypothesis (HSH) states that this problem cannot be solved in time $O\left(n^{2-\varepsilon} \cdot \operatorname{poly}(d)\right)$.
Prove that HSH implies OVH.

Exercise 4 ZeroTriangle: Given a weighted directed graph $G=(V, E, w)$ with edge weights $w: E \rightarrow\left\{-n^{c}, \ldots, n^{c}\right\}$ (for some large constant $c>0$), determine whether there are three vertices i, j, k such that $w(i, j)+w(j, k)+w(k, i)=0$ holds.
Clearly this problem can be solved in time $O\left(n^{3}\right)$. Prove that if ZeroTriangle can be solved in time $O\left(n^{3-\varepsilon}\right)$ (for some $\varepsilon>0$) then:
a) APSP can be solved in time $O\left(n^{3-\delta}\right)$ (for some $\delta>0$), and
b) 3 SUM can be solved in time $O\left(n^{2-\delta}\right)$ (for some $\delta>0$).

Completion of Lecture:

Exercise 5 Prove that MaxSubmatrix is equivalent to APSP under subcubic reductions, i.e., complete the partial proof from the lecture.

Exercise 6 Construct a k-sum-free set $S \subseteq\{1, \ldots, U\}$ of size n over universe $U=n^{1+\varepsilon} k^{O(1 / \varepsilon)}$, i.e., work out the details of the construction sketched in the lecture.

