Introdcution to Fine-grained Complexity

Mohan Paturi

University of California, San Diego

19th Max Planck Advanced Course on the Foundations of Computer Science August 2018, Saarbrücken, Germany

Outline

- 1 What is Fine-grained Complexity?
 - Ingredients of a Complexity Theory
 - NP Theory
- Problems, Instances and Complexity Parameters
 - 3-SUM Problem
 - \bullet Orthogonal Vectors Problem
 - Small Universe HITTING SET Problem
 - EDIT DISTANCE Problem
 - Maximum Length Chain of Subsets
 - All-Pairs Shortest Paths
 - Relationships among Problems I
- 3 Polynomial Method for Designing Algorithms
- 4 NP-complete Problems
 - Satisfiability Problem
 - NP-complete Graph Problems
 - Relationships among Problems II
- 5 Examples of Fine-grained Reductions

What is fine-grained complexity?

- Theory and techniques to reason about
 - exact worst-case complexities of deterministic or randomized algorithms that output exact solutions and
 - complexity relationships among them.
- What improvements can we expect over exhaustive search or standard algorithms?
- What are the obstructions that limit improvements?
- What principles explain the exact complexities of problems?

Ingredients of a Complexity Theory

- Problems and classes of problems
- Algorithms and design techniques
- Reductions among problems
- Hard and complete problems
- Conjectures
- (Conditional) Lower Bounds
- Interplay between upper and lower bounds

NP Theory

- Problems: Satisfiability, Max Independent Set, Hamiltonian Path, Colorability, Clique, Factoring, Graph Isomorphism, Primality, ...
- Classes: P, NP, coNP, L, ...
- Notions of reductions: Polynomial time reductions
- Complexity relationships: The following problems (and many others) are polynomially equivalent.
 k-SAT for k ≥ 3, COLORABILITY, VERTEX COVER, INDEPENDENT SET, CLIQUE, ···
- Completeness: 3-SAT is complete for NP.
- Complexity conjecture: $P \neq NP$.
- Conditional lower bounds: None of the problems have a polynomial time algorithm (under the conjecture $\mathbf{P} \neq \mathbf{NP}$).

Fine-grained Complexity

- Shares almost some of the charactertistics of the **NP**-theory
- Problem-centric rather than complexity class-centric.
- Strvies to determine the complexity as exactly as possible.

Problems, Instances, Complexity Parameters

- A problem is a set \mathcal{I} of instances and a mapping to $\{0,1\}^*$.
- Each instance comes with a size parameter and one or more complexity parameters.
- Parameters are mappings from instances to integers.
- Size parameter is a measure of the description length of an instance.
- Complexity of a problem (or an algorithm solving the problem) is expressed in terms of size and complexity parameters.

3-SUM Problem

3-SUM: Given a sequence of integers x_1, x_2, \ldots, x_n where $x_i \in [0, 1, \ldots, d-1]$, do there exist i, j and k such that $x_i + x_j = x_k$?

- Complexity parameters: *n* and *d*
- Straightforward algorithm solves it in time $O(n^2 \log d)$.
- $O(n^2 \log \log^2 d / \log^2 d)$ algorithm by Baran, Demaine, Pătrașcu, 2005

ORTHOGONAL VECTORS Problem

ORTHOGONAL VECTORS: Given a sequence A_1, \ldots, A_n of sets with elements from a universe of size d, do there exist $i \neq j$ such that $A_i \cap A_j = \emptyset$. If the sets are thought of as characteristic vectors in $\{0, 1\}^d$, $A_i \cap A_j = \emptyset$ is equivalent to the proposition that the vectors A_i

and A_j are orthogonal.

- Complexity parameters: *n* and *d*
- Straightforward algorithm solves it in time $O(n^2 \log d)$.
- $O(n^{2-\frac{1}{O(\log c)}})$ algorithm where $d = c \log n$ by Abboud and Williams, Yu (2015), Chan and Williams (2016).

ORTHOGONAL VECTORS (Bipartite version): Given two sequences A_1, \ldots, A_n and B_1, \ldots, B_n of sets with elements from a universe of size d, do there exist i and j such that $A_i \cap B_i = \emptyset$.

Small Universe HITTING SET Problem

HITTING SET: Given two sequences A_1, \ldots, A_n and B_1, \ldots, B_n of sets with elements from a universe of size d, does there exist an i such that for all $j \ A_i \cap B_j \neq \emptyset$.

- Complexity parameters: *n* and *d*
- Straightforward algorithm solves it in time $O(n^2 \log d)$.
- $O(n^{2-\frac{1}{O(\log c)}})$ algorithm where $d = c \log n$ by Gao, Impagliazzo, Kolokolova and Williams (2017).

EDIT DISTANCE Problem

EDIT DISTANCE: Given two strings x and y over a fixed alphabet Σ , determine the edit distance between them, that is, the minimum number of insertions, deletions, and substitutions required to transform x to y.

- Complexity parameters: n = |x| and m = |y|.
- Standard dynamic programming algorithm has complexity O(nm).
- 'Four Russians Algorithm': $n^2/\log^2 n$, Masek and Paterson (1980) (when n = m)

Maximum Length Chain of Subsets

MAXIMUM LENGTH CHAIN OF SUBSETS: Given a sequence A_1, \ldots, A_n of sets with elements from a universe of size d, find a maximum length subsequence $i_1 < i_2 < \cdots < i_k$ such that $A_{i_j} \subseteq A_{i_{j+1}}$ for $1 \leq j \leq k-1$.

- Complexity parameters: *n* and *d*
- Straightforward one-dimensional dynamic programming algorithm solves it in time $O(n^2 \log d)$.
- A better algorithm with complexity $n^{2-\frac{1}{O(\log c)}}$ for $d = c \log n$, Künnemann, Paturi and Schneider (2017) by reduction to ORTHOGONAL VECTORS problem.

ALL-PAIRS SHORTEST PATHS Problem

ALL-PAIRS SHORTEST PATHS: Given a undirected (or directed) graph G = (V, E) with integer edge weights, determine the shortest path distances between every pair of vertices.

- Complexity parameters: the number of vertices: n = |V|, the number of edges: m = |E|, the range of edge weights: d
- Floyd-Warshall's algorithm solves it in time $O(n^3 \log d)$.
- $O(n^3 \log d/2^{\Theta(\sqrt{\log n})})$ algorithm, Williams (2014).
- Is there an ε > 0 such that ALL-PAIRS SHORTEST PATHS problem can be computed in time n^{3-ε} for d = O(log n)?

Relationships among Problems

Problems: 3-SUM, ORTHOGONAL VECTORS, HITTING SET, MAXIMUM LENGTH CHAIN OF SUBSETS, and EDIT DISTANCE

- Is there an $\varepsilon > 0$ such that there is an $n^{2-\varepsilon}$ algorithm for any of these problems?
- If the ORTHOGONAL VECTORS problem can be solved in time n^{2-ε} for some ε > 0, can one solve the HITTING SET problem in time n^{2-δ} for some δ > 0?
- More generally, what 'fine-grained' reductions are possible among these problems?
 - Assume that problem A has a conjectured complexity $T_A(n)$ and problem B $T_B(n)$.
 - Assume that the complexity of A improved to $T_A^{(1-\varepsilon)}(n)$ for $\varepsilon > 0$.
 - Can we infer if there will be an improvement in the complexity of *B*?
 - Reductions from *B* to *A* that enable the transfer of the improvement are fine-grained reductions.

Polynomial Method

Theorem (Abboud, Williams, and Yu, 2015)

For vectors of dimension $d = c \log n$, the bipartite ORTHOGONAL VECTORS problems can solved in $n^{2-\frac{1}{O(\log c)}}$ time by a randomized algorithm that is correct with high probability.

Sketch:

- Find a suitable meta problem which has an improved algorithm over exhaustive search/evaluation
- Reduce the problem to the meta problem.
- Optimize the parameters.

Efficient Polynomial Evaluation on a Rectangle of Inputs

Lemma (Williams 2014)

Given a polynomial $P(x_1, \ldots, x_d, y_1, \ldots, y_d)$ over \mathbb{F}_2 with at most $n^{0.1}$ monomials and two sets of n inputs $A = \{a_1, \ldots, a_n\} \subseteq \{0, 1\}^d$ and $B = \{b_1, \ldots, b_n\} \subseteq \{0, 1\}^d$, we can evaluate P on all pairs $(a_i, b_j) \in A \times B$ in $O(n^2 \text{poly}(\log n))$ time.

Proof:

۹

Circuit Satisfiability

CIRCUIT SAT: Given a circuit *C* from a circuit model (specified by certain parameters) on *n* input variables $x = (x_1, ..., x_n)$, is there an assignment to the variables for which the circuit evaluates to 1?

- Size of the circuit is its description length.
- Complexity parameter: n, number of variables
- Satisfiability problem for a circuit *C* can be solved in time size(*C*)2^{*n*} by exhaustive search.
- Improvements are expressed as $\operatorname{size}(C)2^{(1-\mu)n}$ where $\mu > 0$ is the savings over exhaustive search.
- Other complexity parameters: Treewidth

A Variety of Satisfiability Problems

- k-SAT for $k \ge 3$: Conjunction of disjunctions of literals where each disjunction contains at most k literals.
- CNF-SAT: Conjunction of disjunctions of literals
- Number of clauses m may also be useful as a complexity parameter for k-SAT and CNF-SAT.
- FORMULA SATISFIABILITY: Formula F over the basis $\{\lor, \land, \neg\}$.

NP-complete Graph Problems

- HAMILTONIAN PATH: Given a graph G = (V, E), is there a hamiltonian path?
- *k*-COLORABILITY: Given a graph G = (V, E), is G colorable with k or fewer colors?
- COLORABILITY: Given a graph G = (V, E) and an integer k, is G colorable with k or fewer colors?
- MAX INDEPENDENT SET: Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?
- Complexity parameters: the number of vertices: n = |V|, the number of edges: m = |E|, the range of edge weights: d
- Potentially log *n*!, the size of the search space in the case of HAMILTONIAN PATH.

Relationships among Problems

- All the previous problems have exponential-time algorithms, some have better exponential-time algorithms compared to exhaustive search.
- Which **NP**-complete problems have improved exponential-time algorithms?
- Is 3-SAT solvable in subexponential time? How about 3-COLORABILITY?
- If 3-SAT is solvable in subexponential time, is 4-SAT solvable in subexponential time?
- *k*-SAT: What is the exponential complexity of *k*-SAT as $k \rightarrow \infty$?
- Is there an ε > 0 such that there is a 2^{(1-ε)n} algorithm for 5-COLORABILITY or CNF-SAT or k-SAT for all k?

Examples of Fine-grained Reductions

- If ORTHOGONAL VECTORS problem can be solved in time $n^{2-\varepsilon}$ for some $\varepsilon > 0$ for $d = \omega(\log n)$, there exists $\delta > 0$ such that k k-SAT can be solved in time $2^{(1-\delta)n}$ for all k.
- If 3-SAT has a subexponential-time algorithm, then so does 4-SAT.

Reducing *k*-SAT to ORTHOGONAL VECTORS

- Assume that the ORTHOGONAL VECTORS problem can be solved in time n^{2-ε} for ε > 0 for d = ω(log n).
- Let $\varepsilon' = \varepsilon/3$ and ϕ be a k-CNF with *n* variables for k > 0.
- Sparsify ϕ in $2^{\varepsilon' n}$ time into $2^{\varepsilon' n}$ many k-SAT instances ϕ_i with at most $c_{\varepsilon'} n$ many clauses.
- For each φ_i, construct two families L and R of sets which are subsets of a universe of size c_{ε'} n where |L| = |R| = N = 2^{n/2}.
- ϕ_i is satisfiable if and only if there is a pair of sets $A \in L$ and $B \in R$ such that $A \cap B = \emptyset$.
- Total time for solving the satisfiability of ϕ is $2^{\varepsilon' n} + N^{2-\epsilon} 2^{\varepsilon' n} \approx 2^{(1-\varepsilon/6)n}$
- Since k is arbitrary, this implies that **SETH** is false.
- There is no $\epsilon > 0$ such that ORTHOGONAL VECTORS problem can be solved in time $n^{2-\varepsilon}$ for a universe of size $\omega(\log n)$.

Reducing 4-SAT to 3-SAT under Subexponential-time Reductions

- Let $\varepsilon > 0$ be arbitrary.
- Apply Sparsification Lemma to the given 4-CNF φ to obtain a disjunction of 2^{εn} φ_i in time 2^{εn} where each φ_i has linearly many clauses.
- Reduce 4-CNF ϕ_i to a 3-SAT formula with only linearly many new variables.

 $(l_1 \vee l_2 \vee l_3 \vee l_4) = \exists y (l_1 \vee l_2 \vee y) (\bar{y} \vee l_3 \vee l_4)$

- Now, a subexponential time algorithm for 3-SAT implies a subexponential time algorithm for ϕ_i .
- Since $\varepsilon > 0$ is arbitrary, ϕ can be solved in subexponential-time.

Fine-grained Reductions

Definition (Fine-Grained Reductions (\leq_{FGR}))

Let L_1 and L_2 be languages, and let T_1 and T_2 be time bounds. We say that (L_1, T_1) fine-grained reduces to (L_2, T_2) (denoted $(L_1, T_1) \leq_{FGR} (L_2, T_2)$) if for all $\varepsilon > 0$, there is a $\delta > 0$ and a deterministic Turing reduction \mathcal{M}^{L_2} from L_1 to L_2 satisfying the following conditions.

(a) The time complexity of the Turing reduction without counting the oracle calls is bounded by $T_1^{1-\delta}$.

 $\mathsf{TIME}[\mathcal{M}] \leq \mathcal{T}_1^{1-\delta}$

(b) Let Q̃(M, x) denote the set of queries made by M to the oracle on an input x of length n. The query lengths obey time bound: ∑_{q∈Q̃(M,x)}(T₂(|q|))^{1-ϵ} ≤ (T₁(n))^{1-δ}

Other Fine-grained Reductions

- CNF-SAT at 2^n is fine-grain reducible to EDIT DISTANCE at n^2 .
- HITTING SET at n^2 is fine-grain reducible to ORTHOGONAL VECTORS at n^2 .
- Many others
- It is open if ORTHOGONAL VECTORS (or CNF-SAT) is fine-grain reducible to HITTING SET?
- Is ORTHOGONAL VECTORS fine-grain reducible to 3-SUM? (open)

Complexity Conjectures

- Let $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-sat}\}$ and $s_{\infty} = \lim_{k \to \infty} s_k$.
- How does sk behave?
- For best known algorithms, $s_k = (1 \frac{1}{O(k)})$.
- **ETH** (Exponential Time Hypothesis): $s_3 > 0$
- SETH (Strong Exponential Time Hypothesis): $s_{\infty} = 1$
- What evidence supports **ETH** anbd **SETH**?

Conditional Lower Bounds

- Assume that SETH holds, that is, there is no ε > 0 such that k-SAT can be solved in time 2^{(1-ε)n} for all k.
- It follows that ORTHOGONAL VECTORS does not have a $n^{2-\delta}$ algorithm for $d = \omega \log n$.
- What about lower bounds for NP-complete problems?
- What about lower bounds for All-PAIRS SHORTEST PATHS?

Thank You