Obstructions for Fine-grained Relationships

Mohan Paturi

University of California, San Diego

19th Max Planck Advanced Course on the Foundations of Computer Science August 2018, Saarbrücken, Germany

Outline

Problems Fine-grained Complexity Relationships

- CNF-SAT, ORTHOGONAL VECTORS, 3-SUM, HITTING SET, LONGEST COMMON SUBSEQUENCE, ALL-PAIRS SHORTEST PATHS, ···
- Fine-grained reductions: $(L_1, T_1) \leq_{FGR} (L_2, T_2)$ implies polynomial improvements in the conjectured complexity T_2 of L_2 will produce a polynomial improvement in the conjectured complexity T_1 of L_1 .

Problems and Fine-grained Relationships

Obstructions for a Reduction from $\rm CNF\text{-}SAT$ to 3- $\rm SUM$ and other problems

3-SUM Problem

3-SUM: Given a sequence of integers x_1, x_2, \ldots, x_n where $x_i \in [-n^d, n^d]$, determine if there exist i, j, k such that $x_i + x_j + x_k = 0$.

- Fine-grained reductions
- A subquadratic co-nondeterministic algorithm for 3-SUM.
- Nondeterministic SETH (**NSETH**)
- Reduction of *k*-SAT to formulas of the form $\exists \vec{x} \forall \vec{y} \phi$ where ϕ is a 3-DNF.

Definition (Fine-Grained Reductions (\leq_{FGR}))

Let L_1 and L_2 be languages, and let T_1 and T_2 be time bounds. We say that (L_1, T_1) fine-grained reduces to (L_2, T_2) (denoted $(L_1, T_1) \leq_{FGR} (L_2, T_2)$) if for all $\varepsilon > 0$, there is a $\delta > 0$ and a deterministic Turing reduction \mathcal{M}^{L_2} from L_1 to L_2 satisfying the following conditions.

(a) The time complexity of the Turing reduction without counting the oracle calls is bounded by $T_1^{1-\delta}$.

 $\mathsf{TIME}[\mathcal{M}] \leq \mathcal{T}_1^{1-\delta}$

(b) Let Q̃(M, x) denote the set of queries made by M to the oracle on an input x of length n. The query lengths obey time bound: ∑_{q∈Q̃(M,x)}(T₂(|q|))^{1-ϵ} ≤ (T₁(n))^{1-δ}

Basic Properties of Deterministic Fine-grained Reductions

Lemma

Fine-grained reductions are closed under composition.

Lemma

Let $(L_1, T_1) \leq_{FGR} (L_2, T_2)$ and $L_2 \in \mathsf{DTIME}(T_2^{1-\varepsilon}(n))$ for some $\varepsilon > 0$. Then there exists a $\delta > 0$ such that $L_1 \in \mathsf{DTIME}(T_1^{1-\delta}(n))$.

• Deterministic fine-grained reductions translate savings in deterministic time.

Basic Properties of Deterministic Fine-grained Reductions

Lemma

Let $(L_1, T_1) \leq_{FGR} (L_2, T_2)$ and $L_2 \in \mathsf{NTIME}(T_2^{1-\varepsilon}(n)) \cap \mathsf{coNTIME}(T_2^{1-\varepsilon}(n))$ for some $\varepsilon > 0$. Then there exists a $\delta > 0$ such that $L_1 \in \mathsf{NTIME}(T_1^{1-\delta}(n)) \cap \mathsf{coNTIME}(T_1^{1-\delta}(n)).$

• Deterministic fine-grained reductions translate savings when there is savings in both nondeterministic time and co-nondeterministic time.

Efficient Algorithm for Proving 3-SUM Freeness

Theorem

3-SUM can be solved in $(NTIME \cap coNTIME)(\tilde{O}(n^{1.5}))$.

- In other words, there is a subquadratic proof to verify the existence of a triple (i, j, k) such that $x_i + x_j + x_k = 0$ and
- there is a subquadratic proof to verify that there is no triple (i, j, k) such that $x_i + x_j + x_k = 0$.

Proof

- $S = \{[(i, j, k), p] | x_i + x_j + x_k = 0 \mod p\}.$
- $|S| \leq O(dn^3 \log n)$.
- The number of triples is at most n^3 . The sum corresponding to any triple is at most $3n^d$ which has at most $O(d \log n)$ prime factors.
- $S_p = \{(i, j, k) | x_i + x_j + x_k = 0 \mod p\}.$
- There exist a prime p among the first $n^{1.5}$ primes such that $|S_p| \leq \tilde{O}(n^{1.5})$ by pigeon-hole principle.
- The size of such a prime is at most $\tilde{O}(n^{1.5})$.

Proof of 3-SUM Freeness

- Nondeterministically select a number $p = O(n \log n)$.
- Verify that p is a prime. If not, reject.
- Nondeterministically guess the size t of

$$S_p = \{(i, j, k) | x_i + x_j + x_k = 0 \mod p\}.$$

- If $t > dn^{1.5} \log n$, reject.
- Compute $|S_p|$ using FFT.
- Form $P(z) = \sum_{i} z^{x_i \mod p}$.
- Compute $P^3(z)$ using FFT in time $\tilde{O}(n^{1.5})$ and extract the coefficients of z^0 , z^p and z^{2p} and sum them.
- If $t \neq |S_p|$, reject.
- Nondeterministically select t triples (i_l, j_l, k_l) for $1 \le l \le t$.
- For each $1 \le l \le t$, check if $x_{i_l} + x_{j_l} + x_{k_l} = 0 \mod p$ and $x_{i_l} + x_{j_l} + x_{k_l} \ne 0$.
- If any check fails, reject.
- Otherwise, accept.

- Time complexity is $\tilde{O}(n^{1.5})$.
- If there is a triple (i, j, k) such that $x_i + x_j + x_k = 0$, the algorithm will reject assuming that p and t are selected such that $p \in \tilde{O}(n^{1.5})$ and $t = |S_p|$.
- If not, the algorithm will reject any way.

Co-nondeterministic Algorithms for Other Problems

Theorem

HITTING SET can be solved in $(NTIME \cap coNTIME)(O(m))$ where m is the size of the input.

Theorem

MAXIMUM MATCHING can be solved in $(NTIME \cap coNTIME)(O(n + m)$ where n is the number of vertices and m is the number of edges.

Theorem

ALL-PAIRS SHORTEST PATHS can be solved in $(NTIME \cap coNTIME)(O(n^{(3+\omega)/2})).$

Nondeterministic SETH (NSETH)

Definition

NSETH: For every $\varepsilon > 0$, there exists a k so that k-TAUT is not in **NTIME** $(2^{n(1-\varepsilon)})$ where k-TAUT is the language of all k-CNF which are tautologies.

Plausibility:

- Research in designing proof systems for *k*-TAUT hit an impasse similar to the one in the case of research in developing efficient algorithms for *k*-SAT. The best proof systems require 2ⁿ time in the limit as *k* increases.
- Restricted proof systems (for example, tree-like resolution, regular resolution) provably require 2ⁿ time.
- If **NSETH** is false, we can obtain circuit lower bounds.

Consequences of **NSETH**

Theorem

If **NSETH** and $L \in \text{NTIME}(T_L) \cap \text{coNTIME}(T_L)$ for some language L, then $(\text{CNF-SAT}, 2^n) \nleq_{FGR} (L, T_L^{(1+\varepsilon)})$ for any $\varepsilon > 0$

Proof:

- If $(CNF-SAT, 2^n) \leq_{FGR} (L, T_L^{(1+\varepsilon)})$, there exists $\delta > 0$ such that $CNF-SAT \in \mathsf{NTIME}(2^{n(1-\delta)}) \cap \mathsf{coNTIME}(2^{n(1-\delta)})$.
- since deterministic fine-grained reductions pass on improvements in nondeterministic and co-nondeterministic algorithms.
- which violates **NSETH**.

Consequences of **NSETH**

Corollary

If **NSETH**, there is no deterministic fine-grained reductions from CNF-SAT to the following problems with the conjectured complexities for any $\gamma > 0$.

- 3-SUM with the conjectured complexity $n^{1.5+\gamma}$.
- HITTING SET with the conjectured complexity $n^{1+\gamma}$.
- MAXFLOW and MAXIMUM MATCHING with the conjectured complexity $n^{1+\gamma}$.
- ALL-PAIRS SHORTEST PATHS with the conjectured complexity $n^{(3+\omega)/2+\gamma}$ where ω is the matrix multiplication constant.

Status of Fine-grained Relationships

- \bullet Consider the problems: $\rm OV,\ HS,\ LCS,\ 3\textsc{-sum}$
- Known fine-grained reductions: $HS \leq_{FGR} OV \leq_{FGR} LCS$.
- **NSETH** obstruction: $OV \rightarrow HS$; $LCS \rightarrow HS$; $OV \rightarrow 3\text{-sum}$; $LCS \rightarrow 3\text{-sum}$
- Circuit satisfiability obstruction: $LCS \rightarrow OV$;
- Open: HS \rightarrow 3-sum; 3-sum \rightarrow HS; 3-sum \rightarrow OV; 3-sum \rightarrow LCS;

Other Open Problems

• Does SETH imply NSETH?

Quantified Boolean Formulas

Show that the satisfiability of formulas of the form $\forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-CNF or of the form $\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-DNF cannot be solved in time $2^{n(1-\varepsilon)}$ for any $\varepsilon > 0$ assuming **SETH**. Here *n*, the number of variables, is the sum of the number of variables in \vec{x} and \vec{y} .

Hint: Reduce k-CNF to formulas of the form $\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-DNF. Use Sparsification Lemma and the following minimally unsatisfiable formula to reduce k-CNF. The minimally unsatisfiable formula is a conjunction of the following disjunctions.

•
$$\bigvee_{i=1}^m p_i$$

•
$$p_i \rightarrow q_j$$
 for all $1 \le i, j \le m$.

•
$$\bigvee_{i=1}^m \bar{q}_i$$

Thank You