Obstructions for Fine-grained Relationships

Mohan Paturi
University of California, San Diego

19th Max Planck Advanced Course on the Foundations of Computer Science
August 2018, Saarbrücken, Germany

Outline

(1) Fine-grained Reductions

Problems Fine-grained Complexity Relationships

- Cnf-Sat, Orthogonal Vectors, 3-sum, Hitting Set, Longest Common Subsequence, All-Pairs Shortest Paths, ...
- Fine-grained reductions: $\left(L_{1}, T_{1}\right) \leq_{F G R}\left(L_{2}, T_{2}\right)$ implies polynomial improvements in the conjectured complexity T_{2} of L_{2} will produce a polynomial improvement in the conjectured complexity T_{1} of L_{1}.

Problems and Fine-grained Relationships

Obstructions for a Reduction from CNF-SAT to 3-SUM and other problems

3-sum Problem

3-SUM: Given a sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$ where $x_{i} \in\left[-n^{d}, n^{d}\right]$, determine if there exist i, j, k such that $x_{i}+x_{j}+x_{k}=0$.

Plan

- Fine-grained reductions
- A subquadratic co-nondeterministic algorithm for 3-SUM.
- Nondeterministic SETH (NSETH)
- Reduction of k-SAT to formulas of the form $\exists \vec{x} \forall \vec{y} \phi$ where ϕ is a 3-DNF.

Fine-grained Reductions

Definition (Fine-Grained Reductions ($\leq_{F G R}$))

Let L_{1} and L_{2} be languages, and let T_{1} and T_{2} be time bounds. We say that $\left(L_{1}, T_{1}\right)$ fine-grained reduces to $\left(L_{2}, T_{2}\right)$ (denoted $\left.\left(L_{1}, T_{1}\right) \leq_{F G R}\left(L_{2}, T_{2}\right)\right)$ if for all $\varepsilon>0$, there is a $\delta>0$ and a deterministic Turing reduction $\mathcal{M}^{L_{2}}$ from L_{1} to L_{2} satisfying the following conditions.
(a) The time complexity of the Turing reduction without counting the oracle calls is bounded by $T_{1}^{1-\delta}$.

$$
\operatorname{TIME}[\mathcal{M}] \leq T_{1}^{1-\delta}
$$

(b) Let $\tilde{Q}(\mathcal{M}, x)$ denote the set of queries made by \mathcal{M} to the oracle on an input x of length n. The query lengths obey time bound: $\sum_{q \in \tilde{Q}(\mathcal{M}, x)}\left(T_{2}(|q|)\right)^{1-\epsilon} \leq\left(T_{1}(n)\right)^{1-\delta}$

Basic Properties of Deterministic Fine-grained Reductions

Lemma

Fine-grained reductions are closed under composition.

Lemma

Let $\left(L_{1}, T_{1}\right) \leq_{F G R}\left(L_{2}, T_{2}\right)$ and $L_{2} \in \operatorname{DTIME}\left(T_{2}^{1-\varepsilon}(n)\right)$ for some $\varepsilon>0$. Then there exists a $\delta>0$ such that $L_{1} \in \operatorname{DTIME}\left(T_{1}^{1-\delta}(n)\right)$.

- Deterministic fine-grained reductions translate savings in deterministic time.

Basic Properties of Deterministic Fine-grained Reductions

Lemma

Let $\left(L_{1}, T_{1}\right) \leq_{F G R}\left(L_{2}, T_{2}\right)$ and
$L_{2} \in \operatorname{NTIME}\left(T_{2}^{1-\varepsilon}(n)\right) \cap \operatorname{coNTIME}\left(T_{2}^{1-\varepsilon}(n)\right)$ for some $\varepsilon>0$.
Then there exists a $\delta>0$ such that
$L_{1} \in \operatorname{NTIME}\left(T_{1}^{1-\delta}(n)\right) \cap \operatorname{coNTIME}\left(T_{1}^{1-\delta}(n)\right)$.

- Deterministic fine-grained reductions translate savings when there is savings in both nondeterministic time and co-nondeterministic time.

Efficient Algorithm for Proving 3-sum Freeness

Theorem

3-SUM can be solved in (NTIME $\cap \operatorname{coNTIME})\left(\tilde{O}\left(n^{1.5}\right)\right.$.

- In other words, there is a subquadratic proof to verify the existence of a triple (i, j, k) such that $x_{i}+x_{j}+x_{k}=0$ and
- there is a subquadratic proof to verify that there is no triple (i, j, k) such that $x_{i}+x_{j}+x_{k}=0$.

Proof

- $S=\left\{[(i, j, k), p] \mid x_{i}+x_{j}+x_{k}=0 \bmod p\right\}$.
- $|S| \leq O\left(d n^{3} \log n\right)$.
- The number of triples is at most n^{3}. The sum corresponding to any triple is at most $3 n^{d}$ which has at most $O(d \log n)$ prime factors.
- $S_{p}=\left\{(i, j, k) \mid x_{i}+x_{j}+x_{k}=0 \bmod p\right\}$.
- There exist a prime p among the first $n^{1.5}$ primes such that $\left|S_{p}\right| \leq \tilde{O}\left(n^{1.5}\right)$ by pigeon-hole principle.
- The size of such a prime is at most $\tilde{O}\left(n^{1.5}\right)$.

Proof of 3-sum Freeness

- Nondeterministically select a number $p=O(n \log n)$.
- Verify that p is a prime. If not, reject.
- Nondeterministically guess the size t of $S_{p}=\left\{(i, j, k) \mid x_{i}+x_{j}+x_{k}=0 \bmod p\right\}$.
- If $t>d n^{1.5} \log n$, reject.
- Compute $\left|S_{p}\right|$ using FFT.
- Form $P(z)=\sum_{i} z^{x_{i}} \bmod p$.
- Compute $P^{3}(z)$ using FFT in time $\tilde{O}\left(n^{1.5}\right)$ and extract the coefficients of z^{0}, z^{p} and $z^{2 p}$ and sum them.
- If $t \neq\left|S_{p}\right|$, reject.
- Nondeterministically select t triples $\left(i_{l}, j_{l}, k_{l}\right)$ for $1 \leq I \leq t$.
- For each $1 \leq I \leq t$, check if $x_{i_{l}}+x_{j_{l}}+x_{k_{l}}=0 \bmod p$ and $x_{i l}+x_{j l}+x_{k_{l}} \neq 0$.
- If any check fails, reject.
- Otherwise, accept.

Analysis

- Time complexity is $\tilde{O}\left(n^{1.5}\right)$.
- If there is a triple (i, j, k) such that $x_{i}+x_{j}+x_{k}=0$, the algorithm will reject assuming that p and t are selected such that $p \in \tilde{O}\left(n^{1.5}\right)$ and $t=\left|S_{p}\right|$.
- If not, the algorithm will reject any way.

Co-nondeterministic Algorithms for Other Problems

Theorem

Hitting Set can be solved in (NTIME \cap coNTIME) $(O(m)$ where m is the size of the input.

Theorem

Maximum Matching can be solved in (NTIME \cap coNTIME $)(O(n+m)$ where n is the number of vertices and m is the number of edges.

Theorem

All-Pairs Shortest Paths can be solved in (NTIME \cap coNTIME $)\left(O\left(n^{(3+\omega) / 2}\right)\right.$.

Nondeterministic SETH (NSETH)

Definition

NSETH: For every $\varepsilon>0$, there exists a k so that k-TAUT is not in $\operatorname{NTIME}\left(2^{n(1-\varepsilon)}\right)$ where k-TAUT is the language of all k-CNF which are tautologies.

Plausibility:

- Research in designing proof systems for k-TAUT hit an impasse similar to the one in the case of research in developing efficient algorithms for k-SAT. The best proof systems require 2^{n} time in the limit as k increases.
- Restricted proof systems (for example, tree-like resolution, regular resolution) provably require 2^{n} time.
- If NSETH is false, we can obtain circuit lower bounds.

Consequences of NSETH

Theorem

If NSETH and $L \in \operatorname{NTIME}\left(T_{L}\right) \cap \operatorname{coNTIME}\left(T_{L}\right)$ for some language L, then (CNF-SAT, $\left.2^{n}\right) \not \leq F G R\left(L, T_{L}^{(1+\varepsilon}\right)$ for any $\varepsilon>0$

Proof:

- If $\left(\right.$ CNF-SAT, $\left.2^{n}\right) \leq_{F G R}\left(L, T_{L}^{(1+\varepsilon}\right)$, there exists $\delta>0$ such that CNF-SAT $\in \operatorname{NTIME}\left(2^{n(1-\delta)}\right) \cap \operatorname{coNTIME}\left(2^{n(1-\delta)}\right)$.
- since deterministic fine-grained reductions pass on improvements in nondeterministic and co-nondeterministic algorithms.
- which violates NSETH.

Consequences of NSETH

Corollary

If NSETH, there is no deterministic fine-grained reductions from
Cnf-Sat to the following problems with the conjectured complexities for any $\gamma>0$.

- 3-SUM with the conjectured complexity $n^{1.5+\gamma}$.
- Hitting Set with the conjectured complexity $n^{1+\gamma}$.
- MaxFlow and Maximum Matching with the conjectured complexity $n^{1+\gamma}$.
- All-Pairs Shortest Paths with the conjectured complexity $n^{(3+\omega) / 2+\gamma}$ where ω is the matrix multiplication constant.

Status of Fine-grained Relationships

- Consider the problems: OV, HS, LCS, 3-sum
- Known fine-grained reductions: HS $\leq_{F G R}$ OV $\leq_{F G R}$ LCS.
- NSETH obstruction: OV $\rightarrow \mathrm{HS}$; LCS \rightarrow HS;

OV \rightarrow 3-Sum; LCS \rightarrow 3-Sum

- Circuit satisfiability obstruction: LCS $\rightarrow \mathrm{OV}$;
- Open: HS \rightarrow 3-Sum; 3-Sum \rightarrow HS; 3-Sum \rightarrow OV; 3-SUM \rightarrow LCS;

Other Open Problems

- Does SETH imply NSETH?

Quantified Boolean Formulas

Show that the satisfiability of formulas of the form $\forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-CNF or of the form $\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-DNF cannot be solved in time $2^{n(1-\varepsilon)}$ for any $\varepsilon>0$ assuming SETH. Here n, the number of variables, is the sum of the number of variables in \vec{x} and \vec{y}.
Hint: Reduce k -CNF to formulas of the form $\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y})$ where ϕ is a 3-DNF. Use Sparsification Lemma and the following minimally unsatisfiable formula to reduce k -CNF. The minimally unsatisfiable formula is a conjunction of the following disjunctions.

- $\bigvee_{i=1}^{m} p_{i}$
- $p_{i} \rightarrow q_{j}$ for all $1 \leq i, j \leq m$.
- $\bigvee_{i=1}^{m} \bar{q}_{i}$

Thank You

