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Two approaches to Modelling for
Real-life Instances

Assume that an instance satisfies certain structural
properties:

* Perturbation Resilience

* Assumptions of the graph, weights, etc

Generative models. Assume that an instance is
generated in a certain way:

* Random models: e.g. G is a G(n,p) graph

e Semirandom models: random + adversarial choices
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Semirandom Models

There are algorithms for semirandom models of graph
partitioning, graph coloring, community detection,
sorting noisy data, constraint satisfaction, and other
problems.

Today: semirandom instances for correlation clustering



Roadmap

Introduction
* Define Correlation Clustering & a semirandom model

* Review known results

Algorithm
* Solve an SDP relaxation
* Remove edges with high SDP cost

* Prove the Main Structural Algorithm, which claims
that the remaining problem is “easy”

* Construct a small set of representative solutions



Correlation Clustering

We are given a graph G = (V, E, ¢) with edge costs
C. and edge labels.

* V is the set of datapoints/vertices
* for (u,v) € E, we are given whether
U and v are similar or dissimilar

and the confidence level ¢, € [0,1]




Correlation Clustering

E=E, UE_
“+” edges connect similar vertices

‘—" edges connect dissimilar vertices

Cyp € [0,1] is the confidence level



Perfect Information

Perfect Information
There is a clustering (7, ..., Cy such that all
* +-edges lie within clusters

* —-edges connect different clusters



Imperfect Information

Reality: Some edges are inconsistent with clustering

Obijective: Find a clustering that minimizes the total
cost of edges inconsistent with it



Semirandom Model

Adversarial choices:
* Choose a planted clustering C7, ... Cy,
* Choose a graph ¢ = (V, E) and edge costs ¢,

* Label edges within clusters with +,
labels across clusters with —.

At this point, we have perfect information.

Random corruption:

* Flip the label + & — of every edge w.p. € < 1/,.



Semirandom: Planted Solution

E, are within clusters
E_ are across clusters



Semirandom: Random Corruption
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Results



Results: Worst Case

Arbitrary graph with arbitrary costs ¢
Y grap Y e 0(10g n)
[Charikar, Guruswami, and Wirth ‘O5]

[Demaine, Emanuel, Fiat, and Immorlica ‘06] approximation

Completete graph with unit costs ¢, =1  1.994 ...
[Cohen-Addad, Lee, and Newman ‘23] approximation

Completete graph with costs ¢, € [, 1] 3+2log.1l/a
[Jafarov, Kalhan, Makarychev, and M ‘20] CIppI‘OXimCIﬁOH



Results: Random & Semi-random
Models

[Ben-Dor, Shamir, and Yakhini ‘99] [Bansal, Blum, and Chawla ‘04]
[Mathieu and Schudy ‘10] [Chen, Jalali, Sanghavi, and Xu ‘14]

Algorithms for complete and G(n, p) graphs

[Makarychev, M, Vijayaraghavan ‘14] An algorithm for
arbitrary graphs which finds a solution of cost

(1+6)0PT + O(n polylog n)

This is a PTAS when OPT > £~ 1n polylog n. The
algorithm recovers the planted solution under mild
expansion assumptions on G.



SDP relaxation

Introduce a variable x,,,, for every pair of vertices.

The intended solution is

. { 1,if u and v are in the same cluster

Yuy = 0,if u and v are in different clusters
1 1 1 0 0 O \
1 1 1 0 0 O
X = (xy) = (1) (1) %) (1) (i) 8
block matrix O 0 0 1 1 0
0O 0 0 0 0 1



SDP relaxation

minimize ZeEE+(1 — Xe)t QecE_ Xe

s.t.
X =(x,) 20 (positive semidefinite)
0<x,, =1

Assume ¢, = 1 to simplify the exposition.



SDP relaxation

minimize ZeEE+(1 — Xe)t DecE_ Xe

s.t.
X =(x,) 0 (positive semidefinite)
0<x,,<1

let f,(x,)=1—x, ife €E, and
fo(x,) = x, if e € E_



SDP relaxation

minimize ). ¢ fo (%)
s.t.

X =(xy,) 20 (positive semidefinite)
0<x,, =1

let f,(x,)=1—x, ife €E, and
fo(xp) = x, if e € E_



fo(x,) =1—x, ife €EE,

What is £, (x)? G =x eek
Q: Let x, be the planted solution. What is f,(x;)?

Xe * fe(xe)




SDP relaxation

minimize ). ¢ fo (%)
s.t.

X =(xy,) 20 (positive semidefinite)
0<x,,<1

let f,(x,)=1—x, ife €E, and
fo(xp) = x, if e € E_

Denote the cost of the planted solution by OPT.



Rlgorithm

Step O: solve the SDP, obtain X = (x,,,) and f,(x,)

fe(xe) = 0.9




Rlgorithm

Step O: solve the SDP, obtain X = (x,,,) and f,(x,)

Step 1: remove all edges e with f,(x,) > 1—§
0.9

0.15



Rlgorithm

Step O: solve the SDP, obtain X = (x,,,) and f,(x,)
Step 1: remove all edges e with f,(x,) > 1—§

Q: What is the total cost Cost; of all removed edges?
A: A contribution of a removed edge e

* to Costy is 1

*toSDPis>1—96

= Cost; < 2= < (1 +28)SDP



Rlgorithm

It turns out that we removed most corrupted edges!

Main Structural Theorem: W.h.p. the cost Cost, of the
remaining corrupted edges is at most

o OPT
Cost, < ot Os(nlog®n)

where D = O(logn).

Step 2: Apply a standard D = O(logn)

approximation algorithm to the remaining instance
[Charikar, Guruswami, Wirth ‘O5; Demaine, Emanuel, Fiat, Immorlica ‘O6]



Assume the Structural Theorem

We obtain a clustering whose cost is at most

6 OPT
D

+ 0(nlog? n)) X D =8 OPT + Os(nlog*n)

Taking into account Costq, we upper bound the cost of all
the edges:

(1 + 38)0PT + Os5(nlog*n)



Structural Theorem

Main Structural Theorem: W.h.p. the cost Cost, of the

. . . o OPT
remaining corrupted edges is at most +

Os(nlog®n) where D = 0(logn).

Q: What is Cost, for the planted solution x,2




l|dea: There are few integrality gap
examples

The SDP solution maybe

©  Close to the planted solution — Good news!
Step 1 removes most corrupted edges.

®  Far from X* — Too bad!
Step 1 might not accomplish much.

If a feasible SDP solution is far from X7,
* its cost before corruption is much larger than that of X~

* the expected cost after corruption is also much larger
than that of X~

* Bernstein’s concentration inequality = unlikely that

SDP < OPT



l|dea: There are few integrality gap
examples

If a feasible SDP solution is far from X7,

* its cost before corruption is much larger than that of
X*

* the expected cost after corruption is also much
larger than that of X™

* Bernstein’s concentration inequality = unlikely that

SDP < OPT

* W.h.p. there is no feasible SDP solution that is far
from X™ and whose valve SDP < OPT

= the optimal SDP solution must be close to X~



Structural Theorem

Choose G = (V, E, c,) and clustering C7, ..., Cr. The
clustering defines edge labels.

Random Step: Flip the label of every e w.p. € < 1/,
SDP Step: Find an optimal SDP solution

Let Ep be the set of randomly corrupted edges.
Need to show that

Cost, = |{e € Ep: f,(x,) <1 — 8}

is small.



Structural Theorem

Choose G = (V, E, c,) and clustering C7, ..., Cr. The
clustering defines edge labels.

Random Step: Flip the label of every e w.p. € < 1/,
SDP Step: Find an SDP solution with SDP < OPT

Let Ep be the set of randomly corrupted edges.
Need to show that

Cost, = |{e € Ep: f,(x,) <1 — 8}

is small.



A game between SDP & Random

Think that the SDP solution is chosen by an adversary
who wants to disprove our theorem.

Random Player: Flip the label of every e w.p. € < 1/,
SDP Player: Choose a feasible SDP solution

SDP Player wins @ if
SDP < OPT and Cost, is large.

We will show that SDP wins with exponentially small
probability.



A game between SDP & Random

Think that the SDP solution is chosen by an adversary
who wants to disprove our theorem.

SDP Player: Choose a feasible SDP solution
Random Player: Flip the label of every e w.p. € < 1/, §

SDP Player wins @ if
SDP < OPT and Cost, is large.

We will show that SDP wins with exponentially small
probability.



Game: SDP

SDP Player:
Choose a feasible SDP solution: X = (x,,) = 0

When SDP chooses X, Ep and f, are not yet
defined.

Let fo(x,) =1—x, ifeisinsome C;
fo (x,) = x, otherwise

Think of bet, = f,'(x,) € [0,1] as a bet that
SDP places on edge e.



Game: SDP

SDP Player:
Choose a feasible SDP solution: X = (x,,,) = 0
Define [, (x,) =1—x, if eisinsome C;
fo (x,) = x, otherwise

Think of bet, = f,"(x,) € [0,1] as a bet that
SDP places on edge e.

Q: What bet f,(x;) does the planted solution x,
place on every edge?



Game: SDP

SDP Player:
Choose a feasible SDP solution: X = (x,,,) = 0
Define f, (x,) =1—x, if eisinsome C;
fo (x,) = x, otherwise

Think of bet, = f,"(x,) € [0,1] as a bet that
SDP places on edge e.

Q: What bet f,(x;) does the planted solution x,
place on every edge?

A: f (x;) = 0. Further, f,"(x,) = |x, — x;| shows by
how much x, deviates from x.



Game: Random

Random Player:
Flips the label of each e w.p. € < 1/,,.
Let Z, = 1 if e € E (that is, was flipped by Random)

and Z, = —1 otherwise.

ElZ,]=¢-1+(1—-¢)-(-1)=2e—-1<0



A game between SDP & Random

SDP Player: Places a bet bet, = f,"(x,) on each e

Random Player: flips a biased +1 “coin” Z, with
ElZ,]=¢-1+(1—-¢)-(-1)=2e—-1<0

SDP Player wins & only if
OPT — SDP =0

Cost, is large



fe(xe) + fo'(xe) = 1if e € Ey

Formula for OPT — SDP

OPT —SDP = ) f,(x2) — f(xe)

If e € Ep
fe(xg) — fe(xe) = —fo(xe) = —fo' (xe) = Zof " (%)

If e € Ep
fe(xz) — fe(xe) =1- fe(xe) =1- (1 — fe*(xe))
= fo (xo) = Zof " (xe)



fe(xe) + fo'(xe) = 1if e € Ey

Formula for OPT — SDP

OPT — SDP = Z Z.f*(x,)
e

If e € Ep
fe(xg) — fe(xe) = —fo(xe) = —fo' (xe) = Zof " (%)

If e € Ep
fe(xz) — fe(xe) =1- fe(xe) =1- (1 — fe*(xe))
= fo (Xe) = Zof *(x¢)



fe(xe) + fo'(xe) = 1if e € Ey

Upper Bound for Cost,

Cost, = |{e € Ep: f.(x,) <1 — 6}

= |{e € Ep: 7 (x,) > 8} < X, 22



A game between SDP & Random

SDP Player: Places a bet bet, = f,"(x,) on each e

Random Player: flips a biased +1 “coin” Z, with
ElZ,]=¢-1+(1—-¢)-(-1)=2e—-1<0

SDP Player wins & only if
OPT —SDP =), f*(x,) - Z, = 0

1 X :
Cost, < gZef (x.) is large



A game between SDP & Random

SDP Player wins only if

OPT —SDP =¥, f*(x.) - Z, = 0
Cost, < %Ze bet, is large
But...

; lz Fr(xe) - Ze

Bernstein’s Inequality:

Pr(Xf"(xe) - Ze 2 0) = exp(=Q(1 — 2¢) 2 f*(x,))

=) e - Df*(xe) = @e=1) ) f*(xc) <0

is exponentially small when ), f*(x,) is large!



A game between SDP & Random

The probability that a given SDP solution wins is
exponentially small

In reality, we solve the SDP after — not before — edge
labels are randomly perturbed. What shall we do about
that?e



Random moves first &
SDP second

Changing the order of moves may appear
problematic: in a casino, if we were allowed to
place a bet after we see where the ball lands,
we could easily winl!

If X could be any matrix with x,,,, € [0,1] then the
SDP player could win by defining x, so that

.+ (o0 ifz,=-1
fe(xe) _{ 1’ lee —

Then,
e f (Xe) Ze = Ze:Ze=1 ce=ec(E)>0

Yef(xe) = €c(E) is large




Random moves first &
SDP second

We showed that every fixed “strategy” X = (x,,) wins
with exponentially small probability

p = exp(—P)

Union bound: the SDP player still looses w.h.p. if he
chooses X = (x,,,) from an exponentially large family of
solutions |F| = exp(F) as long as

P>F

To conclude, we show that there exists a representative
family of SDP solutions of size exp (O(n log3 n))



Grothendieck Inequality

Given:

* vectors Uy, ..., Uy and Vq, ..., U, with [|Juy]|, HUJH <1
* amatrix M = (m;;)

There exist a4, ...,a, € {£1} and by, ..., b,, € {£1} s.t.

Emij<ui,vj> < KG Zmu Cll'bj
Lj Lj

where K; < 1.7823 is an absolute constant.



Grothendieck Inequality: Dual Form

( )
a1b1 anbl

letS={abT=| i ~ i |:ia;b;€{+1)

~"

\ J

For vectors Uy, ..., U, and vy, ..., v, with [Ju;]|, HUJH <1,
we have for their Gram matrix:

G = ((ui,vj))ij € K. - conv(S)



Grothendieck Inequality: Dual Form

( a1b1 anbl \
let S =<abl = i |iay, b € {1}

albn *e anbn

-~

\ J

If X = 0 and diagonal entries x;; < 1, then

X € K; - conv(S)



Grothendieck Inequality: Dual Form

( a1b1 anbl \
let S =<abl = i |iay, b € {1}

albn *e anbn

-~

\ J

If X = 0 and diagonal entries x;; < 1, then

X € K; - conv(S)

S has size |S| = 2%™.



Grothendieck Inequality: Dual Form

If X = 0 and diagonal entries x;; < 1, then

X € K; - conv(S)

S has size |S| = 2%™.

Approximate Carathéodory's Theorem [Maurey]:

Every X is approximated by an average of

o — O(lo gn
y?

matrices” from S with £, -error < y.

* with repetitions



Grothendieck Inequality: Dual Form

If X = 0 and diagonal entries x;; < 1, then

X € K; - conv(S)

S has size |S| = 2%™.

Approximate Carathéodory's Theorem [Maurey]:

Every X is approximated by an average of

o — O(lo gn
y?

matrices” from S with £, -error < y.

Let F = (==K M; € F}.

* with repetitions



Grothendieck Inequality: Dual Form

Let F = {M1+'I;+Mk :M; € S} where k = O (loygzn).

Every feasible SDP solution X is approximated by a
matrix M € F: || X — M||oo < y. We need y =

logn’

There are |F| = |S|* = ("108”) = exp (O(Tl log? n))

such matrices.



We are donel

Only need to take care of the error term y. This is a
bit technical but not difficult step.



