Negative-Weight
Single-Source Shortest Paths

Danupon Nanongkai

MPI for Informatics

Single-Source Shortest Paths (SSSP)

* Input: Directed weighted graph ¢ = (V,E,w), sources € I/

* Integer weights

* Qutput: distances dist(s,v) fromstoeveryv € V

. ~ | :
input output A Notations
; @/"@ %@ﬂ@ m = [E|, n=|V|
/ﬁ) - | Wisst.w(e) = —-W Ve €E
dist(u, v)=length of shortest uv-path

1
(&) Y O hides polylog n
2

Textbook algorithms

Dijkstra
* Near-linear time (O(m + nlogn) time)
» Restricted to nonnegative edge weights.

Bellman-Ford
* Work with negative weights
* Far from near-linear time (O(mn) time)

Research question: Fast algorithm for negative-weight SSSP?

H | StO ry (m=#of edges, n=# vertices, w(e)= —W)
Classic (50s): O(mn) [Shimbel’55, Ford’56, Bellman’58, Moore’59]

Scaling techniques (80s-90s): O (m+/nlog W)
Gabow’85 (mn3/* logn), Gabow-Tarjan’89 (mn'/? log(nW)), Goldberg’95 (mn'/? log(W))

Special cases:
O (m) time for planar graphs [Fakcharoenphol-Rao’06, Mozes-Wulff-Nilsen’10]
0 (n*/3log W) time for bounded-genus & minor-free graphs [Wulff-Nilsen’11]

Continuous Optimization + Dynamic Alg: m*/3+°() Jog W , 0 (m + n> log W)

* Cohen, Madry, Sankowski, Vladu’17 ((m'%/7+°(1) Jog W) , Axiotis, Madry, Vlady, 2020 (m*/3%°() Jog W), van den
Brand, Lee, N, Peng, Saranurak, Sidford, Song, Wang 2020 (m + n® log W)

O U r res U |tS (m=#of edges, n=# vertices, w(e)= —W)

(2022) O (mlog®(n) log(W)) time in expectation witout optimiing log® term)

Bernstein, Nanongkai, Wulff-Nilsen: Negative-Weight Single-Source Shortest Paths in Near-linear Time.

(2023) O (mlog?(n) log(nW) loglog(n)) time in expectation

Bringmann, Cassis, Fischer: Negative-Weight Single-Source Shortest Paths in Near-Linear Time: Now Faster!

Codable. Teachable. Efficient in parallel, distributed, ... [Ashvinkumar et al. 2023]

Related result: Min-cost flow in m' "2 o g (W) time [Chen et al. 2022]
* Generalizes Negative SSSP, Bipartite matching, etc.
* Different techniques — e.g. continuous optimization & dynamic data structures

Key Tool: Low-Diameter Decomposition (LDD)

(SCC= Strongly connected component)

Definition of LDD(G,D)

Input: Directed graph ¢ = (V/, E, w) with non-negative

integer edge weight w and a positive integer D) E om
Output: Er,..,, & E such that -
cc
1. each SCCs of ¢ \ E,.,, has “weak diameter” O(D) Eqelm
* i.e. for u, v in the same SCC, dist;(u,v) = 0(D) &)
dist;(v,u) = 0(D) Q)
, 2 A,
2. Ve€E,Prlee E,..,|] =0 (W(e) gogn) + n_8). il

Runtime: O (m) in expectation.

Remarks: Probabilities may not be independent. E}.., is called E,), in the previous version

SCC = strongly-connected component

Example (1)
G = undirected path (v, v, ..., U;,)

Getting LDD(G, D):
* randomly selecti € [1,D]

* add edges (v, Vi+1), Witp, Vitp+1)s Wit2p, Vitzp+1)s - 10 Erem

Example (2)
G = directed cycle (v, vy, ..., vy,)

Getting LDD(G, D): randomly add one edge to E,..,

— Each node becomes an SCC

Vo OV’L
NN o N
'. | ,l\
F\ J f\\/v\ %Vf’

Vp - o

Ve

Algorithm FastLDD(G, D) // See explanation below

Our LDD algorithm

1. Go + G. Erem < 0 and n < |V(G)|. // n does not change in the steps below.

2.Foreachv e V:
2.1 k < clnn for a big enough constant c.
2.2 S < {s1,82,...8} where s; is a random node in V for every i. (Possible: s; = s; for
some i # 7J.)
2.3 For each s € S, compute Ballls(s, D) and Ball%"(s, D) // O(mk) time
2.4 For each v € V: // O(nk) time
o |Ball(v,D)N S| + {s € S| v € Ball%'(s,D)}
o |Ball%*(v,D) N S| + {s € S| v € Ball%(s, D)}
2.5 For every v € V, if | Balll (v, D) N S| < (0.6)k, mark v as in-light;
else if | Ball%" (v, D) N S| < (0.6)k, mark v as out-light.
3. While G contains node v marked *-light for any * € {in, out}:
3.1 Sample R, ~ Geom(p) for p = min{1,20log(n)/D}.If R, > D/2, let R, = D/2.
3.2 Compute Bally, (v, R,). If |Bally,(v, R,)| > 0.7n, return E,cp, = Eper, U E(G) and
terminate. // Claim: Pr[terminate] < 1/n'
3.3 Efem < LDD (G[Ball},(v, R,)], D). // Recurse
34 Ereny < Erem U 0Ballf, (v, R,) U Ejen,
34 G <+ G\ Bally,(v, R,).
4. Let v be any node in G. If distg,(v,u) > 2D or distg,(u,v) > 2D for any node u, return
Erem = Erem U E(G) and terminate. // Claim: Prlterminate] < 1/n'°
o (If dist(;o(v, u) < 2D and dz’stgo(u, U) < 2D, we can conclude that the weak diameter of
Gwrt Ggis <4D.)

Return E,.,, Skip

Low-Diameter
Decomposition!

Brief history of LDD

Undirected LDD: Many variants studied in many settings
e.g. [Awe85, AGLP89, AP92, ABCP92, LS93, Bar96, BGK+14, MPX13, PRS+18, FG19, CZ20, BPW20, FGdV21].

Highlights
e Distributed network synchronization [Awerbuch’85]
* Probabilistic tree embedding [Bartal’96]. Many lecture notes/books.

Directed LDD: Based on ball-carving technique [Linial-Saks’93,Bartal’96]
* |nefficient version in BGW’20.

* Only known applications: Dynamic directed SSSP [scw’20], Negative SSSP. Lecture note:
https://bit.ly/3elW64i

* Open: More applications? EIE %I

https://bit.ly/3elW64i

Using LDD to solve negative SSSP

Need:
* Basics: Price/potential function, solving negative SSSP on DAG

* Solving negative SSSP fast when there are not “many” negative

weights
* Fun exercise — by combining Bellman-Ford and Dijkstra

* One crucial trick (see our talks on youtube)

Open

Electric car problem

» Battery can keep charge <B. Charge = 0 = car dies
* Lose charge on some roads, gain on others

 Min chargetogofromstot="

Negative SSSP:
e Strongly polynomial better than O(mn) [Bellman-Ford]?
e Deterministic algorithms

Broader problems:

 Alternative algorithms for problems solvable by min-cost flow?
* Simple - Implementable/teachable?

. Bey%nd min-cost flow: non-bipartite matching, directed cut, vertex cut, disjoint spanning
tree:

