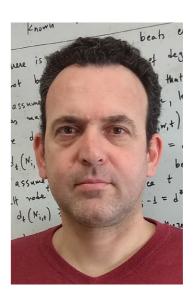
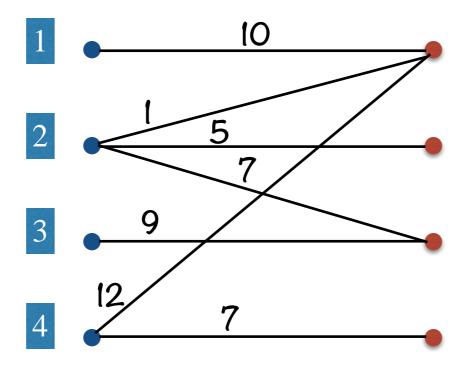
Optimizing over Serial Dictatorships

Nidhi Rathi Max-Planck-Insitut für Informatik



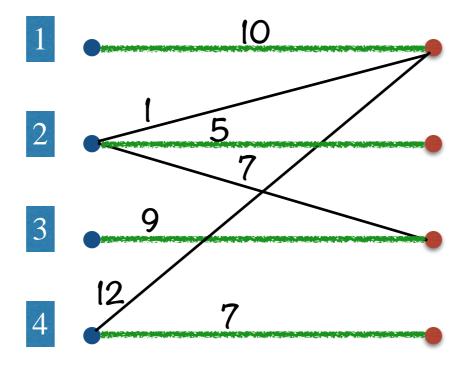
Ioannis Caragiannis Aarhus University, Denmark



remaining edge weights = 0

Complete weighted bipartite graph

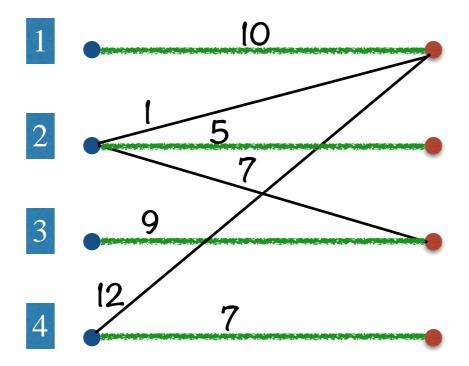
Goal: Maximum-weight matching



remaining edge weights = 0

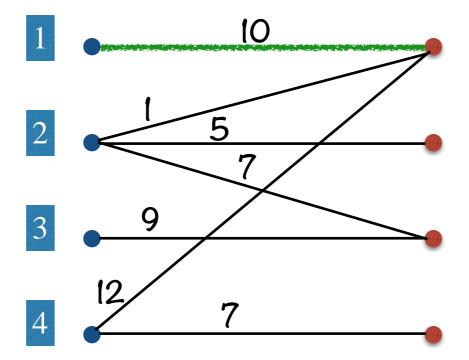
Complete weighted bipartite graph

Goal: Maximum-weight matching



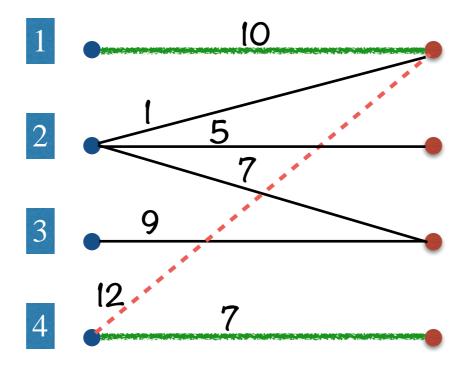
remaining edge weights = 0

Action sequence: 1 4 3 2 produces the maximum-weight matching



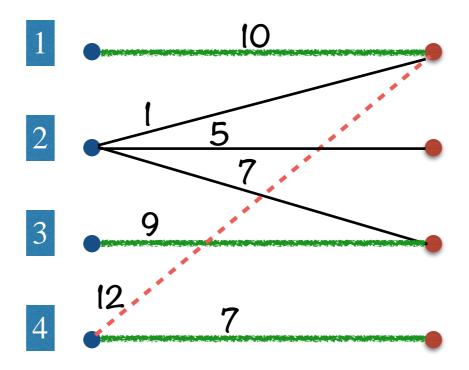
remaining edge weights = 0

Action sequence: 1 4 3 2 produces the maximum-weight matching



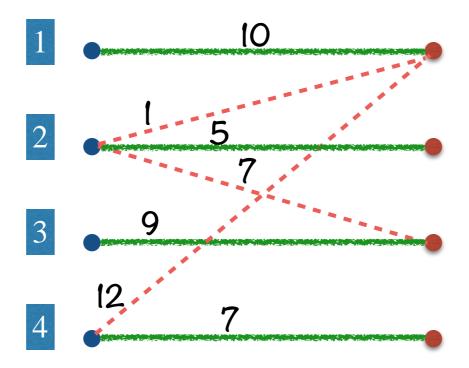
remaining edge weights = 0

Action sequence: 1 4 3 2 produces the maximum-weight matching



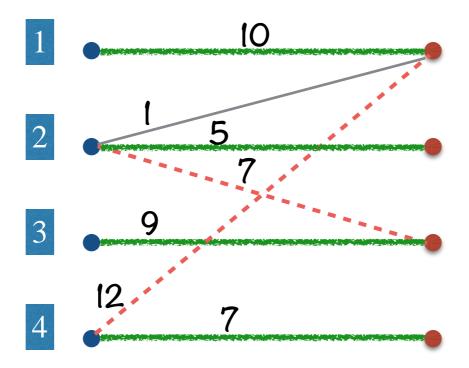
remaining edge weights = 0

Action sequence: 1 4 3 2 produces the maximum-weight matching



remaining edge weights = 0

Action sequence: 1 4 3 2 produces the maximum-weight matching



remaining edge weights = 0

Theorem: Any max-weight matching in a complete weighted bipartite graph, can always be induced by an action sequence of n agents.

- A set $\{1, 2, \dots, n\}$ of n entities
- *Monotone* valuation functions, $v_i : S \to \mathbb{R}_+$ for all $i \in [n]$ (S is the set of all *ordered* subsets of $[n] \setminus \{i\}$)

- A set $\{1, 2, \dots, n\}$ of n entities
- *Monotone* valuation functions, $v_i : S \to \mathbb{R}_+$ for all $i \in [n]$ (S is the set of all *ordered* subsets of $[n] \setminus \{i\}$)

Value Queries: $v_i(S)$ = value of agent i when she gets to pick after agents in the ordered set $S \in S$ have come

- A set $\{1, 2, \dots, n\}$ of n entities
- *Monotone* valuation functions, $v_i : \mathcal{S} \to \mathbb{R}_+$ for all $i \in [n]$ (\mathcal{S} is the set of all *ordered* subsets of $[n] \setminus \{i\}$)

Value Queries: $v_i(S)$ = value of agent i when she gets to pick after agents in the ordered set $S \in S$ have come

Monotonicity: $v_i(S') \ge v_i(S)$ for all ordered subsets S'ofS

Eg: $v_2(\phi) \ge v_2(61) \ge v_2(641)$

- A set $\{1, 2, \dots, n\}$ of n entities
- *Monotone* valuation functions, $v_i : \mathcal{S} \to \mathbb{R}_+$ for all $i \in [n]$ (\mathcal{S} is the set of all *ordered* subsets of $[n] \setminus \{i\}$)

Value Queries: $v_i(S)$ = value of agent i when she gets to pick after agents in the ordered set $S \in S$ have come

Monotonicity: $v_i(S') \ge v_i(S)$ for all ordered subsets S'ofS

Eg: $v_2(\phi) \ge v_2(61) \ge v_2(641)$

Goal: Understand the query complexity (# value queries required) of finding an action sequence σ that optimizes $\sum_{i \in [n]} v_i(\sigma^i)$, where σ^i : prefix of i in σ

For $\sigma = (1432)$, the sum is $v_1(\phi) + v_4(1) + v_3(14) + v_2(143)$

- Monotone valuation functions, $v_i : \mathcal{S} \to \mathbb{R}_+$ for all $i \in [n]$
- Access via value queries of the form $v_i(S)$

Theorem:

For instances with binary valuations and a given parameter $\varepsilon > 0$

Goal: Understand the query complexity (# value queries required) of finding an action sequence σ that optimizes $\sum_{i \in [n]} v_i(\sigma^i)$, where σ^i : prefix of i in σ

- Monotone valuation functions, $v_i : S \to \mathbb{R}_+$ for all $i \in [n]$
- Access via value queries of the form $v_i(S)$

Theorem:

For instances with binary valuations and a given parameter $\varepsilon > 0$

• any *deterministic* algorithm that makes at most $n^{1/\varepsilon}$ value queries has an *approximation ratio* of at least $n\varepsilon$.

Goal: Understand the query complexity (# value queries required) of finding an action sequence σ that optimizes $\sum_{i \in [n]} v_i(\sigma^i)$, where σ^i : prefix of i in σ

- Monotone valuation functions, $v_i : \mathcal{S} \to \mathbb{R}_+$ for all $i \in [n]$
- Access via value queries of the form $v_i(S)$

Theorem:

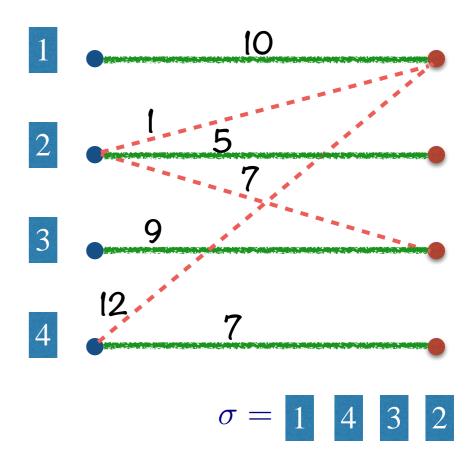
For instances with binary valuations and a given parameter $\varepsilon > 0$

- any *deterministic* algorithm that makes at most $n^{1/\varepsilon}$ value queries has an *approximation ratio* of at least $n\varepsilon$.
- any *randomized* algorithm that makes at most $\mathcal{O}(poly(n))$ value queries has an *approximation ratio* of at least $n\left(\frac{\log\log n}{\log n}\right)$.

Goal: Understand the query complexity (# value queries required) of finding an action sequence σ that optimizes $\sum_{i \in [n]} v_i(\sigma^i)$, where σ^i : prefix of i in σ

Maximum weight matching:

 $v_i(S)$ = value of maximum-valued item available for i, after agents in S have picked their items.



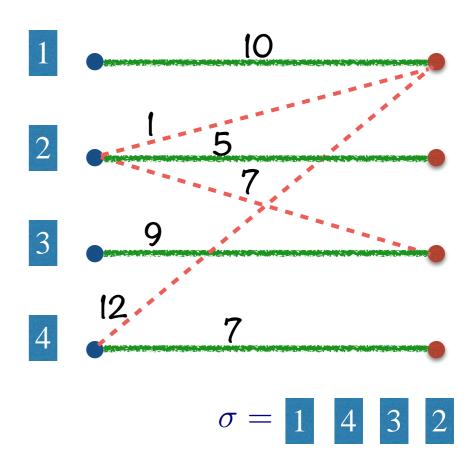
Goal: Find an action sequence σ that maximizes the social welfare, $SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i)$ and understand its relation with the overall maximum social welfare.

Maximum weight matching:

 $v_i(S)$ = value of maximum-valued item available for i, after agents in S have picked their items.

Our results:

• Any max-weight matching **has** a corresponding *action sequence* of *n* agents that induces it.



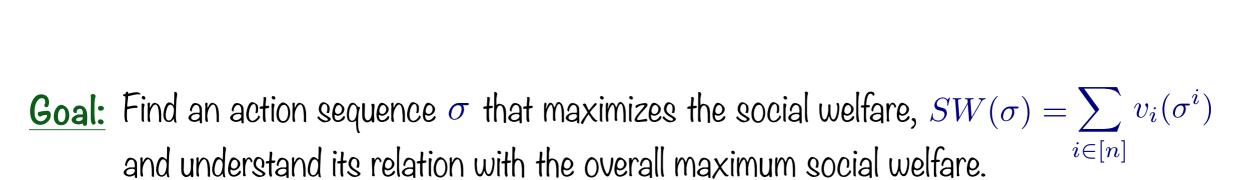
Goal: Find an action sequence σ that maximizes the social welfare, $SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i)$ and understand its relation with the overall maximum social welfare.

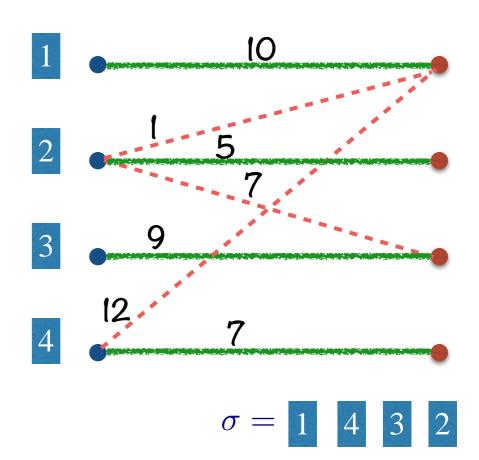
Maximum weight matching:

 $v_i(S)$ = value of maximum-valued item available for i, after agents in S have picked their items.

Our results:

- Any max-weight matching **has** a corresponding *action sequence* of *n* agents that induces it.
- 2-approximation polynomial-time algorithm. Can we do better?





Maximum Satisfiability (weighted version):

 $v_i(S)$ = Maximum weight of **new** clauses satisfied by variable x_i after the variables in ordered set S have been set as T or F.

Goal: Find an action sequence σ that maximizes the social welfare, $SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i)$ and understand its relation with the overall maximum social welfare.

Maximum Satisfiability (weighted version):

 $v_i(S)$ = Maximum weight of **new** clauses satisfied by variable x_i after the variables in ordered set S have been set as T or F.

Our results:

• An optimal assignment for MAX-SAT may *not* be produced from *any* action sequence of *n* variables!

Maximum Satisfiability (weighted version):

 $v_i(S)$ = Maximum weight of **new** clauses satisfied by variable x_i after the variables in ordered set S have been set as T or F.

Our results:

• An optimal assignment for MAX-SAT may *not* be produced from *any* action sequence of *n* variables!

<u>Conjecture:</u> For any instance of MAX-SAT, there exists an action sequence that achieves 2/3 of the optimal value.

(2-approximation is doable)

Maximum Satisfiability (weighted version):

 $v_i(S)$ = Maximum weight of **new** clauses satisfied by variable x_i after the variables in ordered set S have been set as T or F.

Our results:

- An optimal assignment for MAX-SAT may *not* be produced from *any* action sequence of *n* variables!
- Given an instance of MAX-SAT, does there exist an action sequence for all 1's assignment?

NP-complete

Conjecture: For any instance of MAX-SAT, there exists an action sequence that achieves 2/3 of the optimal value.

(2-approximation is doable)

The Big Picture

- Introduce a query model for understanding serial dictatorship in the abstract setting.
- *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)

The Big Picture

- Introduce a query model for understanding serial dictatorship in the abstract setting.
- *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)
- *Revisit* some of the celebrated problems in theoretical computer science and inspect the connection between their optimal solutions and *serial dictatorships*.
 - Maximum-weight Matching in bipartite graph
 - X Maximum-weight Matching in non-bipartite graph
 - X Maximum Satisfiability (weighted version)
 - X Longest path with maximum-weight
 - Maximum-weight Arborescence
 Maximum-weight Cut

The Big Picture

- Introduce a query model for understanding serial dictatorship in the abstract setting.
- *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)
- *Revisit* some of the celebrated problems in theoretical computer science and inspect the connection between their optimal solutions and *serial dictatorships*.
 - Maximum-weight Matching in bipartite graph
 - X Maximum-weight Matching in non-bipartite graph
 - X Maximum Satisfiability (weighted version)
 - X Longest path with maximum-weight
 - Maximum-weight Arborescence
 Maximum-weight Cut

Longest path with maximum weight:

 $v_i(S)$ = Maximum weight that node i can achieve such that the underlying structure is a union of paths

Our results:

- An optimal assignment for Longest-Path may not be produced from any action sequence of *n* nodes.
- For any instance of Longest-Path, there always exists an action sequence that recovers 1/2 of the optimal value.

Conjecture: The above factor is 2/3.

Goal: Find an action sequence σ that maximizes the social welfare, $SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i)$ and understand its relation with the overall maximum social welfare.