Optimal Algorithms for Bounded Weighted Edit Distance

Tomasz Kociumaka
l ' I I I SIC Saarland Informatics

max planck institut Campus

informatik

Based on joint works with:

Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, and Barna Saha

FQ) Pennstate B VA AR UC SanDiego

Alejandro Cassis and Philip Wellnitz

""ﬁﬁw UNIVERSITAT . ' I I I SIC Saarland Informatics
DES
PG SAARLANDES max p]u[n_(',k institut b Campus

ntormalti

ADFOCS 2023, August 23rd, 2023

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

X : bbababllaaab
‘/ / ed(X,Y) =3
Y: bababaaabb

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

wielalb] X:bbababbaab

(3 0 1|1 ‘ K edW(X, Y):3
a|lj0|1 _ J

NEIRD Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

wielalb] X:bbababbaab

€|0]1]3 ‘ K / edW(X, Y)§8
a|l|0|2 _ J

131210 Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

\w|e|a|b| X:bbababbaab

€/0/1]3 ‘ \ ‘ ed"(X,Y) =6
a|1/0/2 _ Y

131200 Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)

CKW23 O(n+Vnk3)

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18 Q(n>°M) unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)

CKW23 O(n+Vnk3)
CKW23 Q(n+ Vnk3—°(1)) conditioned on APSP, \/n < k <n

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Alignment Graph and Dynamic-Programming Algorithms

b b a b a b b a a b

b Y v v WY \ v v v \ \
a
Y ANV | ANV
a b \ERERN AR\ N\
W(a, 5) a YONY MY WY WY WY WY N WY Y WY
S < b
—~ —~~ } 4 \ 5 : h } \ 4 e
b(™ 4 o
o 7o a
® o Y 4 v \ \ v v 4 \
N—r)6 N—r > - > > > > > >
2/ a
Y v v \ \ \ v v v \ \
4 A > > > > ~ >
W(a, 5) a y v v \ \ \ Y v v \ \

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

(2]
£
=
=t
—
(@)
a0
<
{e70]
=
£
IS
Q]
—
a0
(©)
=
o
©
S
(g0}
[
>
a
e
[
¢}
=
o
[0
—
&
+—
[
(D)
S
[
.80
<

a

a

3
b
3

a b b

a b

3
b
3

b b

30 lye 1, 1,q 3,4 3,
f H A) f
™ A | A V[[0 A
3 1 1 1 3 3
) ! AL A A
— A =A==
3 1,41, 1, 473 3
A ¢ A A
PN AN NN AN = PO L ON
3,801,811, /1,73, 3,
A A
Qo A o A [0 A 0 QA
3, el 1, el 1, ¢ 1, ¢ 3, &3,
A A A
0 Q| A [A o Ao Qe A
3,41, 1, ¢ 1,473, 3,
) H) ;\é
-, |- A Q=R =~
3 1 1 1 3 3
A ‘H- A 71 7 A) A
™ Q |n A V[[Q0
3, 1 1,71, ¢/3 3
A ' A A
— A = A Q= =~
3,01, el 1, 1, /3, &3,
A A
Qo A o A [0 A 0 QA
3,01, el 1, el 1, /3, &3,
A A A
0 Qo A o A [0 A 0 Q oA
3l el el 1, /3,63,
0L © d© © Q 0
w(e, b
A
—~
o W
A
¢ S
w(e, b)

13
o
c
a
2
o
[a]
2
o
i}
o
I3
s
=
g
E
o
L
©
c
=
o
o0
=
L
«
=
=
Y
<)
oo
<
©
E
=
o
o

Tomasz Kociumaka

Q——0

Optimal Algorithms for Bounded Weighted Edit Distance

A\ A AL Ak AN AL Ak Ak A AL A
Q o Q|0 A [0 QS | A [0H3 A | A [A | A o, e}
3, ¢ 1,03, 1,3, 41 1, 71,83, ¢3
A A A A A A A A A
(o] — AR AFARARARARRARARAQN- AR A |-
3,1, 43, 1.3 1, /1, 1. 473 '3
A A A A A A A A A
(o] —~ AR AFARARARARARRAFA -
3,810,843, 1,3, 1,1, 1.3, 3,
A A A A A
Q D Q0 A ORS00 A 0 A [0 A o ™ Q|
3,1, ¢ 3, 1,3, 1,41 1 3,3,
A A A A A A A A
Q D Q|0 A [0 Q0 A 0 Q|0 A o 0 A [0 QS o Qo
3, 41,603, &1, 3, L1, 1 1, 3,3,
A A A A) A A A A A
[o] — A=A = A=A J\HI — A |~ 0&1 A |~
3, e 1, ¢33, L1, ¢ 3, 1, 1, 1,43, ¢3, @
A A '})) A A)) A =
Q 0 Q|0 A [0 Q| A [o A, |0 A, [0 A |0 Q[0 Qo £
3 1,073, 1 3 1 1,011,473 3 =
A L A A) , L A A) A e
(o] — A= A=A - — A ARAFARAFARAM~ A A~ B
3,1, ¢ 3, 1, &3, L1, 1, 1,3, 3, N
A) ((A ((A g
Q 0 Q|0 A (™ o A, [0 Qo A |0 A oA [0 Q0 Q[0 H
3 1 3L 3,81 1 1,73, 3, =
A A A A A A
Q o) o A 0 Q[0 A 0 Q™ A |0 A oA 0 oA |0

w
=
w
=
w
=
-
=
w
w

Y
Y
Y
Y
Y
L
Y
Y
Y
Y
Y

w(e,b)
A)
o) @
ols (o |8
s /© s
w(e,b)
e}

(2]
£
=
=t
—
(@)
a0
<
{e70]
=
£
IS
Q]
—
a0
(©)
=
o
©
S
(g0}
[
>
a
e
[
¢}
=
o
[0
—
&
+—
[
(D)
S
[
.80
<

Alignment Graph and Dynamic-Programming Algorithms

b a a b

a

w(a,e)
s s bbaba}gbaab
0T e 5 AN
N @29 Z bababaaabb
Y \

w(a,¢)

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Alignment Graph and Dynamic-Programming Algorithms

b

(qQ‘3)m

b

a

a

b

o——0o

o’
o
o’
o
_-T
o’
o
o

o——0o

)
[on
)
[on
)
o
IY)
[ox

Tomasz Kociumaka

Alignment Graph and Dynamic-Programming Algorithms

b

(qQ‘3)m

b

a

a

b

o——0o

o’
)
o’
)
_-T
o’
)
IS

o——0o

)
[on
)
[on
)
)
IY)
[ox

Tomasz Kociumaka

Q——0

Y
Y
Y
Y
Y
Y

[~
w
—
-
-
w
w

b
g;
3
2

S NEIS
‘)
-
e;
-
2
-
o
-
-

a
B
1
4
1
<
4
1
4
1
o
1
9
1
&)
1

w
Y
[~
Y
w
—
Y
[~
4
[~
Y
w
Y
w

a
o
1
B
1
o
1
y <
1
o
1
o
1
2
1
B
1
B
1

i~
Y
w
Y
—
Y
w
=
Y
—
Y
—
Y
w
Y
o
Y

4
3
2
3
4
>
o
=

y O

3
e
3
2
3
2
>
3
o
3

w
Y
[~
Y
w
Y
i~
Y
w
—
Y
[~
.
w
Y
w
Y

13
o
c
a
2
o
[a]
2
o
i}
o
I3
s
=
g
E
o
L
©
c
=
o
o0
=
L
«
=
=
Y
<)
oo
<
©
E
=
o
o

w
[~
w
—
w
[~
[~
—

\
\
\
\
\

a b b
3
[2
3
o
3
o
3
o)
3
%
3
e
3
3
o)
3
o
3
2
3

Y
Y
Y

w
-
w0
[~
w
[~
[~
-

™
v’)
™
0
1
)
1
0
-
v)
?l
™
0
1
0
1
w0 (8]
JXA‘
1
o)
™

Y
Y
Y
Y
Y
Y
Y
Y

[~
w
[~
[~

a b
3
12
3

y <
3
y O
3
)
3
3
‘)
3
y <
3
y
3
4
3
12

1
R
™
y O
1
y ©
1
1
y <
1
o
™
y O
1
y O
1
B

[~
Y
o
—
Y
[~

Tomasz Kociumaka

w
—
w
Y
—
Y
w
=
Y
—
Y

b b
3
4
3
9
3
3
o
3
y O
3
o
3
9
3
2

3
3
2
3
4
3
2
3
o
3
2
3
2

w
=
w
=
w
-

Y
Y
Y
Y
Y
L
Y

w(e,b)
A)
o) @
os |4
s /© s
w(e,b)
e}

(2]
£
=
=t
—
(@)
a0
<
{e70]
=
£
IS
Q]
—
a0
(©)
el
o
©
S
(g0}
[
>
a
e
[
¢}
=
o
[0
—
&
+—
[
(D)
IS
[
.e0
<

Why Is Weigheted Edit Distance Harder?

b b a b a b b a a b

Unweighted case:
The values along diagonals may only
increase.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Why Is Weigheted Edit Distance Harder?

b b a b a b b a a b

Unweighted case:
The values along diagonals may only
increase.

Weighted case:
The values along diagonals may both
increase and decrease.

Tomasz Kociumaka

Synchronized Fragments

X

Normalization implies ed(X, Y) < ed” (X, Y), Y
so we build an optimal unweighted alignment.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments

X
Y

Normalization implies ed(X, Y) < ed” (X, Y),
so we build an optimal unweighted alignment.

The alignment decomposes X and Y into
O(k) characters and synchronized fragments:

Synchronized fragments:

Two fragments X[x..x’) and Y[y..y’) are
k-synchronized if

|x —y| < k and
X[x..x')=Y]y..y).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments

X P . PP Py Ps Ps Pz

Normalization implies ed(X, Y) < ed” (X, Y),
so we build an optimal unweighted alignment.

The alignment decomposes X and Y into
O(k) characters and synchronized fragments:

Synchronized fragments:

Two fragments X[x..x’) and Y[y..y’) are
k-synchronized if
|x —y| < k and

X[x..x')=Y]y..y).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?
m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?
m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.

m The synchronized fragments consist of
< 3k pieces with periods < 2k.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

First Reduction

x :
Y .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

Optimal Algorithms for Bounded Weighted Edit Distance

Tomasz Kociumaka

First Reduction

X P roan
Y .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

AVAVAVAVAN

Optimal Algorithms for Bounded Weighted Edit Distance

Tomasz Kociumaka

First Reduction

Lemma [P rnee
Y. .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

AVAVAVAVAN

Optimal Algorithms for Bounded Weighted Edit Distance

Tomasz Kociumaka

First Reduction

x .
An optimal weighted alignment matches Y

synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

The characters in the middle, if any, can be
removed without affecting

ed¥(X,Y) ifed“(X,Y)<k, p

ed?, (X,Y) =
Sk() {oo otherwise.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

First Reduction

x .
An optimal weighted alignment matches Y

synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

The characters in the middle, if any, can be
removed without affecting

ed¥(X,Y) ifed“(X,Y)<k, p

ed?, (X,Y) =
Sk() {oo otherwise.

We can assume that X, Y can be decomposed I R R
into O(k?) characters and synchronized
fragments with periods < 2k.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

X Q°
Y
How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
0°

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

X Q°
Y
How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
0°

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
m If e > 4k, then at least |Q| consecutive
characters are matched canonically. 0°

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

m If |Q| consecutive characters are matched,
they must be matched canonically.

m If e > 4k, then at least |Q| consecutive
characters are matched canonically.

If e > 4k, we can reduce the exponent to 4k
without affecting ed?, (X, Y).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.

Tomasz Kociumaka

Optimal Algorithms for Bounded Weighted Edit Distance

Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.

Use the optimal unweighted alignment to decompose X and Y into O(k) characters and
synchronized fragments.
For each pair of synchronized fragments:
B Find the longest prefix of 3k pieces with periods < 2k.
B Find the longest suffix of 3k pieces with periods < 2k.
Remove the middle characters (between the prefix and the suffix), if any.
Bl For each periodic piece with exponent e > 4k, reduce the exponent to 4k.

Tomasz Kociumaka

Optimal Algorithms for Bounded Weighted Edit Distance

Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.

Use the optimal unweighted alignment to decompose X and Y into O(k) characters and
synchronized fragments.

For each pair of synchronized fragments:
B Find the longest prefix of 3k pieces with periods < 2k.
B Find the longest suffix of 3k pieces with periods < 2k.
Remove the middle characters (between the prefix and the suffix), if any.
Bl For each periodic piece with exponent e > 4k, reduce the exponent to 4k.

O(k*)-size kernel + O(nk)-time dynamic-programming ~ O(n + k°)-time algorithm

Tomasz Kociumaka

Optimal Algorithms for Bounded Weighted Edit Distance

Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
Within a periodic piece, the alignment graph is repetitive.

Tomasz Kociumaka

Optimal Algorithms for Bounded Weighted Edit Distance

Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:

N Within a periodic piece, the alignment graph is repetitive.

O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
of O(k) pieces with period < 2k. Such a point splits the input into two halves.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
N Within a periodic piece, the alignment graph is repetitive.
O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
B of O(k) pieces with period < 2k. Such a point splits the input into two halves.
O(n+ vn?k*) Block periodicity — LZ compressibility:
When two alignments are disjoint, the underlying fragments not only consists
of O(k) periodic pieces, but also their Lempel-Ziv factorization has size O(k).

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
N Within a periodic piece, the alignment graph is repetitive.
O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
B of O(k) pieces with period < 2k. Such a point splits the input into two halves.
O(n+ vn?k*) Block periodicity — LZ compressibility:
When two alignments are disjoint, the underlying fragments not only consists
N of O(k) periodic pieces, but also their Lempel-Ziv factorization has size O(k).
O(n+ Vnk3) LZ compressibility — self-edit distance:
Replacing the Lempel—Ziv factorization with a tailor-made compressibility
measure reveals even more repetitiveness of the alignment graph.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:
What is the true complexity of /n < k < \/n? Must be between n -+ k> and v/nk3.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:

What is the true complexity of /n < k < /n? Must be between n + v k> and v nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:
What is the true complexity of /n < k < \/n? Must be between n -+ k> and v/nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?
Except for uniform weights, is there any easy class of weight functions?

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:

What is the true complexity of /n < k < /n? Must be between n + v k> and v nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?

Except for uniform weights, is there any easy class of weight functions?

Thank you for your attention!

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance

