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(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

X : bbababllaaab
‘/ / ed(X,Y) =3
Y: bababaaabb
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(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

wielalb] X:bbababbaab

(3 0 1|1 ‘ K edW(X, Y):3
a|lj0|1 _ J

NEIRD Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).
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(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

wielalb] X:bbababbaab

€|0]1]3 ‘ K / edW(X, Y)§8
a|l|0|2 _ J

131210 Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).
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(Weighted) Edit Distance

Edit distance ed(X, Y) Levenshtein distance

Minimum number of character insertions, deletions, and substitutions that transform X to Y.

\w|e|a|b| X:bbababbaab

€/0/1]3 ‘ \ ‘ ed"(X,Y) =6
a|1/0/2 _ Y

131200 Y: bababaaabb

Weighted edit distance ed” (X, Y) w: (ZU{e}) x (ZU{e}) = R>o

The minimum cost of transforming X to Y using character edits, where:

m inserting b costs w(e, b);
m deleting a costs w(a,¢);

m substituting a for b costs w(a, b).
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)

CKW23  O(n+Vnk3)
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Computing Edit Distance

Reference Time Remarks
Vin68,NW70,Sel74,WF74 O(n?)
BI18  Q(n>°M)  unweighted; conditioned on SETH/OV

Bounded edit distance: ed” (X, Y) < k for some input threshold k
Assumption: Normalized weight function, that is, w(a, b) > 1 for all distinct a, b € X U {e}.

Ukk85,Mye86 O(nk)
LV88 O(n+ k?) unweighted only
folklore Q(n + k¥ unweighted; conditioned on SETH/OV
DGHKS23 O(n+ k®)

CKW23  O(n+Vnk3)
CKW23  Q(n+ Vnk3—°(1))  conditioned on APSP, \/n < k <n
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Alignment Graph and Dynamic-Programming Algorithms
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Alignment Graph and Dynamic-Programming Algorithms

b a a b

a

w(a,e)
s s bbaba}gbaab
0T e 5 AN
N @29 Z bababaaabb
Y \

w(a,¢)
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Alignment Graph and Dynamic-Programming Algorithms

b

(qQ‘3)m

b

a

a

b

o——0o

o’
o
o’
o
_-T
o’
o
o

o——0o

)
[on
)
[on
)
o
IY)
[ox

Tomasz Kociumaka



Alignment Graph and Dynamic-Programming Algorithms
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Why Is Weigheted Edit Distance Harder?

b b a b a b b a a b

Unweighted case:
The values along diagonals may only
increase.
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Why Is Weigheted Edit Distance Harder?

b b a b a b b a a b

Unweighted case:
The values along diagonals may only
increase.

Weighted case:
The values along diagonals may both
increase and decrease.
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Synchronized Fragments

X

Normalization implies ed(X, Y) < ed” (X, Y), Y
so we build an optimal unweighted alignment.
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Synchronized Fragments

X
Y

Normalization implies ed(X, Y) < ed” (X, Y),
so we build an optimal unweighted alignment.

The alignment decomposes X and Y into
O(k) characters and synchronized fragments:

Synchronized fragments:

Two fragments X[x..x’) and Y[y..y’) are
k-synchronized if

|x —y| < k and
X[x..x')=Y]y..y).
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Synchronized Fragments

X P . PP Py Ps Ps Pz

Normalization implies ed(X, Y) < ed” (X, Y),
so we build an optimal unweighted alignment.

The alignment decomposes X and Y into
O(k) characters and synchronized fragments:

Synchronized fragments:

Two fragments X[x..x’) and Y[y..y’) are
k-synchronized if
|x —y| < k and

X[x..x')=Y]y..y).
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment Y
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?
m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?
m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.
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Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized fragments?

m The alignment touches the corresponding
segment at most once.

What if the alignment never touches the
segment?
m Each piece of Y matched perfectly occurs
in X twice, < 2k positions apart.

m The synchronized fragments consist of
< 3k pieces with periods < 2k.
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First Reduction

x :
Y .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.
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First Reduction

X P roan
Y .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

AVAVAVAVAN
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First Reduction

Lemma [ P rnee
Y. .

An optimal weighted alignment matches
synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

AVAVAVAVAN
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First Reduction

x .
An optimal weighted alignment matches Y

synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

The characters in the middle, if any, can be
removed without affecting

ed¥(X,Y) ifed“(X,Y)<k, p

ed?, (X,Y) =
Sk( ) {oo otherwise.
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First Reduction

x .
An optimal weighted alignment matches Y

synchronized fragments, except for a prefix and
a suffix of < 3k pieces with periods < 2k.

The characters in the middle, if any, can be
removed without affecting

ed¥(X,Y) ifed“(X,Y)<k, p

ed?, (X,Y) =
Sk( ) {oo otherwise.

We can assume that X, Y can be decomposed I R R
into O(k?) characters and synchronized
fragments with periods < 2k.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance



Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe
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Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe
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Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

Qe
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Periodic Synchronized Fragments vs Optimal Alignments

X Q°
Y
How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
0°
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Periodic Synchronized Fragments vs Optimal Alignments

X Q°
Y
How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
0°
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Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7
m If | Q| consecutive characters are matched,
they must be matched canonically.
m If e > 4k, then at least |Q| consecutive
characters are matched canonically. 0°
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Periodic Synchronized Fragments vs Optimal Alignments

How can an optimal weighted alignment
interact with synchronized occurrences of Q€7

m If |Q| consecutive characters are matched,
they must be matched canonically.

m If e > 4k, then at least |Q| consecutive
characters are matched canonically.

If e > 4k, we can reduce the exponent to 4k
without affecting ed?, (X, Y).
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Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.
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Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.

Use the optimal unweighted alignment to decompose X and Y into O(k) characters and
synchronized fragments.
For each pair of synchronized fragments:
B Find the longest prefix of 3k pieces with periods < 2k.
B Find the longest suffix of 3k pieces with periods < 2k.
Remove the middle characters (between the prefix and the suffix), if any.
Bl For each periodic piece with exponent e > 4k, reduce the exponent to 4k.
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Universal Kernel

Theorem (DGHKS, STOC'23)

There is an O(n) time algorithm that, given strings X, Y € £=" and an integer k > 0,

constructs strings X', Y’ of length O(k*) such that ed? (X', Y') = ed¥, (X, Y) holds for
every normalized weight function w : (¥ U {¢})? — Rxo.

Use the optimal unweighted alignment to decompose X and Y into O(k) characters and
synchronized fragments.

For each pair of synchronized fragments:
B Find the longest prefix of 3k pieces with periods < 2k.
B Find the longest suffix of 3k pieces with periods < 2k.
Remove the middle characters (between the prefix and the suffix), if any.
Bl For each periodic piece with exponent e > 4k, reduce the exponent to 4k.

O(k*)-size kernel +  O(nk)-time dynamic-programming ~  O(n + k°)-time algorithm

Tomasz Kociumaka
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Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.
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Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
Within a periodic piece, the alignment graph is repetitive.
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Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:

N Within a periodic piece, the alignment graph is repetitive.

O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
of O(k) pieces with period < 2k. Such a point splits the input into two halves.
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Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
N Within a periodic piece, the alignment graph is repetitive.
O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
B of O(k) pieces with period < 2k. Such a point splits the input into two halves.
O(n+ vn?k*) Block periodicity — LZ compressibility:
When two alignments are disjoint, the underlying fragments not only consists
of O(k) periodic pieces, but also their Lempel-Ziv factorization has size O(k).
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Optimal Algorithm for Bounded Weighted Edit Distance

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

O(n + k*) Multiple-Source Shortest Paths in Planar Graphs:
N Within a periodic piece, the alignment graph is repetitive.
O(n + k%) Divide and Conquer:
Any single point of the optimal weighted alignment depends only on a context
B of O(k) pieces with period < 2k. Such a point splits the input into two halves.
O(n+ vn?k*) Block periodicity — LZ compressibility:
When two alignments are disjoint, the underlying fragments not only consists
N of O(k) periodic pieces, but also their Lempel-Ziv factorization has size O(k).
O(n+ Vnk3) LZ compressibility — self-edit distance:
Replacing the Lempel—Ziv factorization with a tailor-made compressibility
measure reveals even more repetitiveness of the alignment graph.
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Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance



Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance
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Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:
What is the true complexity of /n < k < \/n? Must be between n -+ k> and v/nk3.
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Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:

What is the true complexity of /n < k < /n? Must be between n + v k> and v nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?
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Theorem (CKW, FOCS'23)
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Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:
What is the true complexity of /n < k < \/n? Must be between n -+ k> and v/nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?
Except for uniform weights, is there any easy class of weight functions?
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Summary and Open Problems

Theorem (CKW, FOCS'23)

Given strings X, Y € ¥=", a threshold k > 0, and oracle access to a weight function
w: (XU {e})? = Rxo, the value ed? (X, Y) can be computed in O(n + V' nk3) time.

Theorem (CKW, FOCS'23)

Conditioned on the All-Pairs Shortest-Paths Hypothesis, the above running time is optimal (up
to subpolynomial factors) for \/n < k < n.

Open Problems:

What is the true complexity of /n < k < /n? Must be between n + v k> and v nk3.
Is the problem easier for small (e.g., constant-sized) alphabets?

Except for uniform weights, is there any easy class of weight functions?

Thank you for your attention!

Tomasz Kociumaka Optimal Algorithms for Bounded Weighted Edit Distance



