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1. Open Problem (€100)



Open: Cut Query for Reachability

V = # nodes, E=ttedges, O hides polylog(V)

 Input: Hidden unweighted directed graph G=(V, E)
* Query access: For S € V, cut(S) = # edges going out from S
e Return: Exist path from nodes s to t?

Exercise 1: O (V) for undirected graph
Exercise 2: O(Vz) even for more general problems [Cunningham’83]

cut({5,11})=3

( _ 1 99 \ Solution. Observe: [Mehra-Mukhopadhyay’24]
OQenZ 0 (V ' ) 1. cut(S) + cut(V\S) = Xy espers Wuw) + w(vu)
. A where w(uv) is the “weight” of edge from u to v.
Ultimate: 0 (V) & more 2. cut(S) — cut(V\S) = Y esoutdegree(u) — indegree(u)

\ v

Thus: compute all possible w(uv), outdegree(u) and indegree(u)




Why? Submodular Function Minimization (SFM)

e Recall: Forsets X € Yandx ¢ Y,
fXu{u}) —fX) = fYuu)) —rfE)
 Special cases: Reachability, Min-cut/Max-flow, Matching, Matroid
Intersection, Disjoint trees, ...

* Known for SFM: O (n?) & Q(nlogn) value queries.

* Grotschel, Lovasz and Schrijver 1984 & 1988; Lee, Sidford and Wong 2015; Jiang 2021; Chakrabarty,
Graur, Jiang, and Sidford 2022

» Open: 0(n??) and Q(n'Y1)

 We can’t even solve reachability in 0(n'°°) queries




2. Shortest Paths



Single-Source Shortest Paths

* Input: Directed weighted graph ¢ = (V, E, w),
source s € /

e Qutput: Minimum-cost path from stoeveryv € IV

Source: https://commons.wikimedia.org/wiki/File:Trip4YouMaps_RoutePlanner_for_Android.png



Textbook algorithms

Dijkstra

+ Near-optimal time
(O(E + VlogV)time)

- Only nonnegative weights.

E=number of edges, V=number of vertices

But sometimes we need both
positive and negative weights:

2,500 points"'-._
200 €

-50 €

Ships/airplanes routing

BEGINNERS i i iodi
o Also job scheduling, periodic

GIFTCARD ARBITRAGE optimization, control theory,

Arbitrage trading



Textbook algorithms

Dijkstra

+ Near-optimal time
(O(E + VlogV)time)

- Only nonnegative weights.

Near linear = E logP( E
e.g.Elogl®E

Bellman-Ford
+ Allow negative weights

- Far from near-linear time
(O(VE) time)




Research question: Near-linear time
algorithm for negative-weight SSSP?

% Textbook (from 1950s): O(EV) [shimbel’s5, Ford’s6, Bellman’s8, Moore’59]

Assume integer weights
-W, -W+1, -W+2..,0, 1, 2, ...

/A 1980s-1990s Approximation/scaling techniques: O (E VV log W)

3 1 1
AT, Gabow’85 (EV+ log V'), Gabow-Tarjan’89 (EV2 log(VW)), Goldberg’95 (EVzlog(W))

2000s Special graphs:
2 O(E) time for planar graphs [Fakcharoenphol-Rao’06, Mozes-Wulff-Nilsen’10]
0 (V*/31og W) time for bounded-genus & minor-free graphs [Wulff-Nilsen11]

2010+: Continuous Methods + Dynamic Graphs: £ 3*°® log W , 6 (E + V15 log W)

Cohen, Madry, Sankowski, Vladu’17 ((E1%/7+°(1) Jog W) , Axiotis, Madry, Vlady, 2020 (E4/3+o(M) Jog W),
van den Brand, Lee, N, Peng, Saranurak, Sidford, Song, Wang 2020 (E +V1°log W)



https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3ACollege_Textbooks.jpg&psig=AOvVaw1ESZBBDxeFdAh9V8NM_iYk&ust=1722071692920000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCMC83pSvxIcDFQAAAAAdAAAAABAJ

Our results: Near-linear time shortest path

(2022) O(E log® V log(WW)) time in expectation

Bernstein, N., Wulff-Nilsen

(2023) O(E log? V log(VIW) loglog V) time in expectation

Bringmann, Cassis, Fischer

(2024) Efficient in Parallel, Distributed, and Quantum Settings

Ashvinkumar, Bernstein, Cao, Grunau, Haeupler, Jiang, N., Su SHIFT GOR instances

(2024) Experimental results

Bringmann, Cassis, Karrenbauer, Nusser, Rinaldi gw‘
Codable. Teachable. Efficient in many settings. T
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Key Techniques:
_ow-Diameter Decomposition (LDD)




Definition of LDD(G, D)

(Oversimplified)

Input: Directed graph ¢ = (V/, E) & positive integer D
Qutput: Ey,.,,, & E such that
1. eachSCCsof ¢ \ E, ., has diameter O(D)

e ji.e. for u, vin the same SCC,
distance(u,v) = O(D) & distance(v,u) = 0(D)
1

2. Ye€E,Prlee E, .,,| = O(B)'

Runtime: O (E) in expectation.

SCC = strongly-connected component, the guarantee is actually for “weak diameter”



Example (1)
G = undirected path (v, Vo, ..., V)y)

Getting LDD(G, D):
* randomly selecti € [1, D]

* add edges (v;, V;41), (Wi+p, Vigp+1), (Wit2p, Vigap+1)s - 10 Epem
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Example (2)
G = directed cycle (v, vy, ..., ;)

Getting LDD(G, D): randomly add one edge to E,.,,,
— Each node becomes an SCC
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How to use LDD? - Solve this first (€1)

Solve this problem in near-linear time:

Input: Strongly-connected directed graph G = (V, E) with integer edge weight w for some
integer T > 0.

Promise: The diameter of G is at most 10T; i.e. for every vertices u and v, there is a path from
u to v with weight at most 10T .

Output: Either report a cycle whose average edge weight is < —T or report that no negative
cycle exists:

e Output "VERY NEGATIVE CYCLE" if there is a cycle (sequence of vertices)
Uy,U2,...,Ur = Ug, such that X ::11 w(v;, Viy1) < -T.
e QOutput "NO NEGATIVE CYCLE" if there is for every cycle Uy, V3, ...,V = Uy,

k-1
> wi,vy)20.

For other cases, you can output any of the above.

Solution to this problem and LDD are two key ideas NO NEGATIVE CYCLE
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