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Problem Definition

Goal: Find a fair allocation of the goods to the agents.

Given: I = (N,M, V )

• N : set of n agents
• M : set of m indivisible goods
• Additive valuation functions vi : 2

M → R≥0

A partition X = (X1, X2, . . . , Xn) of M

vi(S) =
∑

g∈S vi({g})
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MMS Example

• MMSi = MMSn
vi(M) = max(P1,...,Pn) minj∈[n] vi(Pj)

2 2 3 4 3

1 5 2 3 2

MMS = 7

MMS = 6

MMS allocation:

10 6
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Maximin Share (MMS)

• MMSi = max(P1,...,Pn) minj∈[n] vi(Pj)

• Allocation X is MMS, if vi(Xi) ≥ MMSi for all agents i ∈ N .

• Does an MMS allocation always exist? No!

• What about approximations of MMS?

• Allocation X is α-MMS, if vi(Xi) ≥ αMMSi for all agents i ∈ N .

[Procaccia, Wang’14]
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When agents have additive valuations, there always exists a (3/4 + ε)-MMS
allocation for ε ≈ 0.0007.

Theorem [A., Garg SODA’24]
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