Problem sets ADFOCS 2024

Topics in mechanism design

Elias Koutsoupias

Set 1

- 1. Consider the problem of related machines scheduling in which machines are agents with private values for their speeds s_1, \ldots, s_n , and we want to minimize the makespan. Consider the mechanism that selects an arbitrary optimal solution. Is this mechanism truthful for 2 machines? For 3 machines?
- 2. Give a polynomial-time truthful deterministic mechanism with an approximation ratio 3/2 for the related scheduling problem with 2 machines. Recall that in the related scheduling problem there are two machines with speeds (s_1, s_2) , the input is a set of jobs $\{w_1, \ldots, w_n\}$ and we want a monotone mechanism to minimize the makespan.
- 3. Let's consider a two-sided auction. There are two agents: a seller and a buyer with valuations (v_1, v_2) , respectively, for a single item. Assume that agent 1 owns the item.
 - We want a mechanism that trades the item, i.e., it decides whether to leave the item to agent 1 or move it to agent 2.
 - Describe the VCG mechanism with Clarke pivot rule for this setting. What are the payments? Does the mechanism have the "budget-balance" property?
 - Analyze the situation when there is another buyer with value v_3 .
- 4. Consider the case of a simple item to be allocated to one of n agents with nonnegative values v_1, \ldots, v_n . A mechanism is truthful for an agent i if and only if their payment p_i depends only on the values v_{-i} of the other agents.
 - (a) Suppose that $p_i(v_{-i})$ are arbitrary functions. Explain why this mechanism may not be valid.
 - (b) Suppose that there are only two agents and that the mechanism is defined by a function $p_1(v_2)$ as follows: if $v_1 \geq p_1(v_2)$, the item is allocated to agent 1, otherwise it is allocated to agent 2. What property must $p_1(v_2)$ satisfy for the mechanism to be truthful?
 - (c) Let's generalize the mechanism to multiple agents: there are payment functions $p_1(v_{-1}), \ldots, p_{n-1}(v_{-(n-1)}), p_n(v_{-n}) = 0$ and the mechanism allocates the item to the first agent i with $v_i \geq p_i(v_{-i})$. For which functions $p_i(v_{-i})$ is the mechanism truthful?
- 5. Consider the following mechanism for selling k > 1 identical items to unit-demand bidders. The bidders with the k highest bids get an item and pay as follows: The highest bidder pays the second highest bid, the second highest bidder pays the third highest bid, etc. Is this mechanism truthful for all bidders?

Set 2

1. Consider the scheduling problem with two unrelated machines and two tasks. VCG for this setting tries to minimize the social cost, i.e., it computes

$$\arg\min(t_{1,1}+t_{1,2},\,t_{1,1}+t_{2,2},\,t_{2,1}+t_{1,2},\,t_{2,1}+t_{2,2}),$$

and gives the two tasks accordingly (for example, if the minimum comes from the third value $t_{2,1} + t_{1,2}$, machine 1 gets the second task and machine 2 gets the first task). Now consider changing the first expression from $t_{1,1} + t_{1,2}$ to $t_{1,1} + t_{1,2} - 1$. Argue that this mechanism is an affine minimizer. Show the partition of the space into allocations of the first machine, when the second machine has values $t_2 = (3, 2)$. Show that this mechanism has unbounded approximation ratio, when the objective is the makespan.

- 2. Consider the scheduling problem with two unrelated machines and two tasks. Consider an affine minimizer with $\lambda_i = 1$ for i = 1, 2. What are the conditions on payments (or equivalently on γ 's in the definition of affine minimizers) so that the mechanism is quasi-bundling? quasi-flipping? task-independent?
- 3. Analyze the approximation ratio of the Hybrid mechanism for a star of 2 leaves. Can you suggest another truthful mechanism with better approximation ratio?
- 4. Recall the SQUARE mechanism, which is a fractional task-independent mechanism that allocates fractions inversely proportional to the square of the values. Prove that it has approximation ratio (n+1)/2.