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Abstract. This paper presents a novel mixture-of-experts framework
for pedestrian classification with partial occlusion handling. The frame-
work involves a set of component-based expert classifiers trained on fea-
tures derived from intensity, depth and motion. To handle partial oc-
clusion, expert weights that are related to the degree of visibility of the
associated component were computed. In experiments on extensive real-
world data sets, with both partially occluded and non-occluded pedestri-
ans, significant performance boosts were obtained over state-of-the-art
approaches.

1 Introduction

The ability to visually recognize pedestrians is key for a number of application
domains such as surveillance or intelligent vehicles. This task faces several diffi-
culties like strongly varying pose and appearance as well as in case of a moving
camera ever-changing backgrounds and partial occlusions. Most of the previous
work focuses on the classification of pedestrians that are fully visible. However, in
a real world environment significant amounts of occlusions can occur. Pedestrian
classifiers designed for non-occluded pedestrians do typically not reach satisfying
performance if some body parts of a pedestrian are occluded.

Component-based approaches which represent a pedestrian as an ensemble
of parts, cf. [2], can only alleviate this problem to some extent without prior
knowledge. The key to successful detection of partially occluded pedestrians is
additional information about which body parts are occluded.

In this paper, a multi-cue component-based mixture-of-experts framework
for pedestrian classification with partial occlusion handling is presented. At the
core of the framework is a set of component-based expert classifiers trained
on intensity, depth and motion features. Occlusions of individual body parts
manifest in local depth- and motion-discontinuities. In the application phase, a
segmentation algorithm is applied to extract areas of coherent depth and motion.
Based on the segmentation result, occlusion-dependent weights are determined
for the component-based expert classifiers to focus the combined decision on the
visible parts of the pedestrian. See Figure 1.

Note that an extended version of this paper was accepted for CVPR 2010 [1].
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Fig. 1. Framework overview. Multi-cue component-based expert classifiers are trained
off-line on features derived from intensity, depth and motion. On-line, multi-cue seg-
mentation is applied to determine occlusion-dependent component weights for expert
fusion. Data samples are shown in terms of intensity images, dense depth maps and
dense optical flow (left to right).

2 Previous Work

Pedestrian classification has become an increasingly popular research topic re-
cently. Most state-of-the art systems, cf. [3],[2],[4], derive a set of features from
the available image data and apply pattern classification techniques.

Besides operating in the image intensity domain only, some authors have
proposed multi-cue approaches combining information from different modalities,
e.g. intensity, depth and motion [5],[6],[7]. See [2] for a current survey.

In view of detecting partially occluded pedestrians, component-based clas-
sification as suggested by [8],[9],[10],[11],[12],[13],[14],[15],[16] seems an obvious
choice. Yet, only a few approaches [15],[16] explicitly incorporate a model of
partial occlusion into their classification framework. However, both approaches
make some restrictive assumptions.

The method of Wu and Nevatia, [16], requires a particular camera set-up,
where the camera looks down on the ground-plane and consequently assumes
that the head is always visible.

Wang et al., [15], use a monolithic (full-body) HOG/SVM classifier to de-
termine occlusion maps from the responses of the underlying block-wise feature
set. Based on the spatial configuration of the recovered occlusion maps, they ei-
ther apply a full-body classifier or activate part-based classifiers in non-occluded
regions or heuristically combine both full-body and part-based classifiers.

The main contribution of this work is a mixture-of-experts framework for
pedestrian classification with partial occlusion handling. In contrast to [16], nei-
ther a particular camera set-up is required nor constant visibility of a certain
body part is assumed. The suggested method is independent of the employed
feature/classifier combination and the pedestrian component layout, unlike [15].
A secondary contribution involves the integration of intensity, depth and motion
cues throughout the approach. Off-line, multi-cue component-based expert clas-
sifiers are trained and on-line multi-cue mean-shift segmentation is applied, see
Figure 1.
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3 Pedestrian Classification

Input to the framework is a training set D of pedestrian (ω0) and non-pedestrian

(ω1) samples xi ∈ D. Each sample xi = [xii; x
d
i ; x

f
i ] consists of three different

modalities, i.e. gray-level image intensity (xii), dense depth information via stereo

vision (xdi ) [17] and dense optical flow (xfi ) [18]. xdi and xfi are treated similarly
to gray-level intensity images xii, in that both depth and motion cues are rep-
resented as images, where pixel values encode distance from the camera and
magnitude of optical flow vectors between two temporally aligned images, re-
spectively. Note, that in case of optical flow only the horizontal component of
flow vectors is considered and that no ego-motion compensation is applied. See
Figure 5.

3.1 Component-Based Classification

The goal of pedestrian classification is to determine a class label ωi for an unseen
example xi. Since, a two-class problem with classes ω0 (pedestrian) and ω1 (non-
pedestrian) is considered it is sufficient to compute the posterior probability
P (ω0|xi) that an unseen sample xi is a pedestrian. The final decision then results
from selecting the object class with the highest posterior probability :

ωi = argmax
ωj

P (ωj |xi) (1)

The posterior probability P (ω0|xi) is approximated using a component-based
mixture-of-experts model. A sample xi is composed out of K components. In
the mixture-of-experts framework, [19], the final decision results from a weighted
linear combination of so-called local expert classifiers which are specialized in
a particular area of the feature space. With Fk(xi) representing a local expert
classifier for the k-th component of xi and wk(xi) denoting its weight, P (ω0|xi)
is approximated using:

P (ω0|xi) ≈
K∑
k=1

wk(xi)Fk(xi) (2)

Note that the weight wk(xi) for each component expert classifier is not a fixed
component prior, but depends on the sample xi itself.

3.2 Multi-Cue Component Expert Classifiers

Given the component-based mixture-of-experts model, cf. Eq. (2), the compo-
nent expert classifiers Fk(xi) are given by component-based classifiers for each
cue (intensity, depth, flow) :

Fk(xi) =
∑

m∈(i,d,f)

fmk (xmi ) (3)

In this formulation, fmk (xmi ) denotes a local expert classifier for the k-th
component of xi, which is represented in terms of the m-th cue.
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Fig. 2. Segmentation results for a non-occluded (left) and partially occluded pedestrian
(right). From left to right, each sample shows: intensity image, stereo image, flow image,
segmentation on stereo, segmentation on flow, combined segmentation on stereo and
flow. The cluster chosen as pedestrian cluster φped, cf. Eq. (7), is outlined in black. The
computed occlusion-dependent component weights wk(xi), cf. Eq. (8), are also shown.

3.3 Occlusion-Dependent Component Weights

Weights wk(xi) introduced in Sec. 3.1 are derived from each example xi to
incorporate a measure of occlusion of certain pedestrian components into the
model. Visibility information is extracted from each sample xi by exploiting
significant depth and motion discontinuities at the occlusion boundary, as shown
in Figures 2 and 5.

The procedure to derive component weights wk(xi) is divided into three steps:
First, a segmentation algorithm is applied, cf. [20], to the dense stereo and optical
flow images of xi. Second, the segmented cluster which likely corresponds to the
visible area of a pedestrian is selected. Third, the degree of visibility of each
component given the selected cluster is estimated.

Mean-shift algorithm is chosen, [21], out of many possible choices because it
provides a good balance between segmentation accuracy and processing efficiency
[20]. The result of the mean-shift segmentation is a set of C clusters φc with
c = 1, . . . , C, as shown in Figure 2.

Let φc and γk denote binary vectors defining the membership of pixel-
locations of the sample xi to the c-th cluster φc and k-th component γk, respec-
tively. Further, a two-dimensional probability mass function µv(p) is utilized. It
represents the probability that a given pixel p ∈ xi corresponds to a pedestrian,
solely based on its location within xi.

To increase specificity, view-dependent probability masks µv(p) in terms of
separate masks for front/back, left and right views are used. See Figure 3(a).
Again, a vectorized representation of µv is denoted as µv.

Fig. 3. (a) Probability masks for front/back, left and right view. The values of the prob-
ability masks are in the range of zero (dark blue) to one (dark red). (b) Visualization of
the correlation-based similarity measure Ψin(φc,γk,µv) for the head component, see
text.
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To select the segmented cluster, which corresponds to the visible area of a
pedestrian, a correlation-based similarity measure is used:

Ψ(φc,γk,µv) = Ψin(φc,γk,µv) + Ψout(φc,γk,µv) (4)

The first measure Ψin(φc,γk,µv) is designed to evaluate how well a cluster
φc matches typical pedestrian geometry, represented by a view-dependent pedes-
trian probability mask µv, in a certain component γk. To compute Ψin(φc,γk,µv),
the cluster φc and the probability mask µv are correlated and normalized within
the component given by γk:

Ψin(φc,γk,µv) =
(µv · γk) ◦ (φc · γk)

µv ◦ γk
(5)

Here, · denotes point-wise multiplication of vectors, while ◦ denotes a dot prod-
uct. Note that the main purpose of γk in this formulation is to restrict compu-
tation to a local body component γk. See Figure 3(b).

The second measure Ψout(φc,γk,µv) penalizes clusters which extend too far
beyond a typical pedestrian shape. For that a similar correlation is performed
using an “inverse” probability mask νv = 1− µv:

Ψout(φc,γk,µv) = 1− (νv · γk) ◦ (φc · γk)

νv ◦ γk
(6)

The cluster similarity measure Ψ(φc,γk,µv), see Eq. (4), is computed per
cluster, component and view-dependent probability mask. To choose the cluster
φped which most likely corresponds to visible parts of the pedestrian, a maximum
operation is applied over components and views:

φped = argmax
φc

(
max
γkµv

(Ψ(φc,γk,µv))

)
(7)

Note, that only single clusters and pairs of clusters are merged together as pos-
sible candidates.

Once the cluster φped, corresponding to visible parts of the pedestrian, is
selected, the degree of visibility of each component is approximated. For each
component γk, the spatial extent of φped is related against clusters corresponding
to occluding objects. The set of all clusters φj , which are possible occluders of
φped, is denoted by Υ . Possible occluders of φped are clusters which are closer
to the camera than φped. With n(v) denoting the number of non-zero elements
in an arbitrary vector v, occlusion-dependent component weights wk(xi), with∑
k wk(xi) = 1, are then given by:

wk(xi) ∝
n(φped · γk)∑

φj∈Υ (n(φj · γk)) + n(φped · γk)
(8)

See Figure 2 for a visualization of the cluster φped, corresponding to visi-
ble parts of the pedestrian, and the recovered occlusion-dependent component
weights wk(xi).
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Table 1. Training and test set statistics.

Pedestrians (labeled) Pedestrians (jittered) Non-Pedestrians

Train Set 6514 52112 32465

Partially Occluded Test Set 620 11160 16235

Non-Occluded Test Set 3201 25608 16235

4 Experiments

4.1 Experimental Setup

The proposed multi-cue component-based mixture-of-experts framework was
tested in experiments on pedestrian classification.

The training and test samples consist of manually labeled pedestrian and non-
pedestrian bounding boxes in images captured from a vehicle-mounted calibrated
stereo camera rig in an urban environment. For each manually labeled pedestrian,
additional samples are created by geometric jittering.

Dense stereo is computed using the semi-global matching algorithm [17]. To
compute dense optical flow, the method of [18] is used.

Training and test samples have a resolution of 36 × 84 pixels with a 6-pixel
border around the pedestrians. In the experiments, K = 3 components γk were
used, corresponding to head/shoulder (36×24 pixels), torso (36×36 pixels) and
leg (36× 48 pixels) regions, see Figure 4.

Regarding features for the component/cue expert classifiers fmk , see Eq. (3),
histograms of oriented gradients (HOG) are chosen out of many possible feature
sets, cf. [22], [3], [2], [23]. The motivation for this choice is two-fold: First, HOG
features are still among the best performing feature sets available; second, the
framework is compared to the approach of Wang et al. [15] which explicitly re-
quires and operates on the block-wise structure of HOG features. Linear support
vector machines (SVMs) are employed for classification. In the implementation
of [15], the occlusion handling of Wang et al. is used together with the same com-
ponent layout (head, torso, legs), features (HOG) and classifiers (linear SVMs)
as in the suggested framework, but only for the intensity cue.

To train the component classifiers, only non-occluded pedestrians (and non-
pedestrian samples) are used. For testing, the performance is evaluated on two
different test sets : one involving non-occluded pedestrians and one consisting
of partially occluded pedestrians. The non-pedestrian samples are the same for
both test sets. See Table 1 and Figure 5 for an overview of the dataset.

Fig. 4. Component layout as used in the experiments. Three overlapping components
are used, corresponding to head, torso and leg regions, see text.



Multi-Cue Pedestrian Classification With Partial Occlusion Handling 7

4.2 Performance on Partially Occluded Test Data

Partial Occlusion Handling The first experiment, evaluates the effect of different
models of partial occlusion handling. All expert component classifiers are trained
on intensity images only. Full-body HOG approach of [22] and the approach of
[15] are used as baslines. The suggested framework is evaluated using four dif-
ferent strategies to compute occlusion-dependent component weights wk(xi) for
xi, as defined in Sec. 3.3: weights resulting from mean-shift segmentation using
depth only, flow only and a combination of both depth and flow. Additionally,
uniform weights wk(xi) are considered, i.e. no segmentation. Results in terms of
ROC performance are given in Figure 6(a).

All component-based approaches outperform the full-body HOG classifier
(magenta *). The approach of Wang et al. [15] (cyan +) significantly improves
performance over the full-body HOG classifier by a factor of two (reduction in
false positives at constant detection rates). All variants of the framework in turn
outperform the method of Wang et al. [15], with segmentation on combined
depth and flow (green �) performing best. Compared to the use of uniform
weights wk(xi) (black ×), the addition of multi-cue segmentation to compute
component weights (green �) improves performance by approximately a factor
of two.

Multi-Cue Classification The second experiment, evaluates the performance of
multi-cue component classifiers, as presented in Sec. 3.2, compared to intensity-
only component classifiers. Uniform component weights wk(xi), i.e. no segmen-
tation, were used throughout all approaches. Results are given in Figure 6(b)
(solid lines). A full-body intensity-only HOG classifier and a multi-cue full-body
HOG classifier trained on intensity, stereo and flow data (dashed lines) are used
as baseline. Multi-cue classification significantly improves performance both for
the full-body and for the component-based approach. The best performance is

Fig. 5. Non-occluded pedestrians, partially occluded pedestrians and non-pedestrians
samples in the data. In depth (stereo) images, darker colors denote closer distances.
Note that the background (large depth values) has been faded out for visibility. Optical
flow images depict the magnitude of the horizontal component of flow vectors, with
lighter colors indicating stronger motion.
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reached by the component-based approach involving intensity, stereo and flow
(green �). The performance improvement over a corresponding component-based
classifier using intensity-only (black ×) is up to a factor of two.

Multi-Cue Classification with Partial Occlusion Handling The next experiment,
evaluates the proposed multi-cue framework involving occlusion-dependent com-
ponent weights combined with multi-cue classification. The same cues were used
for both segmentation and classification. Similar to the previous experiment, the
baseline is given by full-body classifiers (cyan + and magenta *), as well as a
component-based intensity-only classifier using uniform weights (black ×). See
Figure 6(c).

The best performing system variant is the proposed component-based mixture-
of-experts architecture using stereo and optical flow concurrently to determine
occlusion-dependent weights wk(xi) and for multi-cue classification (green �).
Compared to a corresponding multi-cue full-body classifier (magenta *), the
performance boost is approximately a factor of four. A similar performance dif-
ferences exists between the best approach (green �) and a component-based
intensity-only classifier using uniform component weights (black ×).

4.3 Performance on Non-Occluded Test Data

In this section performance of the framework using non-occluded pedestrians is
evaluated. The effect of partial occlusion handling is evaluated independently
from the use of multiple cues for classification.

Figure 6(d) shows the effect of different models of partial occlusion handling
combined with intensity-only component-based classifiers. The full-body HOG
classifier (magenta *), as well as the approach of Wang et al. [15] (cyan +), serve
as baselines. The best performance is reached by the full-body HOG classifier.
All component-based approaches perform slightly worse. Of all component-based
approaches, uniform component weights wk(xi), i.e. no occlusion handling, yields
the best performance by a small margin. On non-occluded test samples, the best
suggested approach with occlusion handling (green �) gives the same perfor-
mance as Wang et al. [15] (cyan +).

Multi-cue classification, as shown in Figure 6(e), yields similar performance
boosts compared to intensity-only classification as observed for the test on par-
tially occluded data, cf. Sec. 4.2. Figure 6(f) depicts results of the integrated
multi-cue mixture-of-experts framework with partial occlusion handling. Com-
pared to a full-body classifier involving intensity, stereo and flow (magenta *),
the best performing mixture-of-experts approach gives only slightly worse per-
formance, particularly at low false positive rates. In relation to intensity-only
full-body classification (cyan +), i.e. the approach of [22], the multi-cue frame-
work improves performance by up to a factor of two.

5 Conclusion

This paper presented a multi-cue mixture-of-experts framework for component-
based pedestrian classification with partial occlusion handling. For the partially
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Fig. 6. Left column shows evaluation on partially occluded test set performing (a)
partial occlusion handling (b) multi-cue classification in comparison to intensity-only
classification (c) combined multi-cue partial occlusion handling and classification. Right
column shows evaluation on non-occluded test set performing (d) partial occlusion han-
dling strategies (e) multi-cue classification in comparison to intensity-only classification
(c) combined multi-cue partial occlusion handling and classification.

occluded dataset, an improvement of more than a factor of two versus the base-
line (component-based, no occlusion handling) and state-of-the-art [15] was ob-
tained in the case of depth- and motion-based occlusion handling. In the case of
multi-cue (intensity, depth, motion) classification an additional improvement of
a factor of two was obtained versus the baseline (intensity only). The full-body
classifiers performed worse than the beforementioned baselines. For the non-
occluded dataset, occlusion handling does not appreciably deteriorate results,
while multi-cue classification improves performance by a factor of two.
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