
Realtime 3D Motion Estimation
on Graphics Hardware

Jens Rannacher

Heidelberg University, Germany

Abstract. 3D motion estimation in image sequences is a major task in
artificial intelligence systems such as robot navigation or driver assis-
tance systems. This involves the estimation of the optical flow between
consecutive image frames and also the 3D geometry of the scene. Several
solution techniques for this problem have already been presented in the
literature. They can be divided into feature and energy-based methods.
Feature-based methods provide sparse results and are preferred in time-
critical applications because of their computational benefits. Energy-
based methods usually provide more accurate and dense results but are
considered to be unusable in realtime applications since they require the
solution of large systems of nonlinear equations. In this work a highly
ranked dense method for 3D motion estimation from stereo images is
analyzed and modified for realtime realization. The derived algorithm is
implemented on programmable graphic hardware via the parallel com-
puting environment CUDA, to achieve dense and accurate velocity fields
at 30 Hz on 640× 480 images.

1 Introduction

1.1 Variational Methods for Motion Estimation

Estimating the 3D motion out of image sequences is a fundamental building
block of various computer vision based systems. The task of motion estimation
can be stated as follows: From two consecutive images of a video sequence a
displacement vector field must be estimated that transforms each pixel of one
image to the new position in the second image. In other words this vector field
describes the projection of the apparent 3D motion of objects onto the 2D image
plane caused by relative motion to the camera or by illumination changes. In
the literature this motion field is also referred to as optical flow.

Analogously, scene flow is the 3D vector field that describes the motion
of every visible point in the scene. Unlike optical flow, scene flow cannot be
estimated from mono camera images without a priori informations (due to the
projection onto the image plane and the resulting ambiguities). However, using
images from a stereo camera resolves most ambiguities that arise by non-rigid or
relative motion between the camera and the objects in the scene. With a stereo
camera the scene flow can be recovered by combining the optical flow between
consecutive stereo frames and the disparity (stereo) between the left and right

2 Jens Rannacher

Fig. 1. Scene flow example: (1) Input image (2) 3D geometry (3) 3D motion

images. The disparity is neccessary to calculate the position of an image point
in the 3D space.

Both motion estimation and stereo matching can be interpreted as a cor-
respondence problem and can be solved using a variational framework. Com-
pared to local methods this approach includes a global smoothness assumption
and therefore allows for estimating dense motion fields. Nevertheless, variational
methods are very expensive in terms of computational cost. Typically they re-
quire the solution of large systems of nonlinear equations and in general their
performance is far from realtime. This prevents their use in realtime systems like
driver assistance systems where computational speed is a critical aspect.

To reduce the computational complexity the scene flow estimation is split
into two seperate steps (as in [1]), while the consistency of the solution ist still
ensured. These two steps consist of estimating the disparity and the projection of
the 3D motion (optical flow + disparity change). For the sake of convenience, in
the following sections, the optical flow together with the disparity change is de-
noted as scene flow, since the motion of a point in 3D space can be reconstructed
by these measurements.

While the two sub-problems can be solved much more efficiently, the CPU
implementation of [1] has still only near-realtime capabilty on small image reso-
lutions with reduced accuracy. But as shown in this work, in combination with
further extensions the algorithm of [1] can be accelerated on modern graphics
hardware to achieve realtime performance for images of size 640× 480 pixels.

1.2 Graphics Hardware as Parallel Computer

Since 2003 the performance improvement of general-purpose microprocessors
has slowed significantly due to power consumption issues that limit the increase
of the clock frequency. At the same time graphic processing units (GPUs) have
continuously improved their floating-point performance and memory bandwidth,
so that current graphic chips deliver up to 1,000 gigaflops performance and more
than 100 GB/s memory bandwith.

The large performance gap between GPUs and CPUs can be explained by
the differences in the design of both architecures. While CPUs are optimized for
sequential code performance and therefore provide sophisticated control logic
and large cache memories, GPUs are designed for compute-intensitive and highly
parallel computations such as graphics rendering. Hence much more transistors

Realtime 3D Motion Estimation on Graphics Hardware 3

are devoted to data processing rather than data caching and flow control. As
a consequence one has to consider several optimization strategies to reach the
promised performance:

– The algorithms have to be structured in such a way that they expose as
much data parallelism as possible. This ensures that all arithmetic units of
the GPU are kept busy and no ressources are wasted.

– Fetching data from GPU main memory is about an order of magnitude slower
than executing a simple floating point operation. Hence, for exploiting the
computational power data transfers should be minimized. Sometimes, the
best optimization might even be to recompute intermediate results and avoid
any data transfer.

– To maximize the memory bandwith all memory accesses have to be orga-
nized according to optimal memory access patterns. Subject to these access
patterns, for example four 32 bit float values can be read in one 128 bit access
from memory, what is obviously faster than four serialized 32 bit accesses.

Therefore algorithms with high arithmetic intensity (typical in variational meth-
ods) can be implemented more efficiently on GPUs than bandwidth-intensive
ones. Moreover, in connection with scene flow estimation many computational
steps can be done in parallel for all image points. These are fundamental pre-
requisites to exploit the computational power of graphics cards.

To further improve the performance of the algorithm, the optimization strate-
gies from [2] are applied, as described in section 3. The derived algorithm is
implemented on programmable graphics hardware via the parallel computing
environment CUDA. CUDA allows direct programming of GPUs using a high-
level language. It is choosen for this work, since it is much more flexible than
other high-level shading languages like Cg. To make this paper self-contained,
the next section explains the starting point for the developed modifications of
the algorithm presented in [1].

2 Scene Flow Estimation

2.1 From 2D to 3D

Consider two consecutive stereo images at times t and t + 1. For every point
(x, y, d)T scene flow provides a displacement vector (u, v, d′)T in image space
Ω ∈ R2. Here, d is the disparity between the left and right image at time t
and d′ is the disparity change between times t and t+ 1. As in [1] the algorithm
requires a pre-computed disparity map. This means only little effort, since stereo
algorithms are available on dedicated hardware [3].

With known position (x, y, d)T and displacement (u, v, d′)T , the 3D point
and its new position at time t+ 1 can be reconstructed according toXt

Yt
Zt

 =
b

d

x− x0y − y0
f

 and

Xt+1

Yt+1

Zt+1

 =
b

d+ d′

x+ u− x0
y + v − y0

f

 , (1)

4 Jens Rannacher

with the focal length f and the base-length b between the two camera projection
centres. Those are camera intrinsic parameters and are supposed to be known.
The challenge is now to estimate the projection of the scene flow onto the 2D
image space, namely the triplet (u, v, d′)T .

2.2 Scene Flow Constraints

A common starting point for optical flow estimation is to assume that pixel
intensities are translated from one image to the next, while the intensity values
remain constant,

It(x, y) = It+1(x+ u, y + v). (2)

Here, It(x, y) denotes the image intensity as a function of space (x, y)T and time
t, and (u, v)T is the optical flow, i.e. the 2D velocity between consecutive images.

For scene flow calculation this simple assumption (also known as optical flow
constraint) is augmented by further constraints that describe the geometric re-
lationship between corresponding pixels in the stereo frames. Assuming that
I lt(x, y) and Irt (x, y) are the intensity values of the left and right images, respec-
tively, equation (2) can be rewritten as

I lt(x, y) = I lt+1(x+ u, y + v). (3)

Since the stereo images are rectified, two corresponding pixels in the left
and right images ideally lie on the same pixel line y. The rectification step is a
simple transformation of the input images and can be done before the scene flow
calculation. Hence, there is the following constraint for the optical flow between
the right images:

Irt (x+ d, y) = Irt+1(x+ d+ d′ + u, y + v). (4)

This second constraint is actually redundant for solving the problem, because
I lt(x, y) = Irt (x + d, y, t). However, the overdetermination makes the algorithm
more robust to interference such as illumination changes between both cameras.

Finally, a third constraint is introduced that enforces consistency between the
left and right images at time t+ 1 in case of illumination changes or occlusions,

I lt+1(x+ u, y + v) = Irt+1(x+ d+ d′ + u, y + v). (5)

2.3 Variational Approach

Let Rl, Rr and Rd be the image gray-value residuals. Then, equations (3) to (5)
can be rewritten as follows:

Rl := I lt(x, y)− I lt+1(x+ u, y + v) = 0

Rr := Irt (x+ d, y)− Irt+1(x+ d+ d′ + u, y + v) = 0 (6)

Rd := I lt+1(x+ u, y + v)− Irt+1(x+ d+ d′ + u, y + v) = 0.

Realtime 3D Motion Estimation on Graphics Hardware 5

Integrating the above constraints over the image domain, one obtains the fol-
lowing data term:

EData =

∫
Ω

[
λ1 ψ

(
Rl
)

+ c(x, y) λ2 ψ
(
Rr
)

+ c(x, y) λ3 ψ
(
Rd
)]

dxdy, (7)

where λ1, λ2 and λ3 regulate the importance of the different constraints. The
robust error function ψ(x) =

√
x2 + ε, with 0 < ε� 1, approximates the classical

Huber norm, that penalizes small residuals quadratically and large residuals
only linearly but without the need of handling two separate cases. The function
c(x, y) returns the value 0 if there is no disparity known at (x, y)T or the value
1 otherwise. This depends on the presents of occlusions or the usage of a sparse
stereo algorithm.

The optical flow cannot be estimated in areas without structure. To achieve
dense results, one needs to use some kind of regularization. The additional
smoothness term penalizes local deviations in the scene flow and allows for prop-
agation of information over large distances in the image,

ESmooth =

∫
Ω

[
ψ
(
|∇u|

)
+ ψ

(
|∇v|

)
+ ψ

(
|∇d′|

)]
dxdy, (8)

with ∇ = (∂/∂x, ∂/∂y) and the same error function ψ as above. This allows for
dense scene flow estimates, even if the disparity d is not known at some points.

Both, data and smoothness terms, are combined to an energy functional,

E(u, v, d′) = EData(u, v, d′) + ESmooth(u, v, d′). (9)

To obtain a solution for (u, v, d′) one minimizes energy functional (9) by firstly
discretizing the integral as well as the derivatives and then seeking for a sta-
tionary point. This results in a large system of non-linear equations that may
be solved through a Newton-type iteration, while the linear sub-systems are
solved by fix-point methods such as successive over-relaxation (SOR) (like in
[1]). Although SOR converges faster than simple iterative solvers such as the
Jacobi method, it cannot be implemented very efficiently on graphics hardware,
because of so-called in-place operations. In this work a completely different strat-
egy is choosen to minimize the energy more efficiently. This is described in the
next section.

3 Total Variation Scene Flow

3.1 Total Variation Norm

As mentioned above, the error function ψ(x) =
√
x2 + ε limits the influence of

constraints with larger errors. However, for small x and ε the derivative is still
nearly singular, due to ψ′(x) = x/

√
x2 + ε, while for larger ε the properties of

the model are lost. The total variation (respectively L1) norm has proven to be
a more appropriate choice, since it is not defective and large gradient features

6 Jens Rannacher

such as edges are better preserved than by the L2 norm. However, using the non
differentiable error function ψ(x) = |x| in the whole energy functional (equation
(9)) would result in a minimization problem that is difficult to solve. Therefore,
this function is only used in the smoothness term,

ESmoothTV =

∫
Ω

[
|∇u|+ |∇v|+ |∇d′|

]
dxdy, (10)

because there exist efficient schemes for minimizing the total variation (e.g. [4]).
This approach can be adopted to the optical flow case, as described in [2], and
analogously to the scene flow case considered in this work.

3.2 Convex Approximation

The energy functional that has to be minimized now reads as follows:

E = EData(u) + ESmoothTV (u), (11)

with the abbreviation u = (u, v, d′)T for the scene flow. As in [2] an auxiliary
variable ũ = (ũ, ṽ, d̃′) is introduced yielding the following convex approximation
of equation (11):

Eθ = EData(u) +
1

2θ
||u− ũ||2 + ESmoothTV (ũ). (12)

For 0 < θ < 1, u is a close approximation of ũ, and for θ → 0 minimizing
the above energy is equivalent to minimizing equation (11). Unlike before, the
optimization problem has now become one in two variables u and ũ and can be
minimized by alternatingly updating either u or ũ in every iteration. At first
glance this decoupling looks like complicating things, but the two subproblems
can be optimized more efficiently, especially on graphics hardware. The alter-
nating minimization procedure can be described as follows:

1. For fixed ũ, minimize in (12) with respect to u,

min
u

∫
Ω

[
1

2θ
||u− ũ||2 + λ1 ψ

(
Rl
)

+ c λ2 ψ
(
Rr
)

+ c λ3 ψ
(
Rd
)]

dxdy. (13)

This minimization problem does not depend on spatial derivatives of u and
can be solved pointwise. Since the functional in equation (13) is strictly
convex, setting the first derivative to 0 is a sufficient condition for a global
minimum

1

θ

(
u− ũ

)
+ λ1

∂Rl

∂u

Rl

ψ
(
Rl
) + c λ2

∂Rr

∂u

Rr

ψ
(
Rr
) + c λ3

∂Rd

∂u

Rd

ψ
(
Rd
) = 0. (14)

Replacing the displaced images by first-order Taylor approximations,

I lt+1 ≈ Ĩ lt+1 + (u− ũ)T ∇Ĩ lt+1 , Irt+1 = (x+ u, y + v)

Ĩ lt+1 = (x+ ũ, y + ṽ) (15)

Realtime 3D Motion Estimation on Graphics Hardware 7

Irt+1 ≈ Ĩrt+1 + (u− ũ)T ∇Ĩrt+1 , Irt+1 = (x+ d+ d′ + u, y + v)

Ĩrt+1 = (x+ d+ d̃′ + ũ, y + ṽ) (16)

equation (14) can be rewritten as Au = b, where A and b only depend
on the fixed ũ. Now the solution u can be determined directly by Gauss
elimination. As A is symmetric some computation steps can be eliminated
thus reducing computing time.

2. For fixed u, minimize in (12) with respect to ũ,

min
ũi

∫
Ω

[
1

2 θ
(ui − ũi)

2 + |∇ũi|
]
dxdy, (17)

where ui is the i-th component of u, i ∈ {1, ..., 3}. The solution of this
problem is exactly the Rudin-Osher-Fatemi model [5] and can be solved
efficiently with the algorithm presented in [2, 4]. Adopted to the scene flow
case, the solution of equation (17) is given by

ũi = ui + θ div p. (18)

The dual variable p = (p1, p2)T is determined iteratively by

p̃n+1 = pn +
τ

θ

(
∇(ui + θ div pn)

)
, pn+1 =

p̃n+1

max
{

1, |p̃n+1|
} , (19)

with n = 1, ..., N , p0 = (0, 0)T , and the step size τ ≤ 1/4 for which the
algorithm converges in practise [2].

3. Repeat step 1 - 2 until a prescribed residual accuracy or a specific number
of iterations is reached.

4 Implementation

The CUDA implementation of the modified scene flow algorithm is strongly
influenced by the optimization strategies as presented in the first section. This
includes minimizing the data transfers between the CPU and the GPU. Therefore
most programm logic is assigned to the GPU and executed in terms of so called
CUDA kernels. These Kernels are C functions, that, when called, are executed
N times in parallel by M different CUDA threads. To achieve high parallelism
each pixel in the image is mapped to a thread. Furthermore, the entire algorithm
is distributed on several kernels, since the number of available registers and the
shared memory per processor are limited. The resulting algorithm is summarized
in figure 2 and explained in the rest of this section:

For each frame the rectified left and right input images plus the disparity
image are uploaded to the GPU, called device, and saved to the device memory.
The disparity image is pre-calculated with a stereo algorithm available on a
field-programmable gate array (FPGA) without any extra computational cost.

8 Jens Rannacher

The whole algorithm is embedded into a coarse-to-fine warping strategy, to
avoid convergence to an unwanted local minimum due to linearization of the
image intensities (equations (15) and (16)). This not only allows for estimating
larger displacements but also improves the overall performance of the algorithm.
The pyramids for the input images are constructed using a downsampling factor
of 2 combined with a 5× 5 Gauss filter. Beforehand the source images are bound
as readonly textures, since texture memory is cached and most memory accesses
offer a good cache locality.

D
e
v
ic
e
 M
e
m
o
r
y

For level = max_levels to 0 do

If level > 0 then

End

For out = 0 to max_outer_iterations do

Upload left, right and

disparity image to device

Structure-Texture Decomposition

of left / right image
Kernel Call 2x

Calculate Image Pyramid

of left, right and disparity image
Kernel Call 3x

Kernel Call
Initialize with 0

u, v, d', P(u), P(v), P(d')
6x

Kernel Call
Solve Data Term

(Equation 13)

For in = 0 to max_inner_iterations do

Solve Smoothness Term

for u, v, d' (Equation 15)
Kernel Call 3x

Kernel Call
Apply Median Filter

to u, v, d'
3x

Kernel Call 6x
Upsample

u, v, d', P(u), P(v), P(d')

Download

u,v, d' from device

Start

End

Host (CPU) Device (GPU)

Fig. 2. Flowchart of the CUDA scene flow implementation.

To increase the robustness against illumination changes, every image in the
pyramid is decomposed into a structure and texture part via total variation
denoising [5], that is essentially the same algorithm as used to minimize the
scene flow smoothness terms (equation (18)). The texture part of the image is
generated by subtracting the original and the denoised image. Hence it contains
mainly the scale-details and is less sensitive to illumination changes or shadows.

4.1 Minimization Procedure

Starting with ũ = (0, 0, 0)T and pi = (0, 0)T on the coarsest level of the pyramid,
the algorithm alternatingly updates u (data term) and ũ (smoothness term) in

Realtime 3D Motion Estimation on Graphics Hardware 9

each outer iteration. For efficiency reasons, both alternating steps are imple-
mented in two separate kernels. Despite regularization, sometimes the solution
contains outliers. These can be discarded by a median filter applied to ũ without
the need of additional iterations. The median filter employed is an efficient 3× 3
median filter as presented in [6]. Between the pyramid levels the flow vectors u
and the dual variables pi are upsampled using a 5× 5 Gauss filter.

Solving the Data Term The update step for u primarily involves the inver-
sion of a 3× 3 matrix for every pixel. Even though this results in a high number
of arithmetic operations, these calculations can be used to overlap the device
memory accesses with high latency. The decomposed input images are accessed
via texture fetches, enabling two additional features: Texture memory provides
fast bilinear interpolation that is used for the sub-pixel gradient and residual
calculation. Furthermore, the image gradients are approximated by central dif-
ferences, where the boundary has a zero gradient. Texture memory supports
automatic handling of boundary cases, i.e. automatic clamping, that is used to
avoid expensive manual border handling.

Solving the Smoothness Term The fixed point iteration to update all pi and
ũ uses backward differences to approximate div p and forward differentation
for the gradient computation as in [2]. For realtime performance the fix point
steps are performed several times (inner iterations) before updating u, while the
number of outer iterations is decreased. Unfortunately the updates of pi and ũ
must be exchanged between adjacent threads after every inner iteration, breaking
down the parallelism. To improve the performance, the values are exchanged only
within 16× 16 thread blocks. This enables the usage of fast shared memory for
synchronization. Nevertheless the updates between adjacent thread blocks must
be exchanged after a couple of inner block iterations. In this work no visible
artifacts could be observed if the updates between blocks are performed after 5
inner block iterations.

5 Results

To obtain the timing results, two different hardware setups were used for the
GPU implementation: A desktop PC equipped with a NVIDIA Geforce GTX
285 card, and one equipped with a NVIDIA Geforce GTX 260 card. The results
are compared to the CPU implementation executed on an Intel Core 2 Extreme
processor with 4 GB DDR2 RAM. The timing results illustrated in table 1 show
that more than 30 frames per second can be achieved with the approach in this
work, what is 50 times faster than the CPU implementation.

To assess the quality of the algorithm, it was evaluated on synthetic stereo
sequences, where the ground truth is known. Compared to the CPU implementa-
tion, it turns out that the accuracy is nearly equivalent despite the optimization
steps presented above. Besides the synthetic images, the algorithm was also
tested on real video sequences to demonstrate the practicality under real world
conditions. Scene flow results on real images are shown in figure 3.

10 Jens Rannacher

To allow the comparison to other methods the implementation was further
evaluated with the Middlebury optical flow benchmark data base. The algorithm
can be adapted to the optical flow case just by setting λ2 and λ3 to zero (equation
(14)). On 27th July 2009 the implementation of this paper reached the 8th
place in the Middlebury ranking. Please note, that most methods listed at the
Middlebury benchmark require computation times in the range of seconds or
hours. The presented algorithm in this paper required about 120 ms, although
the parameters where tuned to quality.

Iterations per level GTX 285 GTX 260 Core 2 Extreme

10 outer and 3 inner 30 ms 50 ms 1571 ms
20 outer and 5 inner 72 ms 113 ms 3558 ms

100 outer and 5 inner 286 ms 434 ms 13994 ms

Table 1. Timing results in milliseconds for different configurations at 640× 480 image
resolution and 5 pyramid levels.

Fig. 3. Scene flow results for a real video frame: (1) Left input image (2) Given SGM
disparity map (white = near, black = far) (3) Estim. optical flow (hue = direction, inten-
sity = magnitude) (4) Estim. disparity change (black = decreasing, white = increasing).

References

1. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense
scene flow from sparse or dense stereo data. In: ECCV ’08: Proceedings of the 10th
European Conference on Computer Vision, Berlin, Heidelberg (2008) 739–751

2. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l1 optical
flow. In: DAGM07. (2007) 214–223

3. Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using
semi-global matching. In: ICVS 2009. (2009) 134–143

4. Chambolle, A.: An algorithm for total variation minimization and applications. J.
Math. Imaging Vis. 20(1-2) (2004) 89–97

5. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Phys. D 60(1-4) (1992) 259–268

6. McGuire, M., Whitson, K.: A fast, small-radius gpu median filter (2008)

