Low-level Vision for Autonomous Driving

Raquel Urtasun

TTI Chicago

Sep 4, 2013

Developing autonomous systems that are able to help us in everyday's tasks

My view of how to get there ...

Autonomous systems need to:

- Sense the environment
- Recognize the 3D world
- Interact with it

What's important?

- Representation
- Learning
- Inference
- Data

I believe in **holistic approaches** that solve multiple tasks, and for that MRFs provide a great mathematical framework

State of the art

• Localization, path planning, obstacle avoidance

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

Problems for computer vision

• Stereo, optical flow, visual odometry, structure-from-motion

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

Benchmarks: KITTI Data Collection

- Two stereo rigs (1392×512 px, 54 cm base, 90° opening)
- Velodyne laser scanner, GPS+IMU localization
- 6 hours at 10 frames per second!

The KITTI Vision Benchmark Suite

First Difficulty: Sensor Calibration

- Camera calibration [Geiger et al., ICRA 2012]
- Velodyne \leftrightarrow Camera registration
- GPS+IMU \leftrightarrow Velodyne registration

Second Difficulty: Object Annotation

- **3D object labels:** Annotators (undergrad students from KIT working for months)
- Occlusion labels: Mechanical Turk

R. Urtasun (TTIC)

One more Difficulty: Evaluation

- More than 100 submissions since CVPR 2012!
- Important to not have access to the test set ground truth!

R. Urtasun (TTIC)

Sense the Environment

• Goal: given 2 cameras mounted on top of the car, reconstruct the environment in 3D.

• Local methods: try to locally match pixels in one image to the other

- Suffer in texture-less regions
- No global consistency
- MRFs at the pixel level
 - Still too local
 - Computationally expensive: large number of labels
- Slanted-plane MRFs assume a 3D piece-wise planar representation of the world
 - If segments small enough this assumption is good
 - Computationally expensive

- Good over-segmentation is key for slanted-plan MRF methods to work well
- We developed an algorithm that produces over-segmentation that respects **depth boundaries**
- Jointly solves for depth (piecewise-planar) and over-segments the image
- Works in only a few seconds in a single core
- Given the over-segmentation, we can build our sophisticated MRFs

• The simplest unsupervised segmentation algorithm is to use K-means

• Let $S = \{s_1, \dots, s_N\}$ be the set of superpixel **assignments** for each pixel

- The simplest unsupervised segmentation algorithm is to use K-means
- Let $S = \{s_1, \dots, s_N\}$ be the set of superpixel assignments for each pixel
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor.

- The simplest unsupervised segmentation algorithm is to use K-means
- Let $\mathbf{S} = \{s_1, \cdots, s_N\}$ be the set of superpixel assignments for each pixel
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$E(p) = E_{ ext{col}}(\mathbf{p}, c_{s_p}) + \lambda_{ ext{pos}} E_{ ext{pos}}(\mathbf{p}, \mu_{s_p})$$

- The simplest unsupervised segmentation algorithm is to use K-means
- Let $\mathbf{S} = \{s_1, \cdots, s_N\}$ be the set of superpixel assignments for each pixel
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$E(p) = E_{ ext{col}}(\mathbf{p}, c_{s_p}) + \lambda_{ ext{pos}} E_{ ext{pos}}(\mathbf{p}, \mu_{s_p})$$

The problem of unsupervised segmentation becomes

$$\min_{\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p},s_p,\mu_{s_p},c_{s_p}).$$

- The simplest unsupervised segmentation algorithm is to use K-means
- Let $\mathbf{S} = \{s_1, \cdots, s_N\}$ be the set of superpixel assignments for each pixel
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$m{E}(m{p}) = m{E}_{
m col}(m{p},m{c}_{m{s}_{m{p}}}) + \lambda_{
m pos}m{E}_{
m pos}(m{p},\mu_{m{s}_{m{p}}})$$

• The problem of unsupervised segmentation becomes

$$\min_{\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p},s_p,\mu_{s_p},c_{s_p}).$$

- Simple iterative algorithm
 - $\bullet\,$ Solve for the assignments ${\boldsymbol S}$
 - $\bullet\,$ Solve in parallel for the positions μ and appearances ${\bf c}$

R. Urtasun (TTIC)

- The simplest unsupervised segmentation algorithm is to use K-means
- Let $\mathbf{S} = \{s_1, \cdots, s_N\}$ be the set of superpixel assignments for each pixel
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor.
- We can define the total energy of a pixel as

$$m{E}(m{p}) = m{E}_{
m col}(m{p},m{c}_{m{s}_{m{p}}}) + \lambda_{
m pos}m{E}_{
m pos}(m{p},\mu_{m{s}_{m{p}}})$$

• The problem of unsupervised segmentation becomes

$$\min_{\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p},s_p,\mu_{s_p},c_{s_p}).$$

- Simple iterative algorithm
 - $\bullet~$ Solve for the assignments ${\boldsymbol{S}}$
 - ${\ensuremath{\, \rm o}}$ Solve in parallel for the positions μ and appearances ${\ensuremath{\, \rm c}}$

- Let $\mathbf{S} = \{s_1, \cdots, s_m\}$ be the set of superpixel assignments,
- We define $\mu = {\mu_1, \dots, \mu_m}$ as the mean **location** of each superpixel, and $\mathbf{c} = {c_1, \dots, c_m}$ as the mean **appearance** descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $d(p, \theta_i) = \alpha_i p_x + \beta_i p_y + \gamma_i$

- Let $S = \{s_1, \dots, s_m\}$ be the set of superpixel assignments,
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $d(p, \theta_i) = \alpha_i p_x + \beta_i p_y + \gamma_i$

• We can define the total energy of a pixel as $E(p) = E_{col}^{l,r}(\mathbf{p}, c_{s_p}, \theta_{s_p}) + \lambda_{pos} E_{pos}(\mathbf{p}, \mu_{s_p}) + \lambda_{disp} E_{disp}^{l,r}(\mathbf{p}, \theta_{s_p}),$

- Let $S = \{s_1, \dots, s_m\}$ be the set of superpixel assignments,
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $d(p, \theta_i) = \alpha_i p_x + \beta_i p_y + \gamma_i$

- We can define the total energy of a pixel as $E(p) = E_{col}^{l,r}(\mathbf{p}, c_{s_p}, \theta_{s_p}) + \lambda_{pos} E_{pos}(\mathbf{p}, \mu_{s_p}) + \lambda_{disp} E_{disp}^{l,r}(\mathbf{p}, \theta_{s_p}),$
- We can use:

$$E_{pos}(\mathbf{p},\mu_{s_p}) = ||\mathbf{p}-\mu_{s_p}||_2^2/g$$
 $E_{col}'(\mathbf{p},c_{s_p}) = (I_t(\mathbf{p})-c_{s_p})^2$

and

$$E_{disp}(\mathbf{p}, \theta_{s_p}) = \begin{cases} (d(\mathbf{p}, \theta_{s_p}) - \hat{d}(\mathbf{p}))^2 & \text{if } \mathbf{p} \in \mathcal{F} \\ \lambda & \text{otherwise} \end{cases}$$

- Let $S = \{s_1, \dots, s_m\}$ be the set of superpixel assignments,
- We define μ = {μ₁, · · · , μ_m} as the mean location of each superpixel, and c = {c₁, · · · , c_m} as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $d(\boldsymbol{p},\theta_i) = \alpha_i \boldsymbol{p}_x + \beta_i \boldsymbol{p}_y + \gamma_i$

- We can define the total energy of a pixel as $E(p) = E_{col}^{l,r}(\mathbf{p}, c_{s_p}, \theta_{s_p}) + \lambda_{pos} E_{pos}(\mathbf{p}, \mu_{s_p}) + \lambda_{disp} E_{disp}^{l,r}(\mathbf{p}, \theta_{s_p}),$
- We can use:

$$\mathsf{E}_{pos}(\mathbf{p},\mu_{s_p}) = ||\mathbf{p}-\mu_{s_p}||_2^2/g \qquad \mathsf{E}_{col}^{\prime}(\mathbf{p},c_{s_p}) = (I_t(\mathbf{p})-c_{s_p})^2$$

and

$$E_{disp}(\mathbf{p}, heta_{s_p}) = egin{cases} (d(\mathbf{p}, heta_{s_p}) - \hat{d}(\mathbf{p}))^2 & ext{if } \mathbf{p} \in \mathcal{F} \ \lambda & ext{otherwise} \end{cases}$$

• We can define the total energy of a pixel as

$$E(\boldsymbol{p}) = E_{\rm col}^{l,r}(\mathbf{p}, c_{s_{\boldsymbol{p}}}, \theta_{s_{\boldsymbol{p}}}) + \lambda_{\rm pos}E_{\rm pos}(\mathbf{p}, \mu_{s_{\boldsymbol{p}}}) + \lambda_{\rm disp}E_{\rm disp}^{l,r}(\mathbf{p}, \theta_{s_{\boldsymbol{p}}}),$$

• Joint unsupervised segmentation and flow estimation as

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_{\rho}, \theta_{s_{\rho}}, \mu_{s_{\rho}}, c_{s_{\rho}}).$$

• We can define the total energy of a pixel as

$$E(\boldsymbol{p}) = E_{\rm col}^{l,r}(\mathbf{p}, c_{s_{\boldsymbol{p}}}, \theta_{s_{\boldsymbol{p}}}) + \lambda_{\rm pos}E_{\rm pos}(\mathbf{p}, \mu_{s_{\boldsymbol{p}}}) + \lambda_{\rm disp}E_{\rm disp}^{l,r}(\mathbf{p}, \theta_{s_{\boldsymbol{p}}}),$$

• Joint unsupervised segmentation and flow estimation as

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}).$$

- Simple iterative algorithm
 - Solve for the assignments **S**
 - Solve in parallel for the planes Θ , positions μ and appearances **c**

• We can define the total energy of a pixel as

$$E(\boldsymbol{p}) = E_{\rm col}^{l,r}(\mathbf{p}, c_{s_{\boldsymbol{p}}}, \theta_{s_{\boldsymbol{p}}}) + \lambda_{\rm pos}E_{\rm pos}(\mathbf{p}, \mu_{s_{\boldsymbol{p}}}) + \lambda_{\rm disp}E_{\rm disp}^{l,r}(\mathbf{p}, \theta_{s_{\boldsymbol{p}}}),$$

• Joint unsupervised segmentation and flow estimation as

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_p, \theta_{s_p}, \mu_{s_p}, c_{s_p}).$$

- Simple iterative algorithm
 - $\bullet\,$ Solve for the assignments ${\boldsymbol S}\,$
 - Solve in parallel for the planes Θ , positions μ and appearances **c**

Results Stereo SLIC

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]

Slanted-Plane MRFs

- Slanted-plane MRF with explicit occlusion handling
- Start with an over-segmentation of the image into superpixels
- MRF on continuous variables (slanted planes) and discrete var. (boundary)

• Takes as input disparities computed by any local algorithm

R. Urtasun (TTIC)

Energy of PCBP-Stereo

 $\bullet\,$ y the set of slanted 3D planes, o the set of discrete boundary variables

 $E(\mathbf{y}, \mathbf{o}) = \frac{E_{color}(\mathbf{o})}{E_{match}(\mathbf{y}, \mathbf{o})} + E_{compatibility}(\mathbf{y}, \mathbf{o}) + E_{junction}(\mathbf{o})$

• y the set of slanted 3D planes, o the set of discrete boundary variables

 $E(\mathbf{y}, \mathbf{o}) = E_{color}(\mathbf{o}) + \frac{E_{match}(\mathbf{y}, \mathbf{o})}{E_{compatibility}(\mathbf{y}, \mathbf{o})} + E_{junction}(\mathbf{o})$

• y the set of slanted 3D planes, o the set of discrete boundary variables

 $E(\mathbf{y}, \mathbf{o}) = E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + \frac{E_{compatibility}(\mathbf{y}, \mathbf{o})}{E_{junction}(\mathbf{o})}$

• y the set of slanted 3D planes, o the set of discrete boundary variables

$$E(\mathbf{y}, \mathbf{o}) = E_{color}(\mathbf{o}) + E_{match}(\mathbf{y}, \mathbf{o}) + E_{compatibility}(\mathbf{y}, \mathbf{o}) + \frac{E_{junction}(\mathbf{o})}{E_{junction}(\mathbf{o})}$$

Learning: using our primal-dual algorithm [Hazan & Urtasun, NIPS 2010]

• Don't need to compute the partition function or the MAP at each iteration

Inference: use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]

Iterate sampling to discretize MRF and solving the discrete MRF

Algorithm 1 PCBP for stereo estimation and occlusion boundary reasoning Set N Initialize slanted planes $\mathbf{y}_i^0 = (\alpha_i^0, \beta_i^0, \gamma_i^0)$ via local fitting $\forall i$ Initialize $\sigma_\alpha, \sigma_\beta$ and σ_γ for t = 1 to #iters do Sample N times $\forall i$ from $\alpha_i \sim \mathcal{N}(\alpha_i^{t-1}, \sigma_\alpha), \beta_i \sim \mathcal{N}(\beta_i^{t-1}, \sigma_\beta), \gamma_i \sim \mathcal{N}(\gamma_i^{t-1}, \sigma_\gamma)$ (o^t, \mathbf{y}^t) \leftarrow Solve the discretized MRF using convex BP Update $\sigma_\alpha^c = \sigma_\beta^c = 0.5 \times \exp(-c/10)$ and $\sigma_\gamma^c = 5.0 \times \exp(-c/10)$ end for Return o^t, \mathbf{y}^t

Distributed Inference for Large Graphs

Learning: using our primal-dual algorithm [Hazan & Urtasun, NIPS 2010]

- Don't need to compute the partition function or the MAP at each iteration **Inference:** use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]
 - Iterate sampling to discretize MRF and solving the discrete MRF
 - We use our distributed convex BP, which uses dual-decomposition to solve with **distributed memory and computation** while maintaining the theoretical guarantees [Schwing, Hazan, Pollefeys, Urtasun, CVPR 2011]

solve LP relaxation for each subgraph

subject to:

marginalization constraints

$$\forall s, \alpha \in N_{\mathcal{P}}(s), x_{\alpha}, \qquad b_{\alpha}^{s}(x_{\alpha}) = b_{\alpha}(x_{\alpha})$$

R. Urtasun (TTIC)

Autonomous Driving

KITTI Stereo/Flow Dataset

KITTI dataset (Geiger et al. 12)

- Real-world stereo/flow dataset
- Accurate ground truth
- High-resolution (1237×374 pixels)
- 10 train, 184 validation, 195 test images

Ground truth

Stereo Evaluation

Rank	Method	Setting	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	PCBP		4.13 %	5.45 %	0.9 px	1.2 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
Koichiro Yamaguchi, Tamir Hazan, David McAllester and Raquel Urtasun. Continuous Markov Random Fields for Robust Stereo Estimation. ECCV 2012.										
2	<u>iSGM</u>		5.16 %	7.19 %	1.2 px	2.1 px	94.70 %	8 s	2 cores @ 2.5 Ghz (C/C++)	
Simon Hermann and Reinhard Klette. Iterative Semi-Global Matching for Robust Driver Assistance Systems, ACCV 2012.										
3	<u>SGM</u>		5.83 %	7.08 %	1.2 px	1.3 px	85.80 %	3.7 s	1 core @ 3.0 Ghz (C/C++)	
Heiko Hirschmueller. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008.										
4	<u>SNCC</u>		6.27 %	7.33 %	1.4 px	1.5 px	100.00 %	0.27 s	1 core @ 3.0 Ghz (C/C++)	
N. Einecke and J. Eggert. <u>A Two-Stage Correlation Method for Stereoscopic Depth Estimation.</u> DICTA 2010.										
5	ITGV		6.31 %	7.40 %	1.3 px	1.5 px	100.00 %	7 s	1 core @ 3.0 Ghz (Matlab + C/C++)	
Rene Ranft1, Stefan Gehrig, Thomas Pock and Horst Bischof. Pushing the Limits of Stereo Using Variational Stereo Estimation. IEEE Intelligent Vehicles Symposium 2012.										
6	BSSM		7.50 %	8.89 %	1.4 px	1.6 px	94.87 %	20.7 s	1 core @ 3.5 Ghz (C/C++)	
Anonymo	ous submission									
7	OCV-SGBM		7.64 %	9.13 %	1.8 px	2.0 px	86.50 %	1.1 s	1 core @ 2.5 Ghz (C/C++)	
Heiko Hi	irschmueller. <u>St</u>	ereo process	ing by semigle	obal matchir	ng and mutual	information	⊾ RAMI 2008.			
8	ELAS		8.24 %	9.95 %	1.4 px	1.6 px	94.55 %	0.3 s	1 core @ 2.5 Ghz (C/C++)	
Andreas	Geiger, Martin	Roser and Ra	aquel Urtasun.	Efficient La	arge-Scale Ste	reo Matchin	e. ACCV 2010			
9	MS-DSI		10.68 %	12.11 %	1.9 px	2.2 px	100.00 %	10.3 s	>8 cores @ 2.5 Ghz (C/C++)	
Anonymo	ous submission									
10	<u>SDM</u>		10.98 %	12.19 %	2.0 px	2.3 px	63.58 %	1 min	1 core @ 2.5 Ghz (C/C++)	
Jana Kos	stkova. <u>Stratifi</u> e	ed dense ma	tching for ster	eopsis in co	mplex scenes.	BMVC 2003				
11	GCSF		12.06 %	13.26 %	1.9 px	2.1 px	60.77 %	2.4 s	1 core @ 2.5 Ghz (C/C++)	
Jan Cech	h, Jordi Sanches	z-Riera and I	Radu P. Horau	d. <u>Scene Flo</u>	w Estimation	by Growing	Corresponde	<u>ice Seeds.</u> CVI	PR 2011.	
12	<u>GCS</u>		13.37 %	14.54 %	2.1 px	2.3 px	51.06 %	2.2 s	1 core @ 2.5 Ghz (C/C++)	
Jan Cech and Radim Sara. Efficient Sampling of Disparity Space for Fast And Accurate Matching. BenCOS 2007.										
13	CostFilter		19.96 %	21.05 %	5.0 px	5.4 px	100.00 %	4 min	1 core @ 2.5 Ghz (Matlab)	
Christoph Rhemann, Asmaa Hosni, Michael Bleyer, Carsten Rother and Margrit Gelautz. Fast Cost-Volume Filtering for Visual Correspondence and Beyond, CVPR 2011.										
14	OCV-BM		25.39 %	26.72 %	7.6 px	7.9 px	55.84 %	0.1 s	1 core @ 2.5 Ghz (C/C++)	
G. Bradski. The OpenCV Library Dr. Dobb's Journal of Software Tools 2000.										
15	GC+occ		33.50 %	34.74 %	8.6 px	9.2 px	87.57 %	6 min	1 core @ 2.5 Ghz (C/C++)	
Madimia	K-I	d Damin 7al	ib. Consultin	- Minuel Com		with Ownlowi		- Code JCCV	2001	

R. Urtasun (TTIC)

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

- Natural scenes, lots of texture, no objects
- A couple of errors at thin structures (poles)

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

- Shadows help the disambiguation process
- Errors at thin structures and far away textureless regions

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

- Textureless or saturated areas
- Ambiguous reflections

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR 2013]

- Depth is not all!
- Recover the motion of the scene given a single camera

Flow for Autonomous Driving

- Most of the flow is due to the vehicle's ego-motion
- Goal: compute the **epipolar flow** by doing matching along the epipolar lines
- The problem is very similar to stereo
- Previous work does not have big performance gains with epipolar constraints
- Can we exploit what we learned about the stereo problem?

SGM for Epipolar Flow

• Adapt semi-global block matching (SGM) [Hirschmueller PAMI2008] to the epipolar flow problem

 $\mathsf{Energy} = \mathsf{Unary \ term} + \mathsf{Smoothness \ Term}$

• Disparity is not a good representation to impose smoothness

R. Urtasun (TTIC)

SGM for Epipolar Flow

• **VZ-ratio** is a linear function of $\frac{1}{Z}$

$$\omega_p = \frac{v}{Z_p} = \frac{p'-p}{p} = \frac{d}{p+d}$$

• Much better representation to impose smoothness than disparity

$$E(\omega) = \sum_{p} C(p, \omega_{p}) + \sum_{(p,q) \in \mathcal{N}} S(\omega_{p}, \omega_{q})$$

SGM Flow

Input image

SGM-Flow VZ-ratio map

Flow field

- Let $\mathbf{S} = \{s_1, \dots, s_m\}$ be the set of superpixel assignments, $\mu = \{\mu_1, \dots, \mu_m\}$ the mean location of each superpixel, and $\mathbf{c} = \{c_1, \dots, c_m\}$ as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \dots, \theta_m\}$ be the set of plane parameters with $\omega(p, \theta_i) = \alpha_i p_x + \beta_i p_y + \gamma_i$

- Let $S = \{s_1, \dots, s_m\}$ be the set of superpixel assignments, $\mu = \{\mu_1, \dots, \mu_m\}$ the mean location of each superpixel, and $c = \{c_1, \dots, c_m\}$ as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \dots, \theta_m\}$ be the set of plane parameters with $\omega(p, \theta_i) = \alpha_i p_x + \beta_i p_y + \gamma_i$

• We can define the total energy of a pixel as $E(p) = E_{col}^{t,t+1}(\mathbf{p}, c_{s_p}, \theta_{s_p}) + \lambda_{pos}E_{pos}(\mathbf{p}, \mu_{s_p}) + \lambda_{vz}E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_p}),$ with $E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_p}) = (\omega(p, \theta_{s_p}) - \omega_{SGM})^2$

- Let $\mathbf{S} = \{s_1, \dots, s_m\}$ be the set of superpixel assignments, $\mu = \{\mu_1, \dots, \mu_m\}$ the mean location of each superpixel, and $\mathbf{c} = \{c_1, \dots, c_m\}$ as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $\omega(\boldsymbol{p},\theta_i) = \alpha_i \boldsymbol{p}_x + \beta_i \boldsymbol{p}_y + \gamma_i$

• We can define the total energy of a pixel as $E(p) = E_{col}^{t,t+1}(\mathbf{p}, c_{s_p}, \theta_{s_p}) + \lambda_{pos}E_{pos}(\mathbf{p}, \mu_{s_p}) + \lambda_{vz}E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_p}),$ with $E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_p}) = (\omega(p, \theta_{s_p}) - \omega_{SGM})^2$

• Joint unsupervised segmentation and flow estimation by

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}).$$

- Let $\mathbf{S} = \{s_1, \dots, s_m\}$ be the set of superpixel assignments, $\mu = \{\mu_1, \dots, \mu_m\}$ the mean location of each superpixel, and $\mathbf{c} = \{c_1, \dots, c_m\}$ as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $\omega(\boldsymbol{p},\theta_i) = \alpha_i \boldsymbol{p}_x + \beta_i \boldsymbol{p}_y + \gamma_i$

- We can define the total energy of a pixel as $E(p) = E_{col}^{t,t+1}(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}) + \lambda_{pos}E_{pos}(\mathbf{p}, \mu_{s_{p}}) + \lambda_{vz}E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_{p}}),$ with $E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_{p}}) = (\omega(p, \theta_{s_{p}}) - \omega_{SGM})^{2}$
- Joint unsupervised segmentation and flow estimation by

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}).$$

- Simple iterative algorithm
 - Solve for the assignments **S**
 - Solve in parallel for the planes Θ , positions μ and appearances **c**

- Let $\mathbf{S} = \{s_1, \dots, s_m\}$ be the set of superpixel assignments, $\mu = \{\mu_1, \dots, \mu_m\}$ the mean location of each superpixel, and $\mathbf{c} = \{c_1, \dots, c_m\}$ as the mean appearance descriptor
- Let $\Theta = \{\theta_1, \cdots, \theta_m\}$ be the set of plane parameters with

 $\omega(\boldsymbol{p},\theta_i) = \alpha_i \boldsymbol{p}_x + \beta_i \boldsymbol{p}_y + \gamma_i$

- We can define the total energy of a pixel as $E(p) = E_{col}^{t,t+1}(\mathbf{p}, c_{s_{p}}, \theta_{s_{p}}) + \lambda_{pos}E_{pos}(\mathbf{p}, \mu_{s_{p}}) + \lambda_{vz}E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_{p}}),$ with $E_{vz}^{t,t+1}(\mathbf{p}, \theta_{s_{p}}) = (\omega(p, \theta_{s_{p}}) - \omega_{SGM})^{2}$
- Joint unsupervised segmentation and flow estimation by

$$\min_{\Theta,\mathbf{S},\mu,\mathbf{c}}\sum_{\mathbf{p}} E(\mathbf{p}, s_{p}, \theta_{s_{p}}, \mu_{s_{p}}, c_{s_{p}}).$$

- Simple iterative algorithm
 - $\bullet\,$ Solve for the assignments ${\boldsymbol S}$
 - Solve in parallel for the planes Θ , positions μ and appearances **c**

Motion Slic

SLIC Energy = Position + Color

MotionSLIC

Energy = Position + Color + VZ-ratio

Slanted-Plane MRFs for Flow

- Slanted-plane MRF with explicit occlusion handling
- Start with an over-segmentation of the image into superpixels
- MRF on continuous variables (slanted planes) and discrete var. (boundary)

Takes as input VZ-ratio SGM for flow

R. Urtasun (TTIC)

۰

Results KITTI

Input image

MotionSLIC Superpixels

PCBP-Flow Flow field

Error

Illumination Changes:	
-----------------------	--

	#44		#11		#15		#74		Average BP	
SGM-Flow	16.84%	3.86 px	24.82%	9.45 px	18.90%	4.36 px	26.94%	8.15 px	21.87%	
MotionSLIC	9.03%	2.34 px	18.56%	4.78 px	13.18%	3.80 px	23.36%	4.08 px	16.03%	
PCBP-Flow	6.42%	2.23 px	15.34%	3.75 px	10.00%	2.42 px	19.15%	3.37 px	12.73%	

Large Displacements:

	#147		#117		#144		#181		Average BP
SGM-Flow	9.66%	1.43 px	6.84%	1.64 px	23.10%	6.56 px	29.31%	12.59 px	17.23%
MotionSLIC	9.88%	1.70 px	5.02%	1.47 px	16.65%	3.19 px	22.22%	7.62 px	13.44%
PCBP-Flow	9.02%	1.04 px	6.29%	1.77 px	15.23%	2.59 px	18.32%	7.77 px	12.22%

- Joint Recognition and Reconstruction (i.e., Stereo / Flow / Scene-flow)
- It will allows us to segment into coherent (piece-wise rigid) motions
- We can impose priors on depth/flow
- It makes recognition much easier
- What is the ultimate goal?

- Data is important for learning and for benchmarking
- Autonomous driving is a fantastic real-world problem to test our algorithms
- Generalization, generalization, generalization!
- Joint segmentation and depth/flow estimation that allows real-time inference
- Slanted plane MRFs to reason properly about occlusion
- State of the art on KITTI stereo and flow
- Reconstruction meets Recognition Challenge at ICCV 13, composed of KITTI and NYU-RGBD datasets

- Andreas Geiger \rightarrow KITTI
- $\bullet~$ Tamir Hazan $\rightarrow~$ MRF learning and inference
- Philip Lenz \rightarrow KITTI
- $\bullet~$ David McAllester \rightarrow Stereo/flow and MRF inference
- $\bullet~\mbox{Alex}~\mbox{Schwing} \rightarrow \mbox{MRF}$ learning and inference
- Koichiro Yamaguchi \rightarrow Stereo/flow

Autonomous systems should

- Sense the environment: stereo, flow, layout estimation
- Recognize the 3D world: detection, segmentation
- Interact with it

I advocate for MRF holistic models which require

- Representation
- Learning
- Inference
- Data

Build holistic models to properly reason about uncertainty of the different tasks

An autonomous system has to self-localize

- **GPS** does not work all the time, or has errors. Good if a human drives, but not if is an autonomous system!
- Place recognition approaches: drive once manually, and try to recognize where you are (e.g., point clouds or visual features).
- Very successful (e.g., Google car), but has scaling and privacy issues (e.g., Germany).
- Humans use a cartographic map and look around
- Can we do something similar?
Visual GPS

[M. Brubaker, A. Geiger and R. Urtasun, best paper runner-up at CVPR13]

- Visual Self-localization (1 or 2 cameras) and a map of the environment
- Utilize only visual odometry
- Localization in places you have **NOT** seen or driven before
- Validated in KITTI visual odometry (50km of driving)
- We can self localize in only a few seconds of driving with precision of 3m in maps that contain 2,150km of drivable roads!

