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What excites me ... and hopefully you too ...

Developing autonomous systems that are able to help us in everyday’s tasks
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My view of how to get there ...

Autonomous systems need to:

Sense the environment

Recognize the 3D world

Interact with it

What’s important?

Representation

Learning

Inference

Data

I believe in holistic approaches that solve multiple tasks, and for that MRFs
provide a great mathematical framework
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Autonomous Driving

State of the art

Localization, path planning, obstacle avoidance

Heavy usage of Velodyne and detailed (recorded) maps

Problems for computer vision

Stereo, optical flow, visual odometry, structure-from-motion

Object detection, recognition and tracking

3D scene understanding
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Benchmarks: KITTI Data Collection

Two stereo rigs (1392× 512 px, 54 cm base, 90◦ opening)

Velodyne laser scanner, GPS+IMU localization

6 hours at 10 frames per second!
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The KITTI Vision Benchmark Suite
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First Difficulty: Sensor Calibration

TGPS

TVelodyne

TC

TC

Camera calibration [Geiger et al., ICRA 2012]

Velodyne ↔ Camera registration

GPS+IMU ↔ Velodyne registration
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Second Difficulty: Object Annotation

3D object labels: Annotators (undergrad students from KIT working for
months)

Occlusion labels: Mechanical Turk
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One more Difficulty: Evaluation

More than 100 submissions since CVPR 2012!

Important to not have access to the test set ground truth!
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Sense the Environment

Goal: given 2 cameras mounted on top of the car, reconstruct the
environment in 3D.
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An MRF view of Stereo

Local methods: try to locally match pixels in one image to the other

Suffer in texture-less regions
No global consistency

MRFs at the pixel level

Still too local
Computationally expensive: large number of labels

Slanted-plane MRFs assume a 3D piece-wise planar representation of the
world

If segments small enough this assumption is good
Computationally expensive
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Keys for Success

Good over-segmentation is key for slanted-plan MRF methods to work well

We developed an algorithm that produces over-segmentation that respects
depth boundaries

Jointly solves for depth (piecewise-planar) and over-segments the image

Works in only a few seconds in a single core

Given the over-segmentation, we can build our sophisticated MRFs
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SLIC superpixels

The simplest unsupervised segmentation algorithm is to use K-means

Let S = {s1, · · · , sN) be the set of superpixel assignments for each pixel

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem of unsupervised segmentation becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).

Simple iterative algorithm

Solve for the assignments S
Solve in parallel for the positions µ and appearances c
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Joint Segmentation and Depth

Let S = {s1, · · · , sm) be the set of superpixel assignments,

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor

Let Θ = {θ1, · · · , θm} be the set of plane parameters with

d(p, θi ) = αipx + βipy + γi

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

We can use:

Epos(p, µsp ) = ||p− µsp ||22/g E l
col(p, csp ) = (It(p)− csp )2

and

Edisp(p, θsp ) =

{
(d(p, θsp )− d̂(p))2 if p ∈ F
λ otherwise
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Results Stereo SLIC

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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Slanted-Plane MRFs

Slanted-plane MRF with explicit occlusion handling

Start with an over-segmentation of the image into superpixels

MRF on continuous variables (slanted planes) and discrete var. (boundary)
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Takes as input disparities computed by any local algorithm
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)
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Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)

!"#$%&'()*&+,*-) .*&$/,%)0*&$,-)!"#$%&

1',2,',$3,)"2)+"#$%&'()*&+,*) 45"0*&$&')6)78$9,)6):33*#-8"$;)

<&/3=)

>:33*#-8"$?)

>78$9,?)

>5"0*&$&'?)

i j i j 

i j 

i j 

on boundary 

in both segments 

@<0"-,)0,$&*/()

4A;)

4B;)

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 20 / 52



Energy of PCBP-Stereo

y the set of slanted 3D planes, o the set of discrete boundary variables

E (y, o) = Ecolor (o) + Ematch(y, o) + Ecompatibility (y, o) + Ejunction(o)

!""#$%&'()*'$(+,-.)-/,%'(&(0)

123'%%&*#/)",%/%)

!""#$%&'()
4-'(5)

6,"7)
8&(0/)
9'3#,(,-)

:;,#&7)<=>?@)

A/(,#&B/)&23'%%&*#/)C$("D'(%)

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 21 / 52



Distributed Inference for Large Graphs

Learning: using our primal-dual algorithm [Hazan & Urtasun, NIPS 2010]

Don’t need to compute the partition function or the MAP at each iteration

Inference: use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]

Iterate sampling to discretize MRF and solving the discrete MRF
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Don’t need to compute the partition function or the MAP at each iteration

Inference: use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]

Iterate sampling to discretize MRF and solving the discrete MRF

We use our distributed convex BP, which uses dual-decomposition to solve
with distributed memory and computation while maintaining the
theoretical guarantees [Schwing, Hazan, Pollefeys, Urtasun, CVPR 2011]

solve LP relaxation for each subgraph

subject to:

marginalization constraints

∀s, α ∈ NP (s), xα, bsα(xα) = bα(xα)
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KITTI Stereo/Flow Dataset

KITTI dataset (Geiger et al. 12)

Real-world stereo/flow dataset

Accurate ground truth

High-resolution (1237x374 pixels)

10 train, 184 validation, 195 test images

Ground'truth�
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Stereo Evaluation
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Results KITTI
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

Natural scenes, lots of texture, no objects

A couple of errors at thin structures (poles)

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

Shadows help the disambiguation process

Errors at thin structures and far away textureless regions

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

Textureless or saturated areas

Ambiguous reflections

Errors: 22.1% Errors: 17.4%
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Sense the Environment

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR 2013]

Depth is not all!

Recover the motion of the scene given a single camera
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Flow for Autonomous Driving

Most of the flow is due to the vehicle’s ego-motion

Goal: compute the epipolar flow by doing matching along the epipolar lines

The problem is very similar to stereo

Previous work does not have big performance gains with epipolar constraints

Can we exploit what we learned about the stereo problem?

Time�FOE�
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Diagram Flow

SGM$Flow�

PCBP$Flow�

Input�

t+1�

t�

Monocular,2,images�

Data3term�

Mo7onSLIC�

Inference�

Accurate,flow,matching�

Flow8aware,segmenta9on�

Slanted,plane,MRF�
Over$segmenta7on�

Slanted3plane3MRF3model3for3epipolar3flow3
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SGM for Epipolar Flow

Adapt semi-global block matching (SGM) [Hirschmueller PAMI2008] to the
epipolar flow problem

Energy = Unary term + Smoothness Term

Stereo�

disparity�

smoothness.�between.dispari1es.

Epipolar+flow�

disparity�

FOE�

�smoothness.
between.dispari1es.

complex+non2linear+func5on+of+depth+

Disparity is not a good representation to impose smoothness
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SGM for Epipolar Flow

3D#point#

VZ-ratio is a linear function of 1
Z

ωp =
v

Zp
=

p′ − p

p
=

d

p + d

Much better representation to impose smoothness than disparity

E (ω) =
∑
p

C (p, ωp) +
∑

(p,q)∈N

S(ωp, ωq)
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SGM Flow

Input&image�

VZ.ra0o&map�

Flow&field�

Large�

Small�
SGM.Flow�
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Diagram Flow
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Joint Segmentation and Epipolar Flow

Let S = {s1, · · · , sm) be the set of superpixel assignments,
µ = {µ1, · · · , µm} the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor

Let Θ = {θ1, · · · , θm} be the set of plane parameters with

ω(p, θi ) = αipx + βipy + γi

We can define the total energy of a pixel as

E (p) = E t,t+1
col (p, csp , θsp ) + λposEpos(p, µsp ) + λvzE

t,t+1
vz (p, θsp ),

with E t,t+1
vz (p, θsp ) = (ω(p, θsp )− ωSGM)2

Joint unsupervised segmentation and flow estimation by

min
Θ,S,µ,c

∑
p

E (p, sp, θsp , µsp , csp ).

Simple iterative algorithm

Solve for the assignments S
Solve in parallel for the planes Θ, positions µ and appearances c
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Motion Slic

SLIC�

Mo'onSLIC�
Input,
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Energy'='Posi-on'
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Diagram Flow

SGM$Flow�

PCBP$Flow�

Input�

t+1�

t�

Monocular,2,images�

Data3term�

Mo7onSLIC�

Inference�

Accurate,flow,matching�

Flow8aware,segmenta9on�

Slanted,plane,MRF�
Over$segmenta7on�

Slanted3plane3MRF3model3for3epipolar3flow3
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Slanted-Plane MRFs for Flow

Slanted-plane MRF with explicit occlusion handling

Start with an over-segmentation of the image into superpixels

MRF on continuous variables (slanted planes) and discrete var. (boundary)

!"#$%&'(

)*+,*$- !"#$"%&'()*+),-"
).&$-*%/01/2.&$*/"3/4*+,*$-

./0%1)*2'()*+),-"
5*.&6"$4782/9*-:**$/4*+,*$-4/

;/4-&-*4/

<==.#48"$ >8$+* ?"2.&$&'

?"$6$#"#4/@&'8&9.*/

184='*-*/@&'8&9.*/
)#2*'28A*.4/BC?D/EF'9*.&*GH/*-/&.I/JKLLM/

////////////////////////&$%/)NO?/EF=7&$-&H/*-/&.I/JKLKMP/

Takes as input VZ-ratio SGM for flow
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Results KITTI
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Results KITTI
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Results KITTI

Input&image�

SGM/Flow�

Mo4onSLIC�

PCBP/Flow�

Error�

VZ/ra4o&map�
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Flow&field�

Error:1.50%� Error:1.31%�
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Results KITTI

Disparity)

VZ,ra-o)

Error$>$3$pixels$(Non0Occluded)�

Evalua8on$on$the$valida8on$set$of$KITTI$SGM,Flow)

���
��

	�

��

��� ��� ��� ��� ��� 	�� 
�� ���

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 43 / 52



Results KITTI
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Results KITTI
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Results of the Challenge

Illumination	
  Changes:
Average	
  BP

SGM-­‐Flow 16.84% 3.86	
  px 24.82% 9.45	
  px 18.90% 4.36	
  px 26.94% 8.15	
  px 21.87%
MotionSLIC 9.03% 2.34	
  px 18.56% 4.78	
  px 13.18% 3.80	
  px 23.36% 4.08	
  px 16.03%
PCBP-­‐Flow 6.42% 2.23	
  px 15.34% 3.75	
  px 10.00% 2.42	
  px 19.15% 3.37	
  px 12.73%

Large	
  Displacements:
Average	
  BP

SGM-­‐Flow 9.66% 1.43	
  px 6.84% 1.64	
  px 23.10% 6.56	
  px 29.31% 12.59	
  px 17.23%
MotionSLIC 9.88% 1.70	
  px 5.02% 1.47	
  px 16.65% 3.19	
  px 22.22% 7.62	
  px 13.44%
PCBP-­‐Flow 9.02% 1.04	
  px 6.29% 1.77	
  px 15.23% 2.59	
  px 18.32% 7.77	
  px 12.22%

#44 #11 #15 #74

#147 #117 #144 #181
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Next Steps

Joint Recognition and Reconstruction (i.e., Stereo / Flow / Scene-flow)

It will allows us to segment into coherent (piece-wise rigid) motions

We can impose priors on depth/flow

It makes recognition much easier

What is the ultimate goal?
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Conclusions

Data is important for learning and for benchmarking

Autonomous driving is a fantastic real-world problem to test our algorithms

Generalization, generalization, generalization!

Joint segmentation and depth/flow estimation that allows real-time inference

Slanted plane MRFs to reason properly about occlusion

State of the art on KITTI stereo and flow

Reconstruction meets Recognition Challenge at ICCV 13, composed of
KITTI and NYU-RGBD datasets
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Conclusions

Autonomous systems should

Sense the environment: stereo, flow, layout estimation

Recognize the 3D world: detection, segmentation

Interact with it

I advocate for MRF holistic models which require

Representation

Learning

Inference

Data

Build holistic models to properly reason about uncertainty of the different tasks
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An autonomous system has to self-localize

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 50 / 52



Self-localization

GPS does not work all the time, or has errors. Good if a human drives, but
not if is an autonomous system!

Place recognition approaches: drive once manually, and try to recognize
where you are (e.g., point clouds or visual features).

Very successful (e.g., Google car), but has scaling and privacy issues (e.g.,
Germany).

Humans use a cartographic map and look around

Can we do something similar?
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Visual GPS
[M. Brubaker, A. Geiger and R. Urtasun, best paper runner-up at CVPR13]

Visual Self-localization (1 or 2 cameras) and a map of the environment

Utilize only visual odometry

Localization in places you have NOT seen or driven before

Validated in KITTI visual odometry (50km of driving)

We can self localize in only a few seconds of driving with precision of 3m in
maps that contain 2,150km of drivable roads!

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 52 / 52


	Intro
	KITTI
	Reconstruction
	Appendix

