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What excites me ... and hopefully you too ...

Developing autonomous systems that are able to help us in everyday's tasks
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My view of how to get there ...

Autonomous systems need to:
@ Sense the environment
@ Recognize the 3D world

@ Interact with it

What's important?
@ Representation
@ Learning
@ Inference

@ Data

| believe in holistic approaches that solve multiple tasks, and for that MRFs
provide a great mathematical framework
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Autonomous Driving

State of the art

@ Localization, path planning, obstacle avoidance
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Autonomous Driving

State of the art
o Localization, path planning, obstacle avoidance
@ Heavy usage of Velodyne and detailed (recorded) maps
Problems for computer vision
@ Stereo, optical flow, visual odometry, structure-from-motion
@ Object detection, recognition and tracking

@ 3D scene understanding
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Benchmarks: KITTI Data Collection

e Two stereo rigs (1392 x 512 px, 54 cm base, 90° opening)
o Velodyne laser scanner, GPS+1IMU localization

@ 6 hours at 10 frames per second!

360° Velodyne Laserscanner
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The KITTI Vision Benchmark Suite
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First Difficulty: Sensor Calibration

360° Velodyne Laserscanner

B ~GPs

Tc TVeIodyne

@ Camera calibration [Geiger et al., ICRA 2012]
@ Velodyne <» Camera registration

@ GPS+IMU < Velodyne registration
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Second Difficulty: Object Annotation

@ 3D object labels: Annotators (undergrad students from KIT working for
months)

@ Occlusion labels: Mechanical Turk
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One more Difficulty: Evaluation

The KITTI Vision Benchmark Suite =

(ICTY

(Untitled) Most Visited -~ eXTReMe Tracking >...
] The KITTI Vision Benchmark Suite

Gmail - Inbox (2318... Getting Started _Latest Headlines 3 Apple TTIC - Calendar

The KITTI Vision <
| §| Benchmark Suite ] g

A project of Karisruhe Institute of Technology
and Toyota Technological Institute at Chicago

home stereo flow  odometry  detection  orientation tracking rawdata  submit your results

Andreas Geiger (KIT) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (TTI-C)

Welcome to the KITTI Vision Benchmark Suite!

We take advantage of our autonomous driving platform Annieway to develop novel challenging
real-world computer vision benchmarks. Our tasks of interest are: stereo, optical flow, visual
odometry, 3D object detection and 3D tracking. For this purpose, we equipped a standard
station wagon with two high-resolution color and grayscale video cameras. Accurate ground
truth is provided by a Velodyne laser scanner and a GP$ localization system. Our datsets are
captured by driving around the mid-size city of Karlsruhe, in rural areas and on highways. Up
to 15 cars and 30 pedestrians are visible per image. Besides providing all data in raw format,
we extract benchmarks for each task. For each of our benchmarks, we also provide an
evaluation metric and this evaluation website. Preliminary experiments show that methods
ranking high on established benchmarks such as Middlebury perform below average when being
moved outside the laboratory to the real world. Our goal is to reduce this bias and complement
existing benchmarks by providing real-world benchmarks with novel difficulties to the
community:

360° Velodyne Laserseanner

Stereo Camera Rig 5 Grs

e S ol

Read www.cvlibs.net

@ More than 100 submissions since CVPR 2012!

@ Important to not have access to the test set ground truth!
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http://www.cvlibs.net/datasets/kitti/

Sense the Environment

@ Goal: given 2 cameras mounted on top of the car, reconstruct the
environment in 3D.

Stereo Camera Rig (e
= W H
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An MRF view of Stereo

@ Local methods: try to locally match pixels in one image to the other

e Suffer in texture-less regions
e No global consistency

@ MREFs at the pixel level

e Still too local
e Computationally expensive: large number of labels

@ Slanted-plane MRFs assume a 3D piece-wise planar representation of the
world

o If segments small enough this assumption is good
o Computationally expensive
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Keys for Success

@ Good over-segmentation is key for slanted-plan MRF methods to work well

@ We developed an algorithm that produces over-segmentation that respects
depth boundaries

@ Jointly solves for depth (piecewise-planar) and over-segments the image
@ Works in only a few seconds in a single core

@ Given the over-segmentation, we can build our sophisticated MRFs
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SLIC superpixels

@ The simplest unsupervised segmentation algorithm is to use K-means

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 13 / 52



SLIC superpixels

@ The simplest unsupervised segmentation algorithm is to use K-means

@ Let S = {s1,---,sn) be the set of superpixel assignments for each pixel

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 13 / 52



SLIC superpixels

@ The simplest unsupervised segmentation algorithm is to use K-means

@ Let S = {s1,---,sn) be the set of superpixel assignments for each pixel
® We define = {p1,- -+, tm} as the mean location of each superpixel, and
c={cy, - ,Ccm} as the mean appearance descriptor.

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 13 / 52



SLIC superpixels

@ The simplest unsupervised segmentation algorithm is to use K-means

@ Let S = {s1,---,sn) be the set of superpixel assignments for each pixel
® We define = {p1,- -+, tm} as the mean location of each superpixel, and
c={cy, - ,Ccm} as the mean appearance descriptor.

@ We can define the total energy of a pixel as

E(p) = Ecol(pa Csp) + )\posEpos(pa Msp)

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 13 / 52



SLIC superpixels

The simplest unsupervised segmentation algorithm is to use K-means

Let S = {s1, -+ ,sn) be the set of superpixel assignments for each pixel

We define g = {1, -+, tm} as the mean location of each superpixel, and
c={cy, - ,Ccm} as the mean appearance descriptor.

@ We can define the total energy of a pixel as

E(p) = Ecol(pa Csp) + )\posEpos(pa Msp)

The problem of unsupervised segmentation becomes

min Z E(p, Sps Hs,» Csp)-
S,u,c »
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SLIC superpixels

@ The simplest unsupervised segmentation algorithm is to use K-means

@ Let S = {s1,---,sn) be the set of superpixel assignments for each pixel
® We define = {p1,- -+, tm} as the mean location of each superpixel, and
c={cy, - ,Ccm} as the mean appearance descriptor.

@ We can define the total energy of a pixel as

E(p) = Ecol(pa Csp) + )\posEpos(pa Msp)

@ The problem of unsupervised segmentation becomes

min Z E(p, Sps Hs,» Csp)-
S,p.c »

@ Simple iterative algorithm

e Solve for the assignments S
e Solve in parallel for the positions ;2 and appearances c
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Joint Segmentation and Depth

@ Let S = {s1, -, sm) be the set of superpixel assignments,
o We define n = {p1,- -, um} as the mean location of each superpixel, and
c={c1, - ,cm} as the mean appearance descriptor
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Joint Segmentation and Depth

@ Let S = {s1, -, sm) be the set of superpixel assignments,

o We define n = {p1,- -, um} as the mean location of each superpixel, and
c={c1, - ,cm} as the mean appearance descriptor

@ Let © = {0y, -+ ,0,,} be the set of plane parameters with

d(p 91) = Qpx + “Bipy + Vi

@ We can define the total energy of a pixel as

E(p) = E(forl(p, Cs,,7 esp) + )‘pos Epos(pa ,Ufs,,) + /\disp E(/h:p(P» esp)a

@ We can use:

EpOS(vasp) =|lp— NspH%/g Ec/ol(pa Csp) = (I(p) — Csp)2
and R
(d(p,05) — d(p)) iFpeF
A otherwise

Edisp(pvgsp) - {
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Joint Segmentation and Depth

@ We can define the total energy of a pixel as

E(p) = Eclorl(p, Csps esp) + /\pos Epos(pa /l’sp) + )\disp E(Ihip(p 05,,),
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Joint Segmentation and Depth

@ We can define the total energy of a pixel as

E(p) = Eclorl(p, Csps esp) + /\pos Epos(pa /l'sp) + )\disp E(Ihip(p esp)a

@ Joint unsupervised segmentation and flow estimation as

SR S EP 5 1),
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Joint Segmentation and Depth

@ We can define the total energy of a pixel as

E(p) = EL5 (. 5105,) + Apox Epon(P115) + Aai L (0. 6,),

@ Joint unsupervised segmentation and flow estimation as

omin D E(p:sp,0s,. 115, Cs,).
p
@ Simple iterative algorithm

e Solve for the assignments S
e Solve in parallel for the planes ©, positions p and appearances c
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Results Stereo SLIC

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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Slanted-Plane MRFs

@ Slanted-plane MRF with explicit occlusion handling

@ Start with an over-segmentation of the image into superpixels

@ MRF on continuous variables (slanted planes) and discrete var. (boundary)

Segment

Boundary

Superpixels (UCM [Arbelaez, et al. 2011]
and SLIC [Achanta, et al. 2010])

Segment variable y; = (i, 5i,7i)

Slanted 3D plane of segment

Continuous variable

Boundary variable 0;;
Relationship between segments

4 states
Occlusion Hinge  Coplanar

@ Takes as input disparities computed by any local algorithm

R. Urtasun (TTIC)
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Energy of PCBP-S

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Eco/or(o) + Ematch(Ya 0) + Ecompatibi/ity(Yy 0) + Ejunction(o)

Similar color |:> Likely to be coplanar

U Similar
Dissimilar
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Ya 0) = Ecolor(o) + Ematch(y: 0) + Ecompatibility(ya 0) + Ejunction(o)

Agreement with result of input disparity map

Computed by any matching method
(Modified semi-global matching)

. 2
Truncated quadratic function @7 (P, y:. K) = min (\D(p) —di(p,yi)l, K)
Disparity map Slanted plane

On boundary
“Occlusion” — Foreground segment owns boundary Q a
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Ecolor(o) + Ematch(ya 0) + Ecompatibility(y~, 0) + Ejunction(o)

(1) Preference of boundary label (Coplanar > Hinge > Occlusion)

Impose penalty Agcec > Aninge > 0

(2) Boundary labels match Slanted planes

“Occlusion” e disont(P) > dback(p) Q] ﬂ j
“Hinge” &> di(p) =d;(p) on boundary

& J
“Coplanar” === d;(p) =d;(p) in both segments @ J
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(y, 0) = Ecolor(o) + Ematch(ya 0) + Ecompatibility(Ya 0) + EUanIOn( )

Occlusion boundary reasoning [Malik 1987]
Penalize impossible junctions

Impossible cases
Front

ﬁ Occlusion
YV Y Y Y B
== Coplanar

Sep 4, 2013
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Distributed Inference for Large Graphs

Learning: using our primal-dual algorithm [Hazan & Urtasun, NIPS 2010]
@ Don't need to compute the partition function or the MAP at each iteration
Inference: use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]

@ lterate sampling to discretize MRF and solving the discrete MRF

Algorithm 1 PCBP for stereo estimation and occlusion boundary reasoning

Set NV

Initialize slanted planes y? = (a?, 82,77) via local fitting Vi

Initialize 04,05 and oy

for t = 1 to #iters do
Sample N times Vi from c; ~ Aol 04), Bi ~ N(BE7208), i ~ N (717 o)
(0%, ¥") + Solve the discretized MRF using convex BP
Update o5, = 6% = 0.5 x exp(—c/10) and o5 = 5.0 x exp(—c/10)

end for

Return of, y'
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Distributed Inference for Large Graphs

Learning: using our primal-dual algorithm [Hazan & Urtasun, NIPS 2010]

@ Don't need to compute the partition function or the MAP at each iteration
Inference: use particle convex-BP [Peng, Hazan, McAllester, Urtasun, ICML 2011]

@ lterate sampling to discretize MRF and solving the discrete MRF

@ We use our distributed convex BP, which uses dual-decomposition to solve
with distributed memory and computation while maintaining the
theoretical guarantees [Schwing, Hazan, Pollefeys, Urtasun, CVPR 2011]

solve LP relaxation for each subgraph

subject to:
marginalization constraints

Vs, a € Np(s), Xa, b;(xa) = ba(xa)

Sep 4, 2013
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KITTI Stereo/Flow Dataset

KITTI dataset (Geiger et al. 12)
@ Real-world stereo/flow dataset
@ Accurate ground truth
@ High-resolution (1237x374 pixels)
@ 10 train, 184 validation, 195 test images

Ground truth

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 23 /52



Stereo Evaluation

Rank  Method Setting Out-Noc Out-All' Avg-Noc' Avg-All Density 'Runtime: Envirenment Compare |

1 PCBP 4.13% 15.45% 0.9px | 1.2px 100.00% 5min :4cores @ 2.5 Ghz (Matlab + C/C++) m]
Koichira Yamaguchi, Tamir Hazan, David McAllester and Raqual Urtasin, Continuos Markow Randem Fields for Rabust Stera Estimation, ECCV 2011

2 iSGM 5.16% 7.19% 1.2px 21px 94.70% 8s 2 cores @ 2.5 Ghz (C/C++) O
Simon Hermann and Reirhard Kiette, lterative Semi “Global Matching for Robust Driver Assistance Systems, ACCY 2012.

3 SGM 5.83% 7.08%: 1.2px 13px 85.80%: 37s i 1 core @ 3.0 Ghz (C/C++) a
Heika Siereo Processing by Semi-Giohal Matching and Watual Information. IEEE Transactions on Patter Aralysis and Machine Intelligence 2008

4 SNCC 6.27% | 7.33% 1.4px  1.5px 100.00% 0.27s | 1 core @ 3.0 Ghz (C/C++) O
W, Einacke and 1. Eggert. A Too-Stage Carrel hod for Stereoscopic Depth Estimation. DICTA 2010,

5 TGV 6.31% | 7.40%  1.3px 1.5px100.00% 7s !1core @ 3.0Ghz (Matlab + C/Crv) m]
Rene Ranftl Stafan Gehrig, Thomas Pock and Horst Bischof, Pushing tha Limits of Stereo Using Variational Steres Estimation. IEEE Intalligant Vehicles Symposiurm 2012

6 BSSM 750% 8.89% 14px 16px 94.87% 20.7s 1 core @ 3.5 Ghz (C/C++) O
‘Ancrymous submissian

7 OCV-SGBM 7.64% 913% 1 1.8px 2.0pxi 86.50% 11s ! 1 core @ 2.5 Ghz (C/C++) a
Heiho Stereo processing by semigiobal matching and mutual information PAMI 2008,

8 ELAS 8.24% 9.95% 14px 1.6px 94.55% 035 1 core @ 2.5 Ghz (C/C++) O
Andress Geiger, Martin Raser and Raquel Urtasun, Efficient Large-Scals Steren Matching, ACCV 2010

9 MS-DsI 10.68% 12.11% 1.9px ' 2.2px 100.00% 10.3s !  >Bcores @ .5 Ghz (C/C+r) m]
Anomymous submission

10 SDM 10.98% 12.19% 2.0px  2.3px; 63.58% 1min 1 core @ 2.5 Ghz (C/C++) O
Jana Kostkova, Stratified dense matching for stereopsis in complex scenes. EMVC 2003

1 GCSF 12.06% 13.26% 1.9px 2.1px 60.77% 245 ! 1 core @ 2.5 Ghz (C/C++) a
Jam Coch, Jordi Sanchez. Riera and Radu P, Horaod . Scene Flow Estimation by Growing Seeds. CVPR 2011

12 GCs 13.37% 1454% 2.1px  2.3px; 51.06% 225 1 core @ 2.5 Ghz (C/C++) m]
Jam Cach and Radim Sara. Efficient Sampling of Disparity Space for Fast And hing. BenC0S 2007

13 CostFilter 19.96% 21.05% 5.0px ' 5.4px 100.00% 4min ! 1 core @ 2.5 Ghz (Matlab) O
‘Christoph Rhemann, Asmaa Hosni, Michal Bleyer, Carsten Rother and Margrit Gelautz. Fast Cost Volume Filtering for Visual G and Bevond. CVPR 2011

14 | OCV-BM 25.39% 26.72% 7.6px 7.9px 55.84% O0ds | 1 core @ 2.5 Ghz (C/C++) O
. Bradsii. The OpenCV Librand Br. Dobh s Journal of Software Tools 2000

15 | GC+occ 33.50% 13474% 8.6px 9.2px! 8757% 6min ! 1 core @ 2.5 Ghz (C/C++) a

‘Viadimir Kolmogorov and Ramin Zabih. Computing Visusl lusions using Graph Cuts. 1CCY 2001
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Results KITTI

Comparison on the test set of KITTI Stereo

[Einecke, et alAg)ll\gl] 550L0
oA 5.42"
iSGM
[Hermann, etlal. 2012] 51 6%

[Ranftl, etﬁEﬁ‘g{ 505%
wSGM 5.03%

[Anonymous]

PCBP

[Yamaguchi, et al. 2012]

StereoSLIC

4.13%
3.99%
349

PCBP-StereoSLIC ‘

0% 1% 2% 3% 4% 9% 6%

Error > 3 pixels (Non-Occluded)
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

@ Natural scenes, lots of texture, no objects

@ A couple of errors at thin structures (poles)

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:
@ Shadows help the disambiguation process

@ Errors at thin structures and far away textureless regions

Errors: < 0.5% Errors: < 0.5%

i YRR -
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:
@ Textureless or saturated areas

@ Ambiguous reflections

Errors: 22.1% Errors: 17.4%

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013



Sense the Environment

[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR 2013]

@ Depth is not all!

@ Recover the motion of the scene given a single camera

Stereo Camera Rig (regat)
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Flow for Autonomous Driving

Most of the flow is due to the vehicle's ego-motion
Goal: compute the epipolar flow by doing matching along the epipolar lines
The problem is very similar to stereo

Previous work does not have big performance gains with epipolar constraints

Can we exploit what we learned about the stereo problem?

R. Urtasun (TTIC) Autonomous Driving Sep 4, 2013 30/ 52



Diagram Flow

- Slanted plane MRF model for epipolar flow

Data term

Input

Inference
PCBP-Flow

Slanted plane MRF

Monocular 2 images

MotionSLIC

Flow-aware segmentatio
B S5
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SGM for Epipolar Flow

@ Adapt semi-global block matching (SGM) [Hirschmueller PAMI2008] to the
epipolar flow problem

Energy = Unary term 4+ Smoothness Term

Stereo —— Epipolar flow —

Pr Pr
—@—@—
disparity
disparity
© smoothness ® smoothness
between disparities between disparities

(. J
complex non-linear function of depth

@ Disparity is not a good representation to impose smoothness
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SGM for Epipolar Flow

3D point

@ VZ-ratio is a linear function of %

v
Wp = —
Pz, P p+d

@ Much better representation to impose smoothness than disparity

E@)=Y Clpwp) + D> S(wp,wq)

(p,q)eN
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SGM Flow

Input image
SGM-Flow
VZ-ratio map Small
Large
Flow field

a
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Diagram Flow

- Slanted plane MRF model for epipolar flow
Data term
SGM-Flow

Accurate flow matching

Input

Monocular 2 images

Inference

PCBP-Flow

Slanted plane MRF

R. Urtasun (TTIC)
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Joint Segmentation and Epipolar Flow

@ Let S ={s1, - ,sm) be the set of superpixel assignments,
w={p1, -, um} the mean location of each superpixel, and
c={cy, - ,cm} as the mean appearance descriptor
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Joint Segmentation and Epipolar Flow

@ Let S ={s1, - ,sm) be the set of superpixel assignments,
w={p1, -, um} the mean location of each superpixel, and
c={cy, - ,cm} as the mean appearance descriptor

o Let © = {6y, - ,0,,} be the set of plane parameters with

w(p, 8;) = aips + Bipy + i
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Joint Segmentation and Epipolar Flow

@ Let S ={s1, - ,sm) be the set of superpixel assignments,
w={p1, -, um} the mean location of each superpixel, and
c={cy, - ,cm} as the mean appearance descriptor

o Let © = {6y, - ,0,,} be the set of plane parameters with

w(p, 8;) = aips + Bipy + i

@ We can define the total energy of a pixel as

E(p) = ELTTH(P, s, 05,) + AposEpos(Ps ts,) + A EL (P, 0s,),

col

with E\fét"'l(p, tgsp) = (w(pﬂsp) — wSGM)2
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Joint Segmentation and Epipolar Flow

@ Let S ={s1, - ,sm) be the set of superpixel assignments,
w={p1, -, um} the mean location of each superpixel, and
c={cy, - ,cm} as the mean appearance descriptor

o Let © = {6y, - ,0,,} be the set of plane parameters with

w(p, 0;) = aipx + Bipy + i

@ We can define the total energy of a pixel as

E(p) = Ectg)iJrl(p) Csp» ‘95,3) + )\posEpos(Pa Msp) + Axsz$£t+1(pa 95,,);

with E\fét"'l(p, tgsp) = (w(pﬂsp) — wSGM)2

@ Joint unsupervised segmentation and flow estimation by

omin a E(p, sp, 0s,, s, Cs,)-
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Joint Segmentation and Epipolar Flow

@ Let S ={s1, - ,sm) be the set of superpixel assignments,
w={p1, -, um} the mean location of each superpixel, and
c={cy, - ,cm} as the mean appearance descriptor

o Let © = {6y, - ,0,,} be the set of plane parameters with

w(p, 0;) = aipx + Bipy + i

@ We can define the total energy of a pixel as
E(p) = Ectg)iJrl(p) Csp» ‘95,3) + )\posEpos(Pa Msp) + Axsz$£t+1(pa 95,,);
with E\fét"'l(p, tgsp) = (w(pﬂsp) — wSGM)2

@ Joint unsupervised segmentation and flow estimation by

omin E(p, sp, 0s,, s, Cs,)-
p
@ Simple iterative algorithm

e Solve for the assignments S
e Solve in parallel for the planes ©, positions p and appearances ¢
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SLIC

Energy = Position

+ Color
MotionSLIC
Energy = Position

+ Color

+ VZ-ratio
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Diagram Flow

- Slanted plane MRF model for epipolar flow
Data term

SGM-Flow

Accurate flow matching

Input

( .
Monocular 2 images

MotionSLIC
Flow-aware segmentatio

Inference

Autonomous Driving
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Slanted-Plane MRFs for Flow

@ Slanted-plane MRF with explicit occlusion handling

@ Start with an over-segmentation of the image into superpixels

@ MRF on continuous variables (slanted

planes) and discrete var. (boundary)

Segment

Boundary

Segment variable y; = (i, 5i,7i)

Slanted 3D plane of segment

Continuous variable

Boundary variable 0;;
Relationship between segments

4 states
Occlusion Hinge  Coplanar

Superpixels (UCM [Arbelaez, et al. 2011]
and SLIC [Achanta, et al. 2010])

@ Takes as input VZ-ratio SGM for flow

R. Urtasun (TTIC)

Autonomous Driving
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Results KITTI

Comparison on the test set of KITTI (At the time of submission)

24.64%
21.86%
20.74%

C+NL
[Sun, et al. 2010]

[Brox, et al. 2011]

RSRS-Flow

[Ghosh, et al. 2012]

HS 19.92%
[Horn, et al. 1993]
GC-BM-Mono 19.49%
[Kitt, et al. 2012]
GC-BM-Bino 18.93%
[Kitt, et al. 2012]
TGV2CENSUS 11.14%
[Werlberger 2012]
fSGM 11.03% I General flow
[Hermann, et al. 2012] - Epipolar flow
Ours | ! :

0% 9% 10% 19% 20% 25% 30%

Error > 3 pixels (Non-Occluded)
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Results KITTI

Comparison on the test set of KITTI (Current)

[Hermann, et al. 2012] 1 1 03%
[Sun, etglleylli] 10.60%
G 10.16%

[Sun, et al. 2013]

CRT-Flow

[Anonymous]

MLDP-OF

[Anonymous]

TVL1-HOG

[Anonymous]

9.71%
8.919
8.31%

8.22%
I General flow

Data-Flow

[Anonymous]

TGV2ADCSIFT

[Anonymous]

Ours |

1 1

0% 2% 4% 6% 8% 10% 12%

Error > 3 pixels (Non-Occluded)
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Results KITTI

Input image

SGM-Flow
VZ-ratio map

MotionSLIC

Superpixels

PCBP-Flow
Flow field

Error L Error:1.31%

Autonomous Drivin
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Results KITTI

SGM-Flow

Disparity

VZ-ratio

Evaluation on the validation set of KITTI

I

.16%

5.66%

0% 1% 2% 3% 4% 5%

Error > 3 pixels (Non-Occluded)

6%

7%

R. Urtasun (TTIC)

Autonomous Driving
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Results KITTI

| Superpixel segmentation & Local fitting of slanted planes |

Evaluation on the validation set of KITTI

(Color + Position)

MotionSLIC

(Color + Position
+ VZ-ratio)

4.39%

0% 1% 2% 3% 4% 5% 6% 7%
Error > 3 pixels (Non-Occluded)
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Results KITTI

Evaluation on the test set of KITTI

SGM-Flow 4.72%
MotionSLIC 4.36%
0,
PCBP-Flow 4.08%
0% 2% 4% 6%

Error > 3 pixels (Non-Occluded)
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Challenge

Illumination Changes:

#a4 #11 #15 #74 Average BP
SGM-Flow 16.84% 3.86 px 24.82% 9.45 px 18.90% 4.36 px 26.94% 8.15 px 21.87%
MotionSLIC 9.03% 2.34 px 18.56% 4.78 px 13.18% 3.80 px 23.36% 4.08 px 16.03%
PCBP-Flow 6.42% 2.23 px 15.34% 3.75 px 10.00% 2.42 px 19.15% 3.37 px 12.73%

Large Displacements:

#147 #117 #144 #181 Average BP
SGM-Flow 9.66% 1.43 px 6.84% 1.64 px 23.10% 6.56 px 29.31% 12.59 px 17.23%
MotionSLIC 9.88% 1.70 px 5.02% 1.47 px 16.65% 3.19 px 22.22% 7.62 px 13.44%
PCBP-Flow 9.02% 1.04 px 6.29% 1.77 px 15.23% 2.59 px 18.32% 7.77 px 12.22%

Autonomous Drivin



@ Joint Recognition and Reconstruction (i.e., Stereo / Flow / Scene-flow)

It will allows us to segment into coherent (piece-wise rigid) motions
@ We can impose priors on depth/flow
@ It makes recognition much easier

@ What is the ultimate goal?
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Conclusions

@ Data is important for learning and for benchmarking
@ Autonomous driving is a fantastic real-world problem to test our algorithms

@ Generalization, generalization, generalization!

@ Joint segmentation and depth/flow estimation that allows real-time inference
@ Slanted plane MRFs to reason properly about occlusion

@ State of the art on KITTI stereo and flow

@ Reconstruction meets Recognition Challenge at ICCV 13, composed of
KITTI and NYU-RGBD datasets
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Conclusions

Autonomous systems should
@ Sense the environment: stereo, flow, layout estimation
@ Recognize the 3D world: detection, segmentation

@ Interact with it

| advocate for MRF holistic models which require
@ Representation
@ Learning
@ Inference

@ Data

Build holistic models to properly reason about uncertainty of the different tasks
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An autonomous system has to self-localize
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Self-localization

@ GPS does not work all the time, or has errors. Good if a human drives, but
not if is an autonomous system!

@ Place recognition approaches: drive once manually, and try to recognize
where you are (e.g., point clouds or visual features).

@ Very successful (e.g., Google car), but has scaling and privacy issues (e.g.,
Germany).

@ Humans use a cartographic map and look around

@ Can we do something similar?
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Visual GPS

[M. Brubaker, A. Geiger and R. Urtasun, best paper runner-up at CVPR13]

Visual Self-localization (1 or 2 cameras) and a map of the environment
Utilize only visual odometry

Localization in places you have NOT seen or driven before

Validated in KITTI visual odometry (50km of driving)

We can self localize in only a few seconds of driving with precision of 3m in
maps that contain 2,150km of drivable roads!

| Sequence2
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