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Bastian Goldlücke and Ole Johannsen

GCPR Tutorial
October 2018



What is a light field?
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The plenoptic function

5D plenoptic function L(x , y , z , Θ, Φ)
In computer vision usually only the ”outside” 4D light field is considered
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A pretty complicated “household” light field
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Resampling rays: synthetic aperture rendering

∫

4 / 63



World’s first spoon camera array

“The idea of this paper is insane.” [Reviewer #2]

[Wender, Iseringhausen, Goldluecke, Fuchs, Hullin,
VMV 2015]
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However we record a light field, for this tutorial,
we assume a representation in a simple standard structure.
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A 4D lightfield for the purpose of this talk
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Regular grid of subaperture views, identical pinhole cameras, parallel optical axes,
parametrized with view coordinates (s, t) and image coordinates (x , y).
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Capturing a light field

camera array plenoptic camera
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Key questions

What is the structure of this representation, and what does a
lightfield tell us about the 3D scene?

How can we extend state-of-the-art image analysis techniques to
light fields?
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Quick reminder: two-frame stereo and cost volumes
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Two-frame stereo and cost volumes

Disparity cost volume, e.g. pixel-wise

ρ(x , y , d) = ‖IL(x , y) − IR(x − d , y)‖ .

Many different (usually patch-based) cost-functions in use.
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Point-wise costs and the need for optimization

Often multiple local minima

Flat regions: often no information, noise a problem

Usual approach: embed cost function in global optimization scheme,
e.g. solve

argmin
u

{

R(u) +
∑

p

ρ(p, u(p))

}

with a regularizer R.

Often spatially varying amount of regularization, depending on how
much we trust the cost function.

Some remarks on optimization later.
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Light-field specific cost volumes?

∫
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Light field parametrization
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Lightfield is a map on 4D space:

(x , y , s, t) 7→ L(x , y , s, t) or (p, b) 7→ L(p, b)

with pixel coordinates p and camera coordinates b.
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The slope-depth relationship

Z

P = (X , Y , Z )
X

0

s

f

x

focal plane

image plane

Intercept theorem (pinhole
perspective projection):

x

f
=

(X − s)

Z
,

y

f
=

Y − t

Z
.

The projection coordinates for two different subaperture views (s1, t1), (s2, t2)
satisfy

x2 − x1 = −
f

Z
(s2 − s1), y2 − y1 = −

f

Z
(t2 − t1).

Result: for a given depth (distance) Z of a scene point to the focal plane,
there is a linear relationship between projection and view point coordinates.
The “scale factor” d = f

Z
is called disparity.
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Illustration: epipolar plane images
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First idea: multi-frame stereo cost

Compare pixel p in reference view IR to corresponding pixel p − dbV ,R in
all others, i.e.

ρ(p, d) =
∑

V 6=R

‖ IR(p) − IV (p − dbV ,R) ‖ ,

where bV ,R is the baseline between R and V .

Straight-forward and works, but not very light-fieldish.

Maybe main drawback: No occlusion handling !
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Occlusion illustration

∫
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generalization: the surface camera (SCam)

∫
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SCam: projection of a 3D point into all LF views

Intuition: SCam is a camera at a 3D point looking at the light field planes.

Note: often, SCam views are called angular patches.
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SCam or angular patch in formulas

The angular patch or SCam Ap,d for pixel p in the reference view and
disparity d is

Ap,d(b) = L(p − db, b)

which depends on baseline b. By convention, b = 0 for the reference view
(usually the center of the angular patch).
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SCam or angular patch in formulas

The angular patch or SCam Ap,d for pixel p in the reference view and
disparity d is

Ap,d(b) = L(p − db, b)

which depends on baseline b. By convention, b = 0 for the reference view
(usually the center of the angular patch).

Note: the standard stereo cost is a function of the corresponding angular
patch,

ρ(p, d) =
∑

V 6=R

‖Ap,d(bV ,R) − Ap,d(0)‖ .

Another popular cost function is the variance of the angular patch,
e.g. [Criminisi et al. 2005]
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Note on efficient computation of the SCams

Best done for all pixels p in parallel:

Choose disparity d

Shift every subaperture view IV by d · bV ,R to align corresponding pixels
with the reference view.

The stack of transformed views TV now corresponds to the SCam over
every pixel.

Intuition: can be understood as “shearing” of the EPIs to make epipolar lines
for a given disparity vertical.
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SCams and occlusion-aware cost volumes

Key idea: for a Lambertian unoccluded scene point, the SCam should be
constant across all views.

In empty space or inside an object, SCam pixels are probably inconsistent.

At occlusion boundaries, there might
be some pixels which are inconsistent,
but one color should still dominate.

Occlusion-aware cost intuition: Choose

ρ(p, d) =

{

small if Ap,d contains a large low-variance region

large otherwise.

A possible implementation of this idea is [Chen et al. CVPR 2014].
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SCam: types of points
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SCam vs. standard stereo dataterm

∫
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SCam view dependency
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More sophisticated occlusion modeling
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Occluder in angular patch
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Occluder in an angular patch

Intuition from the above illustration:

Occluding edge orientation is the same in an angular patch as well
as the center view.

Thus, angular patch can be subdivided into occluded/unoccluded
region with a single line parallel to the local image edge.

The unoccluded region must have low color variance.
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Occluder in angular patch: view point shift
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Focusing and angular patches

[Wang et al. 2015]
∫
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Depth from focus
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Refocus equation (occlusion-free case)

f

0

Z

focal plane

image planep

aperture

To construct refocused image at pixel p

in the reference view, with camera
focused at depth Z : sample over all
rays in the subaperture views which
correspond to p.

FZ (p) =
∑

V

w(V ) L

(

p −
f

Z
bV , bV

)

.

The weight w describes e.g the virtual aperture, or other optical effects.
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EPI view on refocusing

x

y

t

s

A light field is defined on a 4D volume parametrized by image coordinates (x , y) and view point

coordinates (s, t). Epipolar images (EPIs) are the slices in the sx- or yt-planes depicted to the

right and below the center view. By integrating the 4D volume along different orientations in the

epipolar planes (blue and green), one obtains views with different focus planes.
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Relation of refocusing to SCams

Refocusing can be formulated in terms of the angular patch
corresponding to p and d = f

Z
:

FZ (p) =
∑

V

w(V ) L

(

p −
f

Z
bV , bV

)

=
∑

V

w(V ) Ap,d(bV ).
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Relation of refocusing to SCams

Refocusing can be formulated in terms of the angular patch
corresponding to p and d = f

Z
:

FZ (p) =
∑

V

w(V ) L

(

p −
f

Z
bV , bV

)

=
∑

V

w(V ) Ap,d(bV ).

This shows that refocusing and depth reconstruction are intimately
related. In particular, the pixel p is in focus if the angular patch Ap,d

has low variance.
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Practical refocusing

Analogous to SCam computation:

Choose disparity d

Shift every subaperture view Iu,v at (u, v) by dbu,v , where (u, v) is
the baseline with respect to the reference view.

The stack of transformed views Tu,v corresponds to the SCam over
every pixel.

Compute weighted average over every pixel to generate refocused
view.
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Refocusing and occlusions

Even if focused at the correct depth, occlusions can
lead to a blurred image as they “taint” the angular
patches.
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Focus measures and focal stack cost volume

Key idea: create a stack of images focused to different depths. The
image from the stack which is “sharpest” around a pixel p corresponds to
the correct disparity level.
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Shape-from-focus: focal stack
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Shape-from-focus: focal stack
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Shape-from-focus: focal stack
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Shape-from-focus: focus measure and cost

Idea: assign to each pixel in every image of the focal stack a number
which tells us how sharp the surrounding image region is.

Let W (p) be a little window around the pixel p in image Id focused at d ,
then a popular focus measure is the sum-modified Laplacian [Nayar 1992]

ρ(p, d) =
∑

q∈W (p)

∣

∣

∣

∣

∂2Id(q)

∂x2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2Id(q)

∂y 2

∣

∣

∣

∣

.
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Shape-from-focus: depth map
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Focus stack / stereo integration

There have been experiments which show that one can improve
depth reconstruction by combining focus costs and stereo/SCam
costs.

However, it is not yet fully clear what the optimal weighting between
those is (should be image-adaptive).

In particular, where do we gain something from the focus measure
which we cannot learn from the SCam directly?

I believe a better idea is to use focal stack symmetry because this is
more complementary, see next slides.
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Focal stack symmetry

∫
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Focal stack symmetry

1
B B

B

d
B

d+δ

B

B
d−δ

The focal stack is symmetric around the true disparity !
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Focal stack symmetry

1
B B

B

d
B

d+δ

B
d−δ

... however, occlusions destroy the symmetry property.
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Focal stack symmetry
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Remedy: partial focal stacks

1
B B

B
d+δ

B
d−δ

Under the assumption of not too small-scale occluders,
one direction is always occlusion-free.
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Focal stack symmetry
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Lambertian light fields: epipolar plane image structure

∫

49 / 63



The 4D light field of a scene

A 2D horizontal cut (green) is called an epipolar plane image (EPI)

Wanner and Goldlücke, CVPR 2012 & TPAMI 2013
∫
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Disparity estimation on an EPI

EPI from a recorded light field

[Wanner and Goldlücke, CVPR 2012 & TPAMI 2014]
∫
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Disparity estimation on an EPI

EPI from a recorded light field

Structure tensor orientation estimate e1(T2.5)

[Wanner and Goldlücke, CVPR 2012 & TPAMI 2014]
∫
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Disparity estimation on an EPI

EPI from a recorded light field

Structure tensor orientation estimate e1(T2.5)

Resulting depth estimate (slope of orientation)

[Wanner and Goldlücke, CVPR 2012 & TPAMI 2014]
∫
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Dense depth via orientation estimation

light field center view estimated depth map (two EPI orientations fused)

[Wanner and Goldluecke CVPR 2012, CVPR 2013, VMV 2013, TPAMI 2014]
∫
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EPI-orientation methods

Pattern/orientation analysis instead of matching.
Thus, perfect for CNNs
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Benchmarks for disparity estimation
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Old benchmark data set: HCI 2013

ZZZ

Custom-made benchmark for dense light fields

5 real-world and 7 synthetic datasets

ground truth depth: Breuckmann smartSCAN

But

insufficient accuracy of synthetic ground truth

no centralized evaluation

ZZZ

ray-traced light fields real-world light fields

Wanner, Meister and Goldlücke VMV 2013
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A Benchmark for Depth Estimation on 4D Light Fields

http://lightfield-analysis.net
∫
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A Benchmark for Depth Estimation on 4D Light Fields

Backgammon

Two slanted planes, zig-zag pattern cut out of foreground plane.

Evaluates occlusion performance for varying distances between
foreground and background.

Specific contrary metrics: fattening and thinning.
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A Benchmark for Depth Estimation on 4D Light Fields

Pyramids

Pyramids and hemispheres ontop/cut out of block.

Evaluates smoothing capabilities, estimation of surface normals.

Specific metrics: bumpiness (and mean angular error).
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A Benchmark for Depth Estimation on 4D Light Fields

Dots

Repeated pattern of dots of different sizes with inceasing amounts of
noise.

Evaluates performance under influence of noise.

Specific metrics: background MSE and missed dots.
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A Benchmark for Depth Estimation on 4D Light Fields

Percentage of good pixels for different thresholds.

Different maximum accuracy for different algorithms.

∫
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A Benchmark for Depth Estimation on 4D Light Fields

Which parts of a scene are challenging?

Occlusion areas, as corresponding to metric.
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Summary
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Summary

Disparity and depth reconstruction

SCams and angular patches
Angular patch consistency
Occlusion modeling
Refocusing and focal stacks
Focal stack symmetry
Epipolar plane image structure

Benchmarking

Specific scenes and metrics
Quality is ambiguous

∫

63 / 63


	Introduction
	Disparity and depth reconstruction
	Benchmarking
	Summary

