Discriminative Correlation Filters for Visual Tracking

Martin Danelljan

Overview – Part I

Part I: Basics of Discriminative Correlation Filters

- 1. The Visual Tracking problem
- 2. DCF the simple case
- 3. Multi-channel, multi-sample DCF
- 4. Special cases and approximative inference
- 5. Tracking pipeline and practical considerations
- 6. Kernels
- 7. Scale estimation
- 8. Periodic assumption: problem and solutions

Overview – Part II

Part II: Advanced topics in DCF tracking

- 1. Training set management
- 2. Deep image representations for tracking
- 3. Continuous-space formulation
- 4. Efficient Convolution Operators (ECO)
- 5. End-to-end Learning with DCF
- 6. Empowering deep features

Visual Tracking

Visual Tracking

Visual Tracking

- Only initial target location in known
- Challenges
 - **Environmental:** occlusions, blur, clutter, illumination
 - Motion/transformations: rotations, fast motion, scale change
 - Appearance changes: deformations

Applications

Robotics, AR/VR, autonomous driving, video analysis ...

Discriminative Correlation Filters (DCF)

- The Basics

Discriminative Correlation Filters

What is it?

- Discriminatively learn a correlation filter
- Utilize the Fourier transform for efficiency

Why use it?

- Translation invariance \Rightarrow Correlation
- State-of-the-art since 2014
- Accuracy (even sub-pixel)
- Generic and customizable

DCF Popularity and Performance

- Hundreds of papers since 2014
- Winner of Visual Object Tracking (VOT) Challenge 2014, 2016, 2017 and 2018
- In **VOT 2018**: all top-5 trackers are based on DCF

DCF – the Simple Case

DFT:
$$\hat{x}[k_1, k_2] = \sum_{n_1, n_2} x[n_1, n_2] e^{-i2\pi \left(\frac{n_1k_1}{N_1} + \frac{n_2k_2}{N_2}\right)}$$

DCF – the Simple Case

DCF – the Simple Case

Target prediction: $(n_1^*, n_2^*) = \arg \max s[n_1, n_2]$

Standard DCF Formulation

1. Multiple training samples

$$\{(x_j, y_j)\}_{j=1}^m$$

2. Multidimensional sophisticated features

$x_j[n] \in \mathbb{R}^D$

Standard DCF Formulation

• DFT and Parseval's theorem:

$$L(f) = \sum_{j=1}^{m} \alpha_{j} \left\| \sum_{d=1}^{D} \hat{x}_{j}^{d} \hat{f}^{d} - \hat{y}_{j} \right\|^{2} + \lambda \sum_{d=1}^{D} \left\| \hat{f}^{d} \right\|^{2}$$
$$\downarrow$$
$$L(f) = \sum_{j=1}^{m} \alpha_{j} \left\| \begin{pmatrix} \hat{x}_{j}^{[0]^{\mathrm{T}} \hat{f}^{[0]}} \\ \vdots \\ \hat{x}_{j}^{[K]^{\mathrm{T}} \hat{f}^{[K]}} \end{pmatrix} - \begin{pmatrix} \hat{y}_{j}^{[0]} \\ \vdots \\ \hat{y}_{j}^{[K]} \end{pmatrix} \right\|^{2} + \lambda \sum_{d=1}^{D} \left\| \hat{f}^{d} \right\|^{2}$$

$$L(f) = \left\| \begin{pmatrix} BA[0]\hat{f}[0] \\ \vdots \\ BA[K]\hat{f}[K] \end{pmatrix} - \begin{pmatrix} B\hat{\mathbf{y}}[0] \\ \vdots \\ B\hat{\mathbf{y}}[K] \end{pmatrix} \right\|^2 + \lambda \sum_{d=1}^{D} \left\| \hat{f}^d \right\|^2$$

$$A = \begin{pmatrix} A[0] & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A[K] \end{pmatrix}, \quad \mathbf{\hat{f}} = \begin{pmatrix} \hat{f}[0] \\ \vdots \\ \hat{f}[K] \end{pmatrix}, \quad \Gamma = I \otimes B^2$$

$$L(f) = \left\| \Gamma^{\frac{1}{2}} A \mathbf{\hat{f}} - \Gamma^{\frac{1}{2}} \mathbf{\hat{y}} \right\|^{2} + \lambda \left\| \mathbf{\hat{f}} \right\|^{2}$$

 $(A^{\rm H}\Gamma A + \lambda I)\mathbf{\hat{f}} = A^{\rm H}\Gamma\mathbf{\hat{y}}$ $\mathbf{\uparrow} \nabla L = 0$ 0

$$L(f) = \left\| \Gamma^{\frac{1}{2}} A \mathbf{\hat{f}} - \Gamma^{\frac{1}{2}} \mathbf{\hat{y}} \right\|^{2} + \lambda \left\| \mathbf{\hat{f}} \right\|^{2}$$

Special Case 1: D = 1

Only a single **feature channel:**

$$\hat{f} = \frac{\sum_{j=1}^{m} \alpha_j \overline{\hat{x}_j} \hat{y}_j}{\sum_{j=1}^{m} \alpha_j \overline{\hat{x}_j} \hat{x}_j + \lambda}$$

The original MOSSE filter [Bolme et al., CVPR 2010].

Dual form

Special Case 2: m = 1

Only a single **training sample**:

$$\hat{f}^{d} = \frac{\overline{\hat{x}^{d}}\hat{y}}{\sum_{l=1}^{D} \overline{\hat{x}^{l}}\hat{x}^{l} + \lambda}$$

[Danelljan et al., BMVC 2014, PAMI 2017]

Approximate inference

- **1. Independent samples:** \hat{f}
 - Optimal for m = 1

$$\hat{x}^{d} = \sum_{j=1}^{m} \alpha_j \frac{\overline{\hat{x}^{d}_{j}} \hat{y}_j}{\sum_{l=1}^{D} \overline{\hat{x}^{l}_{j}} \hat{x}^{l}_j + \lambda}$$

- 2. Independent channels: \hat{f}^{a}
 - Optimal for D = 1

$$^{d} = \frac{1}{D} \frac{\sum_{j=1}^{m} \alpha_{j} \hat{x}_{j}^{d} \hat{y}_{j}}{\sum_{j=1}^{m} \alpha_{j} \overline{\hat{x}_{j}^{d}} \hat{x}_{j}^{d} + \lambda}$$

- 3. Combination:
 - Optimal for m = 1
 - Optimal for D = 1

General tracking pipeline

1. Initialize model in first frame

2. Track in the new frame

3. Update model and goto 2.

Tracking pipeline: example

1. Initialize

$$\begin{array}{rcl}
1: & \hat{f}_{\text{num}}^{d} &\leftarrow \overline{\hat{x}_{1}^{d}} \hat{y}_{1} \\
2: & \hat{f}_{\text{den}} &\leftarrow \sum_{l=1}^{D} \overline{\hat{x}_{1}^{l}} \hat{x}_{1}^{l} \\
3: & \hat{f}^{d} &\leftarrow \frac{\hat{f}_{\text{num}}^{d}}{\hat{f}_{\text{den}} + \lambda}
\end{array}$$

2. Track

$$1: s \leftarrow \mathscr{F}^{-1}\{\sum_{d=1}^{D} \hat{f}^d \hat{z}^d\} \\ 2: (n_1^*, n_2^*) \leftarrow \arg\max s[n_1, n_2]$$

3. Update Target location

$$\begin{array}{rcl} 1: & \hat{f}_{num}^{d} \leftarrow (1-\gamma)\hat{f}_{num}^{d} + \gamma \overline{\hat{x}_{j}^{d}}\hat{y}_{j} \\ 2: & \hat{f}_{den} \leftarrow (1-\gamma)\hat{f}_{den} + \gamma \sum_{l=1}^{D} \overline{\hat{x}_{j}^{l}}\hat{x}_{j}^{l} \\ 3: & \hat{f}^{d} \leftarrow \frac{\hat{f}_{num}^{d}}{\hat{f}_{den} + \lambda} & \text{Learning rate} \end{array}$$

Practical considerations

1. Multiply samples with **cosine window**

Reduces boundary effects

Practical considerations

2. For y_j : use **Gaussian function**

$$y_j[n_1, n_2] = e^{-\frac{1}{2\sigma^2} ||n - n^{*,j}||^2}$$

- Centered at target location $n^{*,j} = (n_1^{*,j}, n_2^{*,j})$
- Peak width parameter $\,\sigma$
- Motivation: minimizes the uncertainty principle

Kernelized Correlation Filters

Kernelized Correlation Filters (KCF)

- Henriques et al. [ECCV 2012, PAMI 2014]
- Idea: apply the **kernel trick** to the DCF

Kernel:

$$\kappa(x, z) = \langle \phi(x), \phi(z) \rangle$$
Shift invariant:

$$\kappa(\tau_n x, z) = \kappa(x, \tau_{-n} z)$$

$$\swarrow$$
Shift operator:

$$\tau_n x[m] = x[m - n]$$

Example:
$$\kappa(x, z) = e^{-\frac{1}{2\eta} ||x - z||^2}$$

Kernelized Correlation Filters (KCF)

• Kernelized correlation: $k_{x,z}[n] = \kappa(\tau_n x, z)$

• Train model:
$$\hat{u} = rac{\hat{y}}{\hat{k}_{x,x} + \lambda}$$

• Target scores: $s = \mathscr{F}^{-1}\{\hat{k}_{z,x}\hat{u}\}$

• Approximative update rules [Henriques et al., 2012; Danelljan et al., 2014].

Kernelized Correlation Filters (KCF)

Should you use kernels?

- $\ensuremath{\mathfrak{S}}$ More complicated learning
- ⊗ Harder to generalize
- $\ensuremath{\mathfrak{S}}$ More costly
- \odot Similar or poorer performance

Essence of deep learning:

- Learn you feature mapping instead

Scale Estimation

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg. "**Discriminative Scale Space Tracking**". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39.8 (2017), pp. 1561–1575.

Scale Estimation

Approach 1: Multi-scale detection

1. Extract test samples at multiple scales $\{z_1, z_2, \ldots, z_L\}$

3. Find max position and scale

$$(n_1^*, n_2^*, l^*) = \underset{n_1, n_2, l}{\operatorname{arg\,max}} s_l[n_1, n_2]$$

Approach 2: Scale filter

- Idea: train a separate 1-dimensional scale DCF
- Directly discriminates between scales
- Discriminative Scale Space Tracker (**DSST**) [Danelljan et al., BMVC 2014, PAMI 2017]

Discriminative Scale Space Tracker

Scale training sample x

Desired output y

Discriminative Scale Space Tracker

Discriminative Scale Space Tracker

Evaluation Measures

Scale Estimation Results

Scale estimation: Comparison

Approach 2 (scale filter):

- Faster
- Generic (used in many different trackers)
- Often more accurate for **simple** DCF trackers

Approach 1 (multi-scale detection):

- Slower
- Often more accurate for **advanced** DCF trackers

presented next

The Periodic Assumption: Problem and Solutions

Periodic Assumption in DCF

What we want...

What actually happens...

Larger Samples?

Why?

Effects of Periodic Assumption

Forces a **small sample size** in training/detection

Effects:

- Limits training data
- Corrupts data
- Limits search region

Tackling the Periodic Assumption

We need means of controlling the **filter extent**!

• Enables larger samples.

Approaches:

- 1. Constrained optimization
- 2. Spatial regularization

Constrained Optimization

• Idea: Constrain filter coefficients to be zero outside the target bounding box.

 $\begin{array}{ccc} \min & L(f) & & \text{background} \\ \text{subject to} & f^d[n] = 0 \,, \, \forall d, \forall n \in \mathcal{B} \end{array} \qquad \begin{array}{c} \text{background} \\ \swarrow & \text{pixels} \end{array}$

• Rewrite constraint:

$$f^{d}[n] = 0, \forall n \in \mathcal{B} \iff \mathbf{1}_{\mathcal{B}} f^{d} = 0$$
$$\iff \mathbf{1}_{\mathcal{B}} \mathscr{F}^{-1} \hat{f}^{d} = 0$$
Inverse Fourier transform

Constrained Optimization

• Fourier domain formulation:

Constrained Optimization

$$L(f) = \sum_{j=1}^{m} \alpha_j \left\| \sum_{d=1}^{D} \hat{x}_j^d \mathscr{F} \mathbf{1}_{\mathcal{T}} \mathscr{F}^{-1} \hat{f}^d - \hat{y}_j \right\|^2 + \lambda \sum_{d=1}^{D} \left\| \hat{f}^d \right\|^2$$

- Generates **dense** normal equations \otimes
- Use iterative solvers:
 - ADMM [H.K. Galoogahi, CVPR 2015]
 - Proximal gradient [J.A. Fernandez, PAMI 2015]
- Requires iterating between spatial and Fourier ⊗

Spatially Regularized DCF (SRDCF) [M. Danelljan, ICCV 2015]

$$L(f) = \sum_{j=1}^{m} \alpha_j \left\| \sum_{d=1}^{D} \hat{x}_j^d \hat{f}^d - \hat{y}_j \right\|^2 + \sum_{d=1}^{D} \left\| \frac{\hat{w}}{N_1 N_2} * \hat{f}^d \right\|^2$$

 \mathcal{U}

What we had...

What we achieved...

Spatially Regularized DCF

Spatially Regularized DCF

Spatially Regularized DCF

Adaptive Training Set Management

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg. "Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking". In: *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016.*

Model Drift

Adaptive Training Set Management

Discriminative Tracking Methods

$$J(\theta) = \sum_{k=1}^{t} \alpha_k \sum_{j=1}^{n_k} L(\theta; x_{jk}, y_{jk}) + \lambda R(\theta)$$

Our Approach - Motivation

- **Continuous** weights
 - More control of importance
 - Helps in ambiguous cases (e.g. partial occlusions)
- Re-determination of importance in **each frame**
 - Exploit **later** samples
 - Use all available information
- **Prior** information
 - E.g. how old the sample is
 - Or number of samples in a frame

Our Approach

$$J(\theta, \alpha) = \sum_{k=1}^{t} \alpha_k \sum_{j=1}^{n_k} L(\theta; x_{jk}, y_{jk}) + \frac{1}{\mu} \sum_{k=1}^{t} \frac{\alpha_k^2}{\rho_k} + \lambda R(\theta)$$

subject to $\alpha_k \ge 0, \ k = 1, \dots, t$
 $\sum_{k=1}^{t} \alpha_k = 1.$

Adaptive Sample Weights

Deep Image Representations For Tracking

Hand-crafted Features

White

Red

Color Features [M. Danelljan, CVPR 2014]

Color Names [Weijer and Schmid, TIP 2009]

Yellow

Shape features

Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005]

Deep Convolutional Features

Evaluation of Convolutional Feature Layers

• On OTB-2013 dataset

Learning Continuous Convolution Operators

Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Felsberg. "**Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking**". In: *European Conference on Computer Vision (ECCV) 2016.*

Discriminative Correlation Filters (DCF)

Limitations:

Single-resolution / feature map

Our Approach: Overview

DCF Limitations:

1. Single-resolution feature map

- Why a problem?
 - Combine convolutional layers of a CNN
 - Shallow layers: low invariance high resolution
 - Deep layers: high invariance low resolution
- How to solve?
 - Explicit resampling?
 - Artefacts, information loss, redundant data
 - Independent DCFs with late fusion?
 - Sub-optimal, correlations between layers

DCF Limitations:2. Coarse output scores

- 2. Course output score
- Why a problem?
 - Accurate localization
 - Sub-grid (e.g. HOG grid) or sub-pixel accuracy
 - More accurate annotations=> less drift
- How to solve?
 - Interpolation?
 - Which interpolation strategy?
 - Interweaving?
 - Costly

DCF Limitations: 3. Coarse labels

- Why a problem?
 - Accurate learning
 - Sub-grid or sub-pixel supervision
- How to solve?
 - Interweaving?
 - Costly
 - Explicit interpolation of features?
 - Artefacts

Interpolation Operator

Convolution Operator

Training Loss – Fourier Domain

n=0

Optimization: Conjugate Gradient

- Solve $(A^{\mathrm{H}}\Gamma A + W^{\mathrm{H}}W)\mathbf{\hat{f}} = A^{\mathrm{H}}\Gamma\mathbf{\hat{y}}$
- Use Conjugate Gradient:
 - Only need to evaluate $(A^{H}\Gamma A + W^{H}W) \mathbf{\hat{f}}$
 - => No sparse matrix handling!
 - Warm start estimate and search direction
 - **Preconditioner** important
- Details: "On the Optimization of Advanced DCF-Trackers", J. Johnander, G. Bhat, M. Danelljan, F. Khan, M. Felsberg. VOT Challenge ECCV Workshop, 2018.

How to set y_j and b_d ?

• Use periodic summation of functions $g: \mathbb{R} \to \mathbb{R}$:

$$g_T(t) = \sum_{n=-\infty}^{\infty} g(t - nT)$$

- Gaussian function for y_j
- Cubic spline kernel for b_d
- Fourier coefficients \hat{y}_j, \hat{b}_d with Poisson's summation formula:

$$\hat{g}_T[k] = \frac{1}{T}\hat{g}(\frac{k}{T})$$

Results

• Layer fusion on OTB-2015 dataset

Sub-pixel Localization with CCOT

Sub-pixel Localization with CCOT

Feature Point Tracking Framework

- Grayscale pixel features, D = 1
- Uniform regularization, $w(t) = \beta$

CCOT Feature Point Tracking

Experiments: Feature Point Tracking

• The Sintel dataset

Efficient Convolution Operators (ECO)

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking". In: IEEE Conference on Computer Vision and Pattern Recognition CVPR 2017.

Issues With C-COT

- 1. Slow
 - ~10 FPS with hand-crafted features
 - ~1 FPS with deep features
- 2. Overfitting
 - ~0.5M parameters updated online
 - Memory focusing on recent samples

Factorized Convolution

$$S_{Pf}\{x\} = \sum_{c,d} p_{d,c} f^c * J_d\{x^d\} = f * P^T J\{x\}$$

- Learn filter *f* and matrix *P* **jointly**
- Gauss Newton iterations with Conjugate Gradient
- **80%** reduction in parameters

Factorized Convolution

C-COT filters

ECO filters

Generative Sample Space Model

- Online Gaussian Mixture Model of training samples
- \Rightarrow 90% reduction in training samples

Previous: Linear memory

ECO:

GMM

clusters

Speedup

- 10x speedup compared to C-COT
- Same or better performance
- 60 FPS on CPU with handcrafted features
- 15 FPS on GPU with deep features

Notes:

- Matlab/Mex
- "Slow" network

End-to-end Learning with DCF

End-to-end Learning

- Could we learn the underlying features?
- Use the DCF solution for a single training sample as a layer in a deep network:

$$\hat{f}_{\theta}^{d} = \frac{\hat{x}_{\theta}^{d}\hat{y}}{\sum_{l=1}^{D} \overline{\hat{x}_{\theta}^{l}} \hat{x}_{\theta}^{l} + \lambda}$$
Network parameters
Train in Siamese fashion: $\ell(f_{\theta} * z_{\theta}, c)$
- On image pairs
test desired sample output

End-to-end Learning: CFNet

[J. Valmadre et al., CVPR 2017]

• Logistic loss

Test image: 255x255x3

End-to-end Learning: CFCF

[E. Gondogdu and A. Alatan, TIP 2018]

- *L*²-loss. Finetune VGG-m.
- Integrate learned features in C-COT

Unveiling the Power of Deep Tracking

Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, and Michael Felsberg. "**Unveiling the Power of Deep Tracking**". In: *European Conference on Computer Vision (ECCV) 2018.*

ECO

Motivation

- Challenges: Deformations, In-plane/Out-of-plane rotations
- Can we utilize the invariance of deep features?

Motivation

• How about using deeper networks?

Motivation

- Features unsuitable for tracking?
 - Let's train features for tracking

Causes 1: Training data

- Limited training data in the first frame
- Training data only models translations

Data augmentation

• Can simulate commonly encountered challenges in object tracking, e.g. rotations, motion blur, occlusions

Data augmentation

Cause 2: Accuracy-Robustness Tradeoff

Cause 2: Accuracy-Robustness Tradeoff

Let's revisit training in ECO

- Training data: Shifted versions of the target
- Width of label function determines how the samples are labelled
- Sharp label function \Rightarrow Enforce Accuracy
- Wide label function \Rightarrow Prefer Robustness

Cause 2: Accuracy-Robustness Tradeoff

Shallow: HOG+Color Names

Accuracy-Robustness tradeoff

Accuracy-Robustness tradeoff

New framework

Adaptive Model Fusion

We want the score function to have a single, sharp peak

Adaptive Model Fusion

$$y_{\beta}(t) = \beta_{\rm d} y_{\rm d}(t) + \beta_{\rm s} y_{\rm s}(t)$$

• Prediction Quality Measure

$$\xi_{t^*}\{y\} = \min_t \frac{y(t^*) - y(t)}{\Delta(t - t^*)} \qquad \Delta(\tau) = 1 - e^{-\frac{\kappa}{2}|\tau|^2}$$

Results

Need For Speed dataset (100 videos)

Results

Generalization to networks

State-of-the-Art and Conclusions

Current state-of-the-art

• VOT2018 sequestered dataset

-		Tracker	EAO	Α	\mathbf{R}
Directly based on ECO	1.	MFT	0.2518 ①	0.5768	0.3105 (1)
	2.	UPDT	0.2469 2	0.6033 ②	0.3427 ③
	3.	RCO	0.2457 ③	0.5707	0.3154 ②
	4.	LADCF	0.2218	0.5499	0.3746
	5.	DeepSTRCF	0.2205	0.5998 ③	0.4435
	6.	CPT	0.2087	0.5773	0.4238
	7.	SiamRPN	0.2054	0.6277 ①	0.5175
	8.	DLSTpp	0.1961	0.5833	0.4544

["The Visual Object Tracking VOT2018 Challenge Results", M. Kristan et al., 2018]

Conclusions and Future Work

- DCF is a **versatile** framework for tracking
- Highly adaptable for specific applications
- Efficient online learning
- Future work:
 - Richer output: towards segmentation
 - Long-term tracking robustness
 - Better **end-to-end** integration and learning

Acknowledgements

Goutam Bhat Joakim Johnander Gustav Häger Fahad Khan Michael Felsberg

- EMC2, funded by Vetenskapsrådet
- Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

Martin Danelljan

www.liu.se

