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Overview – Part I

Part I: Basics of Discriminative Correlation Filters

1. The Visual Tracking problem

2. DCF – the simple case

3. Multi-channel, multi-sample DCF

4. Special cases and approximative inference

5. Tracking pipeline and practical considerations

6. Kernels

7. Scale estimation

8. Periodic assumption: problem and solutions



Overview – Part II

Part II: Advanced topics in DCF tracking

1. Training set management

2. Deep image representations for tracking

3. Continuous-space formulation

4. Efficient Convolution Operators (ECO)

5. End-to-end Learning with DCF

6. Empowering deep features



Visual Tracking



Visual Tracking



Visual Tracking

• Only initial target location in known

• Challenges

– Environmental: occlusions, blur, clutter, 
illumination

– Motion/transformations: rotations, fast 
motion, scale change 

– Appearance changes: deformations



Applications

Robotics, AR/VR, autonomous driving, video analysis …



Discriminative 
Correlation Filters (DCF)
- The Basics



Discriminative Correlation Filters

What is it?

• Discriminatively learn a correlation filter

• Utilize the Fourier transform for efficiency

Why use it?

• Translation invariance ⇒ Correlation

• State-of-the-art since 2014

• Accuracy (even sub-pixel)

• Generic and customizable



DCF Popularity and Performance

• Hundreds of papers since 2014

• Winner of Visual Object Tracking (VOT) Challenge 
2014, 2016, 2017 and 2018

• In VOT 2018: all top-5 trackers are based on DCF



DCF – the Simple Case

DFT



DCF – the Simple Case



DCF – the Simple Case

Target 
prediction:





Standard DCF Formulation

1. Multiple training samples

2. Multidimensional sophisticated features



Standard DCF Formulation



Standard DCF Formulation

weights



Inference

• DFT and Parseval’s theorem:



Inference



Inference



Inference



Inference

Blocks of 
𝑚 × 𝐷

Blocks of 
D × 𝐷



Special Case 1:  𝐷 = 1

Only a single feature channel:

The original MOSSE filter [Bolme et al., CVPR 2010].



Dual form

Blocks of 
𝑚 ×𝑚



Special Case 2:  m = 1

Only a single training sample:

[Danelljan et al., BMVC 2014, PAMI 2017]



Approximate inference

1. Independent samples:

– Optimal for 𝑚 = 1

2. Independent channels:

– Optimal for D = 1

3. Combination:

– Optimal for 𝑚 = 1

– Optimal for D = 1



General tracking pipeline

1. Initialize model in first frame

2. Track in the new frame

3. Update model and goto 2.



Tracking pipeline: example

1. Initialize

2. Track

3. Update
Target location

Learning rate



Practical considerations

1. Multiply samples with cosine window

– Reduces boundary effects



Practical considerations

2. For     : use Gaussian function

– Centered at target location

– Peak width parameter 

– Motivation: minimizes the uncertainty principle



Kernelized Correlation Filters



Kernelized Correlation Filters (KCF)

• Henriques et al. [ECCV 2012, PAMI 2014]

• Idea: apply the kernel trick to the DCF

Kernel:

Shift invariant:

Example:

Shift operator:



Kernelized Correlation Filters (KCF)

• Kernelized correlation:

• Train model:

• Target scores:

• Approximative update rules 
[Henriques et al., 2012; Danelljan et al., 2014].



Kernelized Correlation Filters (KCF)

Should you use kernels?

 More complicated learning

 Harder to generalize

 More costly

 Similar or poorer performance

Essence of deep learning:

- Learn you feature mapping instead



Scale Estimation

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael 
Felsberg. “Discriminative Scale Space Tracking”. In: IEEE Transactions on 
Pattern Analysis and Machine Intelligence 39.8 (2017), pp. 1561–1575. 



Scale Estimation



Approach 1: Multi-scale detection

1. Extract test samples at multiple scales

2. Compute scores at each scale

3. Find max position and scale

…

…



Approach 2: Scale filter

• Idea: train a separate 1-dimensional scale DCF

• Directly discriminates between scales

• Discriminative Scale Space Tracker (DSST)
[Danelljan et al., BMVC 2014, PAMI 2017]



Discriminative Scale Space Tracker
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Discriminative Scale Space Tracker



Discriminative Scale Space Tracker



Evaluation Measures

Predicted 
box

Ground-truth 
box



Scale Estimation Results

OTB-2013 dataset
[Wu et al., CVPR 2013]



Scale estimation: Comparison

Approach 2 (scale filter):

• Faster

• Generic (used in many different trackers)

• Often more accurate for simple DCF trackers

Approach 1 (multi-scale detection):

• Slower

• Often more accurate for advanced DCF trackers

presented next



The Periodic Assumption: 
Problem and Solutions



Periodic Assumption in DCF

What we want… What actually happens…



Larger Samples?



Why?

Learned filter



Effects of Periodic Assumption

Forces a small sample size in training/detection

Effects:

• Limits training data

• Corrupts data

• Limits search region



Tackling the Periodic Assumption

We need means of 
controlling the filter extent!

• Enables larger samples.

Approaches:

1. Constrained optimization

2. Spatial regularization



Constrained Optimization

• Idea: Constrain filter coefficients to be zero outside 
the target bounding box.

• Rewrite constraint:

background 
pixels

Inverse Fourier 
transform



Constrained Optimization

• Fourier domain formulation:

target 
pixels



Constrained Optimization

• Generates dense normal equations 

• Use iterative solvers:

– ADMM [H.K. Galoogahi, CVPR 2015]

– Proximal gradient [J.A. Fernandez, PAMI 2015]

• Requires iterating between spatial and Fourier 



Spatially Regularized DCF (SRDCF)
[M. Danelljan, ICCV 2015]



Spatially Regularized DCF (SRDCF)
[M. Danelljan, ICCV 2015]



Spatially Regularized DCF (SRDCF)

DFT



Spatially Regularized DCF (SRDCF)

DFT



Spatially Regularized DCF (SRDCF)

Convolution 
matrix



Spatially Regularized DCF (SRDCF)

What we had… What we achieved…



Spatially Regularized DCF



Spatially Regularized DCF



Spatially Regularized DCF

OTB-2015 
dataset



Adaptive Training Set 
Management

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and Michael 
Felsberg. “Adaptive Decontamination of the Training Set: A Unified 
Formulation for Discriminative Visual Tracking”. In: IEEE Conference 
on Computer Vision and Pattern Recognition, CVPR 2016.



Model Drift



Adaptive Training Set Management



Discriminative Tracking Methods



Our Approach - Motivation

• Continuous weights

– More control of importance

– Helps in ambiguous cases (e.g. partial occlusions)

• Re-determination of importance in each frame

– Exploit later samples

– Use all available information

• Prior information

– E.g. how old the sample is

– Or number of samples in a frame



Our Approach



Adaptive Sample Weights



Deep Image Representations 
For Tracking



Hand-crafted Features
Color Features
[M. Danelljan, CVPR 2014]

Color Names
[Weijer and Schmid, TIP 2009]

Shape features

Histogram of Oriented 
Gradients (HOG)
[Dalal and Triggs, 2005]



Deep Convolutional Features



Evaluation of Convolutional Feature Layers

• On OTB-2013 dataset

[M. Danelljan, ICCVW 2015]



Learning Continuous 
Convolution Operators

Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and 
Michael Felsberg. “Beyond Correlation Filters: Learning 
Continuous Convolution Operators for Visual Tracking”. In: 
European Conference on Computer Vision (ECCV) 2016.



Discriminative Correlation Filters (DCF)

Single-resolution 
feature map

Limitations:
Coarse output 

scores



Our Approach: Overview

Continuous 
filters Continuous 

output
Multi-

resolution 
features



DCF Limitations:
1. Single-resolution feature map

• Why a problem?

– Combine convolutional layers of a CNN

• Shallow layers: low invariance – high resolution

• Deep layers: high invariance – low resolution

• How to solve?

– Explicit resampling?

• Artefacts, information loss, redundant data

– Independent DCFs with late fusion?

• Sub-optimal, correlations between layers



DCF Limitations:
2. Coarse output scores

• Why a problem?

– Accurate localization

• Sub-grid (e.g. HOG grid) or sub-pixel accuracy

• More accurate annotations=> less drift

• How to solve?

– Interpolation?

• Which interpolation strategy?

– Interweaving?

• Costly



DCF Limitations:
3. Coarse labels

• Why a problem?

– Accurate learning

• Sub-grid or sub-pixel supervision

• How to solve?

– Interweaving?

• Costly

– Explicit interpolation of features?

• Artefacts



Interpolation Operator



Convolution Operator



Training Loss



Training Loss – Fourier Domain



Optimization: Conjugate Gradient

• Solve

• Use Conjugate Gradient:

– Only need to evaluate

– => No sparse matrix handling!

– Warm start estimate and search direction

– Preconditioner important

• Details: “On the Optimization of Advanced DCF-Trackers”, J. 
Johnander, G. Bhat, M. Danelljan, F. Khan, M. Felsberg. VOT 
Challenge ECCV Workshop, 2018.



How to set       and      ?

• Use periodic summation of functions                     :

• Gaussian function for

• Cubic spline kernel for  

• Fourier coefficients             with Poisson’s summation 
formula:



Results

• Layer fusion on OTB-2015 dataset
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Sub-pixel Localization with CCOT



Sub-pixel Localization with CCOT



Feature Point Tracking Framework

• Grayscale pixel features,

• Uniform regularization,



CCOT Feature Point Tracking



Experiments: Feature Point Tracking

• The Sintel dataset



Efficient Convolution Operators 
(ECO)

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and 
Michael Felsberg. “ECO: Efficient Convolution Operators for 
Tracking”. In: IEEE Conference on Computer Vision and Pattern 
Recognition CVPR 2017.



Issues With C-COT

1. Slow

– ~10 FPS with hand-crafted features

– ~1 FPS with deep features

2. Overfitting

– ~0.5M parameters updated online

– Memory focusing on recent samples



Factorized Convolution

• Learn filter 𝑓 and matrix 𝑃 jointly

• Gauss Newton iterations with Conjugate Gradient

• 80% reduction in parameters



Factorized Convolution

C-COT filters ECO filters



Generative Sample Space Model

• Online Gaussian Mixture Model of training samples

• ⟹ 90% reduction in training samples

ECO:
GMM 
clusters

Previous:
Linear 
memory



Speedup

• 10x speedup compared to C-COT

• Same or better performance

• 60 FPS on CPU with handcrafted features

• 15 FPS on GPU with deep features

Notes:

• Matlab/Mex

• “Slow” network



End-to-end Learning 
with DCF



End-to-end Learning

• Could we learn the underlying features?

• Use the DCF solution for a single training sample as a 
layer in a deep network:

• Train in Siamese fashion:

– On image pairs

Network 
parameters

test 
sample

desired 
output



End-to-end Learning: CFNet

[J. Valmadre et al., CVPR 2017]

• Logistic loss



End-to-end Learning: CFCF

[E. Gondogdu and A. Alatan, TIP 2018]

• 𝐿2-loss. Finetune VGG-m.

• Integrate learned features in C-COT



Unveiling the Power of Deep 
Tracking

Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad 
Shahbaz Khan, and Michael Felsberg. “Unveiling the Power of 
Deep Tracking”. In: European Conference on Computer Vision 
(ECCV) 2018.



ECO
Tracking Performance, NFS



104

Motivation

• Challenges: Deformations, In-plane/Out-of-plane 
rotations

• Can we utilize the invariance of deep features?
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Motivation

• How about using deeper networks?

Tracking Performance, NFS



106

Motivation

• Features unsuitable for tracking?

– Let's train features for tracking

Tracking Performance, NFS
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Causes 1: Training data

• Limited training data in the first frame

• Training data only models translations
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Data augmentation

• Can simulate commonly encountered challenges 
in object tracking, e.g. rotations, motion 
blur, occlusions
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Data augmentation
Impact of data augmentation, OTB-2015

Deep: ResNet-50 (Conv4)

Shallow: HOG+Color Names
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Cause 2: Accuracy-Robustness Tradeoff

Image Shallow Model Deep Model
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Cause 2: Accuracy-Robustness Tradeoff

Let’s revisit training in ECO

• Training data: Shifted versions of the target

• Width of label function determines how the samples 
are labelled

• Sharp label function ⇒ Enforce Accuracy

• Wide label function ⇒ Prefer Robustness
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Cause 2: Accuracy-Robustness Tradeoff
Impact of label width, OTB-2015

Deep: ResNet-50 (Conv4)

Shallow: HOG+Color Names
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Accuracy-Robustness tradeoff

Tracking Performance, NFS
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Accuracy-Robustness tradeoff

Image Shallow Model Deep Model
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New framework

Extract Features

Shallow

Deep

Train Separate Filters Apply filter

Fusion?



116

Adaptive Model Fusion

We want the score function to have a single, sharp peak

Image Deep Score Shallow Score
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Adaptive Model Fusion

• Prediction Quality Measure
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Results

Need For Speed dataset (100 videos)
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Results

Generalization to networks



State-of-the-Art and 
Conclusions



Current state-of-the-art

• VOT2018 sequestered dataset

Directly based 
on ECO

[“The Visual Object Tracking VOT2018 Challenge 
Results”, M. Kristan et al., 2018]



Conclusions and Future Work

• DCF is a versatile framework for tracking

• Highly adaptable for specific applications

• Efficient online learning

• Future work:

– Richer output: towards segmentation

– Long-term tracking robustness

– Better end-to-end integration and learning



Gustav Häger Fahad Khan Michael FelsbergGoutam Bhat Joakim Johnander
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