
Isabelle/HOL
Interaction and Automation
Jasmin Christian Blanchette

Jasmin Christian Blanchette Jasmin Christian Blanchette
ジャスミン・クリスチャン・ブランチェット
�斯麦··克里斯蒂安··布�切特

I am a postdoc at the Chair for Logic and Verification lead
by Tobias Nipkow at the Technische Universität München,
which I joined in 2008. My research focuses on the
generation of counterexamples for higher-order logic
(Nitpick) and the use of first-order automatic theorem
provers in a higher-order theorem prover (Sledgehammer). I
am financed by the project Hardening the Hammer
(DFG Ni 491/14-1). From 2000 to 2008, I worked as
software engineer and documentation manager for Trolltech
(now Digia, Qt) in Oslo, Norway.

During the 2013–14 winter term, I am the proud Master of
Competition for the course Einführung in die Informatik 2.

Contents: Students ⋅ Drafts ⋅ Journal Articles ⋅ Conference
Papers ⋅ Workshop Papers ⋅ Theses ⋅ Books ⋅ Other
Publications ⋅ Software ⋅ Activities ⋅ Video ⋅ Address

StudentsStudents

Lorenz Panny (B.Sc. project, (co)recursive function
definitions; cosupervisor: Dmitriy Traytel)
Steffen Juilf Smolka (B.Sc. project, structured Isabelle
proofs from refutation proofs)

Technische Universität München

Early automated deduction (= theorem proving)

SAT solving (Davis, Putnam, Logeman, Loveland)

Resolution (Robinson)

LCF and ML (Milner)

NQTHM (Boyer & Moore)

Interactive theorem provers (= proof assistants)

ACL2 (Kaufmann & Moore)

Coq (Huet & Coquant)

HOL system (Gordon)

Isabelle (Paulson & Nipkow)

PVS (Owre & Shankar)

Automatic theorem provers (ATPs)

Traditional ATPs (for FOL with equality)

Otter (McCune)

Vampire (Voronkov)

SPASS (Weidenbach)

E (Schulz)

SMT solvers (for FOL with equality, sorts, theories)

CVC (Barrett & Tinelli)

Yices (Dutertre & de Moura)

Z3 (Bjørner & de Moura)

X

Higher-order ATPs

TPS (Andrews)

LEO-II (Benzmüller)

Isabelle

Satallax (Brown)

agsyHOL (Lindblad)

Isabelle—“The next 700 proof assistants”

Generic: Isabelle/{CTT, FOL, HOL, TLA, ZF, . . . }
Two levels:

metalogic shared by all instances
object logic (CTT, FOL, HOL, . . .)

HOL (higher-order logic) is the most developed object logic

Similar to languages like Standard ML, OCaml, Haskell
but total—cannot define f n = f n + 1
and can compare functions (even with infinite domains)

HOL hits a sweet spot:
expressive enough for most maths and C.S.
simple and easy-to-understand syntax and semantics
convenient type system
automatable

Demonstration

Why use proof assistants?

More reliable than a paper proof
“Paper proof = pseudocode”

Extremely detailed (foundational)

Convenient for highly technical proofs

Convenient to experiment with variations

Fun and addictive

Why not use proof assistants?

Paper is usually much quicker

Formalizing well-understood theories yields few insights

Success stories

Proof assistants in general

Gödel’s first incompleteness theorem (Shankar 1984)

Floating-point unit verification (AMD, Intel 1990s–now)

Four-color theorem (Gonthier 2008)

Verified compiler (Leroy 2009)

Kepler conjecture (Hales 201x)

Isabelle/HOL

Protocol verification (Paulson 1998)

Jinja (Klein & Nipkow 2005)

JinjaThreads (Lochbihler 2010)

seL4 microkernel (Klein 2009)

LTL model checker (Esparza et al. 2013)

Syntax of HOL

The types and terms of Isabelle are that of the simply typed λ-calculus
augmented with constants, n-ary type constructors, and polymorphism

Types: Terms:
τ ::= ′a type variable t ::= xτ variable

| (τ̄) κ type constructor | cτ constant
| λxτ. t λ-abstraction
| t t′ application

It is enough to consider bool, ′a→ ′b (functions), and =
′a→′a→bool as built-in

Quantifiers and connectives can be defined:
True ≡ (λx. x) = (λx. x)
(∀x. Px) ≡ All P ≡ P = (λx.True)

...

Typing rules:

` xτ : τ ` cτ : τ

` t : υ

` λxτ. t : τ → υ

` t : τ → υ ` u : τ

` t u : υ

Theorems and proofs

Isabelle is implemented in Standard ML
(a safe typed functional language developed by Milner for LCF)

Theorems are represented by an opaque thm type
whose values are derived by inference primitives

All inferences ultimately happen in the kernel

Forward proof

Theorems can be derived by applying inferences to theorems

Backward proof

To prove a formula p:
1. start with theorem p =⇒ p (where the first p is the goal)
2. massage an assumption, yielding p′1 =⇒ · · · =⇒ p′n =⇒ p
3. repeat step 2 until n = 0

This is normally done using tactics,
which are joined together by tacticals (higher-order tactics)

ML examples

Forward proof

th = @{thm hd.simps}; (* hd (x # xs) = x *)

th’ = th RS @{thm sym}; (* t = hd (t # xs) *)

Backward proof

goal = @{prop "p & q ==> q & p"};

tac = REPEAT (rtac @{thm conjI} 1 ORELSE

etac @{thm conjE} 1 ORELSE

atac 1);

th = Goal.prove @{context} [] [] goal (K tac);

Isar proofs

Structured version:

lemma “p ∧ q =⇒ q ∧ p”
proof –

assume pq: “p ∧ q”
from pq have p: “p” by (rule conjunct1)
from pq have q: “q” by (rule conjunct2)
from q and p show “q ∧ p” by (rule conjI)

qed

Script version:

lemma “p ∧ q =⇒ q ∧ p”
apply (erule conjE) (∗ 1. p =⇒ q =⇒ q ∧ p ∗)
apply (rule conjI) (∗ 1. p =⇒ q =⇒ q 2. p =⇒ q =⇒ p ∗)
apply assumption (∗ 1. p =⇒ q =⇒ p ∗)

apply assumption (∗ no subgoals! ∗)
done

Mixed ML/script version:

lemma “p ∧ q =⇒ q ∧ p”
by (tactic {∗

REPEAT (rtac @{thm conjI} 1 ORELSE

etac @{thm conjE} 1 ORELSE

atac 1)

∗})

Compact version:

lemma “p ∧ q =⇒ q ∧ p”
by auto

Automation

Simplifier

Classical reasoner

Combination (auto)

Tableau (blast)

Resolution prover (metis)

Linear arithmetic (arith)

Specification mechanisms

Low-level

Type declaration

Typedef

Axioms

Definitions

High-level

(Co)datatypes

(Co)inductive predicates

Terminating/tail-recursive recursive functions

Primitive corecursive functions

Isar examples

typedecl name

typedef ′a ne set = “{A :: ′a set. A 6= {}}”
by auto

axiomatization name0 :: name and name1 :: name where
name0 ne 1: “name0 6= name1”

definition is name0 or 1 :: “name⇒ bool” where
“is name0 or 1 n←→ n = name0∨ n = name1”

datatype ′a list = Nil | Cons ′a “′a list”

codatatype ′a llist = LNil | LCons ′a “′a llist”

fun len :: “′a list⇒ nat” where
“len Nil = 0” |
“len (Cons xs) = Suc (len xs)”

primcorec iterate :: “(′a⇒ ′a)⇒ ′a⇒ ′a llist” where
“iterate f a = LCons a (iterate f (f a))”

More automation via external ATPs

1990s–now: Attempted many times
either worked well for obscure systems
or worked not so well for popular systems

“Not so well”?
limited to fragments
heavy or unsound translations
weak engineering
poor ATP tuning
no reconstruction

Sledgehammer (Paulson 2003–2009, B. 2010–now) is perhaps
the only tool of its kind that is used daily

Geoff Sutcliffe (Oct. 2013) wrote:

The following is a summary of the logged data for the three months July
to September 2013. In that period there were 182 450 requests to
SystemOnTPTP. Of those, 174 078 were to run ATP systems, the most
popular being SInE 0.4 (79 836 requests) and Vampire 2.6
(31 429 requests). It is believed that most of these requests come from
users of Isabelle/HOL and Sledgehammer.

Sledgehammer’s architecture

Relevance filter

E SPASS CVC3 Yices Z3

TPTP FO translation SMT-LIB translation

Vampire

Sledgehammer

LEO-II Satallax agsyHOL

TPTP HO translation

Relevance filters

MePo: Iterative, symbol-based

MaSh: Machine learning

ATP invocation

Locally or remotely (SystemOnTPTP)

Time slicing

Translation

(Incomplete) encoding of HO constructs in FOL

Encoding of types:
monomorphization
lightweight sound encodings

Reconstruction

One-liner metis call

Detailed Isar proof

Demonstration

Counterexample Generation

Quickcheck (2004–2012)

Inspired by Haskell QuickCheck

Idea: For fragment of HOL that fits in ML,
generate ML code and evaluate it for random values
(or bounded-exhaustively or by symbolic evaluation)

Nitpick (2009–now)

Based on Alloy’s backend Kodkod, which itself is based on SAT

Idea: Generate first-order constraints and solve them using Kodkod

Success stories—Sledgehammer and Nitpick

JinjaThreads, seL4, LTL model checker

Algebraic methods (Gutmann et al. 2011)

C++ concurrency (B. et al. 2011)

Formal methods course (Genet 2012)

Modal logic & God’s existence (Benzmüller 2010–now)

Some quotes

Counterexample generators such as Nitpick complement the ATP
systems and allow a proof and refutation game which is useful for
developing and debugging formal specifications.

— Guttmann et al. (2011)

Counterexamples found by Nitpick and Quickcheck permitted
to debug rather complex functions. They were intensively used
by students.

— Thomas Genet (2012)

Last night I got stuck on a goal I was sure was a theorem. After 5–10
minutes I gave Nitpick a try, and within a few secs it had found a
splendid counterexample—despite the mess of locales and type
classes in the context!
Unfortunately I now have to revise my formalization :-(

— Tobias Nipkow (2011)

I have recently been working on a new development. Sledgehammer
has found some simply incredible proofs. I would estimate the
improvement in productivity as a factor of at least three, maybe five.

— Lawrence C. Paulson (2012)

S/h found an unsound proof and that way alerted me that two of my
class axioms were inconsistent. Cool!

— Tobias Nipkow (2013)

Since I started using Isabelle (Isabelle 2009-1?) sledgehammer has
gone from being an unexpected surprise when it came up with an
answer, to being a significant tool in my daily workflow.

— David Greenaway (2013)

(*This homework was presented to you by:

_____ _ _ _

| __| |___ _| |___ ___| |_ ___ _____ _____ ___ ___

|__ | | -_| . | . | -_| | .’| | | -_| _|

|_____|_|___|___|_ |___|_|_|__,|_|_|_|_|_|_|___|_|

|___|

*)

— A student (2013)

Summary

powerful external tools ∧
sound, efficient translations ∧
one-click invocation =⇒

productive users

