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Overview
motivation: reachability analysis of hybrid systems
polyhedra
geometrical operations: convex hull, Minkowski sum, intersection, linear
transformations,. . .
support functions and template polyhedra
symbolic orthogonal projections (new)
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Motivation / Reachability Analysis of Hybrid Systems
A linear hybrid system consists of several linear systems (modes)

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0,u(t) ∈ U
which are connected by discrete transitions (jumps).

A state of the hybrid system is the pair (m, x) of a mode m and a vector x of
values for the variables.
In each mode the variables can only take values within the mode specific
invariant.
Discrete transitions are triggered by conjunctions of linear constraints. A
transition assigns a new value to the mode variable m, and the vector x is
updated by a linear transformation.

A simple hybrid system: the bouncing ball
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Motivation / Reachability Analysis of Hybrid Systems
Given an initial set, an interesting region, an mode invariant and the ODE

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0,u(t) ∈ U.
We compute the reachable states step-wise.
Initial set
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ẋ(t) = Ax(t) + u(t), x(0) ∈ X0,u(t) ∈ U.
We compute the reachable states step-wise.
Next segment

Willem Hagemann (MPII) Efficient Geometric Operations Nanning, December 12, 2013 4 / 22



Motivation / Reachability Analysis of Hybrid Systems
Given an initial set, an interesting region, an mode invariant and the ODE
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Motivation / Reachability Analysis of Hybrid Systems
Given an initial set, an interesting region, an mode invariant and the ODE

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0,u(t) ∈ U.
We compute the reachable states step-wise.

Input: ODE A, invariant I, G set of guards, over-approx. R0 ⊆ I of initial set
over-approx. V of bounded input, and an integer N.

Output: A collection of intersections of the reachable states with guards in G.
1: for k ← 0, . . . ,N do
2: if Rk = ∅ then break
3: for each guard Gj ∈ G do
4: if Rk ∩ Gj 6= ∅ then collect the intersection Rk ∩ Gj
5: end for
6: Rk+1 ← (eδARk + V) ∩ I
7: end for
8: return collected intersections with the guards
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Motivation
Various geometrical operations are used in the reachability analysis of hybrid
systems.

How can we implement these operations efficiently?

The state of the art verification tool SpaceEx uses support functions and template
polyhedra.

References:
Le Guernic, Girard. Reachability analysis of hybrid systems using support
functions, CAV 2009
Frehse, et al. SpaceEx: Scalable verification of hybrid systems, CAV 2011
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Polyhedra
A polyhedron P is a convex set with planar facets.

−4
−2

0
2

4

−4
−2

0

2
4
0

2

4

6

8

10Typical representations:
H-representation P = P(A, a) = {x |Ax ≤ a},

(A, a) is a system of linear ineq.

V-representation P = cone(U) + conv(V),
u ∈ U are the rays,
v ∈ V are the vertices of P

Conversion between both representation is known as vertex enumeration and
facet enumeration problem.

Conversion is expensive.
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Geometrical Operations
We are interested in the following geometrical operations:
convex hull conv(P ∪Q), smallest closed convex set including P and Q

Minkowski sum P + Q, adding each vector in P to each vector in Q

intersection P ∩Q, all vectors in P and Q

linear map M(P), applying M to each vector in P

Efficiency of these operations depends on the representation, e. g.
convex hull and Minkowski sum:
easy for V-representation, but hard for H-representation
intersection:
easy for H-representation, but hard for V-representation
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Support Functions
The value of the support function of a convex set S in the direction n is defined as

hS(n) := sup
x∈S

nT x, hS(n) ∈ R ∪ {−∞,∞}

For a polyhedron P = P(A, a) this agrees with the optimal value of the LP
maximize nT x subject to Ax ≤ a.
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Geometrical Operations and Support Functions
Let P and Q be polyhedra in Rd and M be the matrix of a linear map Rd → Rd .

Support functions behave nicely under most geometrical operations:
convex hull hconv(P∪Q) = max(hP(n), hQ(n))

Minkowski sum hP+Q(n) = hP(n) + hQ(n)

linear map hM(P)(n) = hP(MT n)

but intersection is not easy to compute:

intersection hP∩Q(n) = infm∈Rd hP(n−m) + hQ(m)

hence, one might use the over-approximation

hP∩Q(n) ≤ min(hP(n), hQ(n))
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Template Polyhedra
A template polyhedron P = P(Afix, a) has a representation matrix Afix which is
fixed a priori.

Template polyhedra are used to sample support functions,
where each row of Afix is a sampling direction.

directions of representation matrix

polyhedron

template polyhedron
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Symbolic Orthogonal Projections
A symbolic orthogonal projection (sop) P ⊆ Kd is a polyhedron given by

P(A, L, a) = {x | ∃z, Ax + Lz ≤ a} ,
where A is a (m × d)-matrix, L is a (m × k)-matrix, k ≥ 0, and a is a column
vector with m entries.

orthogonal projection

{

{
K

d

K
d+k

The idea:
A sop P(A, L, a) ⊆ Kd

is represented by
the orthogonal projection
of an H-polyhedron
P((A L), a) ⊆ Kd+k .
Any H-polyhedron
P(A, a) can be seen as a
sop P(A, ∅, a).

Note, that we do not compute the actual H-representation of P (which would be
hard for a non-trivial matrix L). We treat the orthogonal projection symbolically.
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Some Technical Details

Complete sop:
A sop P(A, L, a) is complete if there exists some u ≥ 0 with 0 = AT u,
0 = LT u, and 1 = aT u.
Any sop can be completed by adding the redundant row (0T , 0T , 1) to its
representation (A, L, a).
Any sop P representing a full-dimensional polytope (i. e. bounded in every
direction) is complete.

Decomposition of linear maps:
The representation matrix M of any linear map φ : Kd → Kl can be written
as M = S−1EPT−1, where S and T are invertible, E is the matrix of an
embedding, and P is the matrix of an orthogonal projection.
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Geometric Operations and Sops
Let P1 = P(A1, L1, a1) and P2 = P(A2, L2, a2) be sops in Kd and M be the
invertible matrix of a linear map Rd → Rd .
Sops behave nicely under the geometric operations.

convex hull conv(P1 ∪ P2) = P

A1

O

,
 A1 L1 O a1

−A2 O L2 −a2

,
a1

0


Minkowski sum P1 + P2 = P

A1

O

,
 A1 L1 O

−A2 O L2

,
a1

a2


intersection P1 ∩ P2 = P

A1

A2

,
L1 O

O L2

,
a1

a2


Note: For the convex hull the sops have to be complete.
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Geometric Operations and Sops
Let P1 = P(A1, L1, a1) and P2 = P(A2, L2, a2) be sops in Kd and M be the
invertible matrix of a linear map Rd → Rd .
Sops behave nicely under the geometric operations.

automorphism M(P1) = P(A1M−1, L1, a1)

embedding embedd+l (P1) = P




A1 O

O Ik

O −Ik

,


L1

O

O

,


a1

0

0




projection projd−k(P1) = P(A, L, a1)

Note: For the projection the matrices A and L are uniquely determined by the stipulation
(A L) = (A1 L1) and the demand that A has d − k columns.
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Properties of Sops I
Further geometrical operations are possible: cylindrification, shadows, etc.

Sops benefit from the underlying H-representation and LP, i. e.
support function of an sop (and hence template polyhedra)
redundancy removal applicable
relative interior points
polar polyhedra

These techniques can be combined to ray shooting :
Given a non-empty sop
P = P(A, L, a) which contains
0 as a relative interior point
and a ray r.
Find a scalar λ such that
λr is a boundary point of P, and
a supporting half-space
H of P in the boundary point λr
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Theorem (Ray Shooting)
Let P = P(A, L, a) be a non-empty and complete sop in Kd which contains the
origin 0 as a relative interior point. Then the following LP is feasible for any
vector r ∈ Kd :

maximize rTAT u subject to LT u = 0, aT u = 1, u ≥ 0.
Further, the following statements hold:

1 The linear program is unbounded if and only if r 6∈ aff(P).
2 The optimal value equals zero if and only if P is unbounded in direction r,
3 Otherwise, the optimal value is positive and for the optimal solution u0 we

have: The half-space H = H(n, 1), with n = AT u0, is an optimal supporting
half-space of P, i. e. 1

rT AT u0
r is a boundary point of H.
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From Ray Shooting to Interpolation
Ray shooting allows to compute interpolations (even with exact facets) between a
sop P and an over-approximating template polyhedron P′.

1 Choose r as relative interior point of a facet of P′
2 ray shooting in direction r provides an supporting half-space H = H(n, 1)
3 Add H to representation of P′ to improve over-approximation.

P sop

0 origin

r

λr
H

P' over-approximation
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Example
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Given four polytopes, two blue and two red,
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we compute the convex hulls of the red and the blues ones
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and the resulting intersection.
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Example

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

The green area shows the resulting intersection obtained by support functions and
rectangular template polyhedra.
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The yellow area shows the resulting intersection obtained by sops and rectangular
template polyhedra.
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Finally, the purple area is obtained by interpolation.

Willem Hagemann (MPII) Efficient Geometric Operations Nanning, December 12, 2013 17 / 22



Overview
Hardness of performing the geometrical operation w. r. t. the given representation.

Representation M(·) ·+ · conv(·∪·) · ∩ · · ⊆ ·

V-representation + + + − +

H-representation +1 − − + +

support function +2 + + − −

sop + + + + −
1for automorphism, 2for endomorphism
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Conclusions
Sops are a new representation class of polyhedra, which is exact and efficient
for most geometrical operations.
Sops are evaluated with linear programming.

+ Sops enable us to compute the reachable sets up to a new degree of
exactness.

− Sops grow monotonic under these operations. There are different techniques
for over-approximations / shrinking the size of sops: template polyhedra, ray
shooting, and facet interpolation.

+ (Promising combination of Le Guernic & Girard’s algorithm and a sop based
algorithm)

What else can sops be used for?
(My guess: program verification, motion planning,. . . )
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Comparison of LGG-Algorithm and SOP-Algorithm

The figure shows the first intersection of a bouncing ball with a guard (the floor), where
the dynamics of the model are given by ẋ = v, v̇ = −1± 0.05, and ṫ = 1; the invariant
is x ≥ 0; and the guard is given by x ≤ 0 and v ≤ 0. The initial states are within the
intervals 10 ≤ x ≤ 10.2, 0 ≤ v ≤ 0.2, and t = 0. For the computation we used the time
step δ = 0.02. The blue slices show the intersections computed by the LGG-algorithm
using a rectangular template matrix. Each red slice shows a tight rectangular
over-approximation of a sop representing a computed intersections of the SOP-algorithm.
The representation matrices of these sops have a typical size of about 1500 rows and 750
columns with 6400 non-zero coefficients.
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Comparison of LGG-Algorithm and SOP+LGG-Algorithm I

Same model as before, first four intersections are shown. Used time step is δ = 0.02.
The left figures shows the resulting intersections with the guard of LGG-algorithm. The
blue areas of the right figures show the resulting intersections of the LGG-part of the
SOP+LGG-algorithm and the red areas show over-approximations of the actual result.
For all computations a rectangular template matrix was used.Willem Hagemann (MPII) Efficient Geometric Operations Nanning, December 12, 2013 21 / 22



Comparison of LGG-Algorithm and SOP+LGG-Algorithm II

time step δ LGG SOP+LGG SpaceEx
0.08 32 sec 31 sec 0.91 sec
0.04 65 sec 69 sec 1.72 sec
0.02 135 sec 120 sec 3.13 sec
0.01 360 sec 293 sec 6.26 sec

We compared our experimental implementation of the SOP+LGG-algorithm against our
implementation of the LGG-algorithm and the productive implementation of the
LGG-algorithm in SpaceEx. For the computation we used different time steps δ and a
rectangular template matrix.
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