The Quest for Robustness AND Accuracy – <u>Mission Impossible?</u>

U. Franke, Daimler AG Research and Development, Böblingen

Stereo Vision is a well understood Problem

Uwe Franke, Unsolved Problems Workshop, CVPR 2013

DAIMLER

Mercedes-Benz Intelligent Drive

The new Mercedes-Benz S-Class and E-Class offer:

- Pedestrian collision avoidance up to 50km/h by **autonomous braking**, activated up to 72km/h.
- Active braking assistant reacting to crossing traffic.
- Lateral and longitudinal control up to 200km/h even under adverse weather conditions (hands-on recognition).
- Low speed **autonomous driving** in traffic jams.
- Magic Body Control (active body control utilizing road profile).

- Stereo Vision
 - Robustness
 - Precision
 - Calibration
- Optical Flow
 - Illumination Changes
 - Large Displacements
 - Light Artifacts

000

Stereo Vision seems to be a Solved Problem

The 25 top ranked algorithms differ only slightly in the achieved quality.

Stereo Vision seems to be a Solved Problem

Rank	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	PCBP-SS	ăă		3.49 %	4.79 %	0.8 px	1.0 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
C. Yamaj	guchi, D. McAllester	and R. Urt	asun: <u>Ro</u>	oust Monocula	ar Epipolar	Flow Estimati	on. CVPR 2	013.			
2	StereoSLIC	00		3.99 %	5.17%	0.9 px	1.0 px	99.89 %	2.3 s	1 core @ 3.0 Ghz (C/C++)	
C. Yamaj	guchi, D. McAllester	and R. Urt	asun: <u>Ro</u>	oust Monocula	ar Epipolar	Flow Estimati	on. CVPR 2	013.			
3	PR-Sf+E	dd 🖙		4.09 %	4.95 %	0.9 px	1.0 px	100.00 %	200 s	4 cores @ 3.0 Ghz (Matlab + C/C++)	
Anonymo	us submission										
4	PCBP	ŏŏ		4.13 %	5.45 %	0.9 px	1.2 px	100.00 %	5 min	4 cores @ 2.5 Ghz (Matlab + C/C++)	
C. Yamaj	guchi, T. Hazan, D.	McAllester	and R. U	tasun: <u>Conti</u>	nuous Marke	ov Random Fi	elds for Ro	bust Stereo E	stimation. EC	CV 2012.	
5	PR-Sceneflow	00 3+		4.46 %	5.32 %	1.0 px	1.1 px	100.00 %	150 sec	4 core @ 3.0 Ghz (Matlab - C/C++)	
Anonyma	us submission									4 4	
6	DDS	ăă		4.64 %	5.51 %	1.0 px	1.1 px	100.00 %	30 s	1 core @ 2.5 Ghz / + C/C++)	
Inonymo	us submission										
7	wSGM	ăă		5.03 %	6.24 %	1.3 px	1.6 px	97.03 %	6s	1 co 5 z (C/C++)	
r. Rober	t Spangenberg and	R. Rojas: <u>V</u>	Veighted	Semi-Global	Matching an	d Center-Syr	nmetric Ce	nsus Transfor	m for Robust	D	
8	ATGV	ŏŏ		5.05 %	6.91 %	1.0 px	1.6 px	100.00 %	6	ct s @ 3.0 Ghz (Matlab + C/C++)	
R. Ranft	, T. Pock and H. Bi	schof: Mini	i nizing To	SV-based Va	i riational Mo	dels with Nor	-Convex Da	ta terms, ICS	51 101.		
9	iSGM	ăă		5.16 %	7.19 %	1.2 px	2.1 px	24.1 %		2 cores @ 2.5 Ghz (C/C++)	
5. Hermi	ann and R. Klette:	terative Ser	i ni-Global	Matching for	Robust Dri	ver Assistanc	e Syste	AL 20-	/		
10	OCV-SGBM2	ăă		5.42 %	6.54 %			00.00 %	2 s	1 core @ 2.5 Ghz (C/C++)	
Anonymo	us submission					24	U				
11	AABM	йй		5.59	60 %	V	1.3 px	100.00 %	0.43 s	1 core @ 3.0 Ghz (C/C++)	
. Einecl	ke and J. Eggert: A	ppearance-/	: Niened P		ster. IV	2013.		1			
12	SGM	dd 🧹	5	5.83 %	7.08 %	1.2 px	1.3 px	85.80 %	3.7 s	1 core @ 3.0 Ghz (C/C++)	
I. Hirsch	mueller: Stereo Pr		ni-Gla	Atching	and Mutual	Information.	PAMI 2008	l		·	
13	TGV2ADC	NL	\checkmark	6.02 %	6.94 %	1.1 px	1.2 px	99.99 %	8 s	GPU @ 2.5 Ghz (C/C++)	
Inonymo	us submission							1			
14	CD			6.17 %	7.49 %	1.2 px	1.4 px	100.00 %	5 s	1 core @ 2.5 Ghz (C/C++)	
Monymo	us submission		l		1	·		1		······································	
15	SNCC	ŏŏ		6.27 %	7.33 %	1.4 px	1.5 px	100.00 %	0.27 s	1 core @ 3.0 Ghz (C/C++)	
I. Eineci	ke and J. Eggert: A	Two-Stage	: Correlati	on Method fo	i In Stereosco	pic Depth Es	timation. D	ICTA 2010.		· · · · · · · · · · · · · · · · · · ·	
16	ITGV	ăă		6.31 %	7.40 %	1.3 px	1.5 px	100.00 %	7 s	1 core @ 3.0 Ghz (Matlab + C/C++)	
R. Ranft	, S. Gehrig, T. Poc	k and H. Bis	: schof: <u>Pu</u>	shing the Lim	its of Stere	o Using Varia	tional Ster	eo Estimation	IV 2012.		
17	RWR	ăă		6.36 %	7.51 %	1.2 p×	1.4 px	100.00 %	1 min	1 core @ 2.5 Ghz (C/C++)	
Anonymo	us submission		J								
18	LDE	ăă		6.81 %	8,92 %	1.8 p×	2.5 p×	100.00 %	14 s	2 cores @ 2.5 Ghz (C/C++)	
Anonymo	us submission										
19	BSSM	ăă		7.50 %	8,89 %	1.4 px	1.6 px	94.87 %	20.7 s	1 core @ 3.5 Ghz (C/C++)	
Anonymo	us submission	1.000			1 2.27 /2			1			
		NK	anda	7 64 %	0 13 %	1.8 pv	2.0 pv	86 50 %	110	1 coro @ 2 5 Gbz (C/(++)	

Best ranked algorithms

Stereo Vision seems to be a Solved Problem, even in Practice

Challenge: on-line calibration to guarantee perfect results for the whole lifetime of the car.

Stereo Vision seems to be a Solved Problem, even in Practice

S.Gehrig, F.Eberli, T.Meyer, "A Real-time Low-Power Stereo Vision Engine Using Semi-Global Matching",

Is Stereo a Solved Problem?

If we want Vision to become an all-day, all-night sensor for safety systems including autonomous driving, we have to cope with such adverse conditions!

Uwe Franke, Unsolved Problems Workshop, CVPR 2013

Robustness is a Hard Challenge

5 subsequent image pairs taken under heavy rain.

Problems: blockage by wiper, heavy blur, different sharpness, brightness constancy constraint violation, low contrast, spray...

Uwe Franke, Unsolved Problems Workshop, CVPR 2013

Robustness is a Hard Challenge

Image sequence recorded during heavy snowfall.

Robustness is a Hard Challenge

Image sequence recorded during heavy snowfall.

3D-View of an ideal algorithm.

Robustness is a Hard Challenge

Image sequence recorded during heavy snowfall.

3D-View of the standard estimation scheme.

State-of-the-Art in Robust Disparity Estimation

iSGM¹ won the "Robust Vision Challenge" at ECCV 2012 (data by Daniel Kondermann, HCI).

1)S. Hermann and R. Klette: "Iterative Semi-Global Matching for Robust Driver Assistance Systems" Were Franker Upsolved Problems Workshop, CVPR 2013

Why do we need High Accuracy?

			D: 46 Z: 69.1 m V: 30.6 m/s		
Distance [m]	400	200	100	50	25

Distance [m]	400	200	100	50	25
Disparity [px]	1	2	4	8	16

Most times we are measuring small disparities. Subpixel precision is a must.

Effects of small Disparity Errors

Two cars approaching with 50km/h each

How Precise is Disparity Estimation?

Accuracy investigations using rendered scenes

- Robust SGM about 0.3px.
- Optimal TV-L¹ about 0.1px, but lacking robustness and problems with large disparities.

Scene by C. Rabe, available at www.mi.auckland.ac.nz

SGM with Census + Interpolation

TV-L¹ , abs. diff, no window

Uwe Franke, Unsolved Problems Workshop, CVPR 2013

The Pixel Locking Effect

- Standard sub-pixel interpolation suffers from pixel-locking (unequal probability of the fractional disparities).
- Shimizu/Okutomi suggested a second sampling round, reducing the effect.
- Maximum error up to 0.15 px

The Pixel Locking Effect

Rendered scene used for the investigation

Investigation revealed that the regularization (smoothness term!) leads to an additional Pixel Locking effect with a maximum error of up to 0.3px.

Effects of De-Calibration

Calibration cannot be considered perfect over the vehicle's life-time. However, even small epipolar errors can result in undesired effects (SGM+Census).

Good calibration

3D reconstruction good calibration 3D reconstruction -0.2px off => Epipolar error must be kept < 0.2px (for horizontal structures, e.g. stop lines)

The Challenge of on-line Calibration

- Thermal stress tests (-40°C ... +50°/80°C) revealed squint angle drifts equivalent to several pixel disparity error.
- Vision only all-weather on-line calibration in dynamic scenes not better than 0.2px !?
- Better results possible with radar reference.

Problems in Optical Flow

Illumination Changes and Large Displacements

Data from the GCPR webpage with ground truth available

0

Illumination Changes

Illumination changes between consecutive images can be caused by shadows or changing exposure times, leading to wrong results.

Traffic scene with Totarelycvassistike illumination changes

TV-1LV-1witchlaGaesincsus

Using Census as matching criterion overcomes this problem.

Color encodes direction Intensity encodes magnitude

T.Müller, C. Rabe, J.Rannacher, U.Franke: Illumination-Robust Dense Optical Flow Using Census Signatures, DAWet, franke, fUnsolved Problems Workshop, CVPR 2013

000

Large Optical Flow

Sparse schemes based on descriptor matching strategies can deliver arbitrarily large displacement vectors in constant time.

ł			ŝ				Nê:		10	10		8	8		8	R	R	R	ii)				8				R			iii		10				2
ł	1	83	X	10	箙	1503	1	e'e	30	轍	1	XX XX	18	100	88	10	iii.	iii.	K.	10	183		88	10			iii.	晭	83	668	30	鹟	搬	133	183	
1			Ř	11	Đ.	朗	8	1	48	1	100	1	13	.0	23	Ľ,	10.	7	123	Ϋ́,	æ	18		A	1	100	1	R	-	181	4	掖	攊		10	
					E.	33	2	8.8	983	2	3	1.8		13	23	U	88	λ.	182	10		1.8		3	72		1	S	13	R	33	30				
										噩.																						10				
ł	1	ii.	X	H.	۳	X.	Χě			₩.		iii	iii		*	H.	H.	H.	i.	H.	H.		*				H.	H)				11	搬		H.	
						Ľ	P	1		10.	8	- 23	2						X					ι.,								掖	攊		10	
						C	8	ŧ.,	ŝ.	100	0.00	2			r	100	100	100	R.	ALC: N	4455 															
		83	â							3115	ä								Ŕ				8						8			籀	巖			
1	iii	Ň	ž	H	K.	ø	×	P.	48	P	Ŵ	H	H	X.	X	iii.	K	K	k	100	ų	M	X	X	627		iii.	M	Ŭ.	m		ŧX	攊		×.	
					103	1	8			1			8				ß	ß	該	8			1	£.	81	B.,	14	ľ a	n 1	88		翪	攊		8	
						8		i iz	10	. ez	Â		2.0	22	22		1		iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	÷	â			is: hadi	ŝ.,			1.3	274 .edi	1.1		32				
ł		ł,	â	H			Hê:		18	₩.		88	88		*	R	R	R		H							R		84			10	欕			3
								232	38									8503	2320						232	m					38	38				

F. Stein: **"Efficient Computation of Optical Flow Using the Census Transform**", DAGM 2004 Uwe Franke, Unsolved Problems Workshop, CVPR 2013

Large Optical Flow

Dense schemes eg. TV-L¹ are based on gradient descent strategies and tend to stack in local minima.

 $TV-L^1$ with support

TV-L¹ without support

Additional sparse flow information can guide dense schemes to the correct solution.

T.Müller, J.Rannacher, C.Rabe, U.Franke, R.Mester: Feature- and Depth-Supported Modified Total Variation Opvie-Etan Reculosoflyed Bioletret WorksEest iGVER 2013, CVPR 2011

Dense schemes eg. TV-L¹ are based on gradient descent strategies and tend to stack in local minima.

TV-L¹ without support TV-L¹ with support Alternatively, known depth and ego-motion can constrain the solution. Sparse flow additionally used here to find the correct solution.

T.Müller, J.Rannacher, C.Rabe, U.Franke, R.Mester: Feature- and Depth-Supported Modified Total Variation Opvic Franke, GVDR 2013, CVPR 2013

More Problems in Optical Flow & Tracking

Reflections can be widely eliminated by sun visors. However, design would be happy if we could live without.

KLT-Tracking, color coded displacement vectors

More Problems in Optical Flow & Tracking

Moving shadows often occur in traffic scenes. Tracking of the leading bus fails if optical flow is used.

KLT-Tracking, color coded displacement vectors

- Improve the robustness of disparity estimation under adverse weather and illumination conditions.
- Improve the accuracy of disparity estimation.
- Improve vision-only on-line calibration precision.
- Improve the robustness of optical flow, start looking at adverse weather conditions!
- Generate ground truth data for adverse weather image sequences!!

