### What matters more for image matching and the comparison of descriptors: invariance and causality requirements or repeatability criteria? (a case study with SIFT, SURF, SIFER)

Ives Rey-Otero Mauricio Delbracio Jean-Michel Morel

Centre de Mathématiques et Leurs Applications (CMLA), Ecole Normale Supérieure de Cachan

Saarbrücken, September 2013

### References

Paper on SIFT:

Paper on SURF:

Paper on SIFER:

Discussion on scale invariance:

**Review of detectors:** 

Comparison methodology:

Modified keypoint detector comparison methodology (overlap)

Modified keypoint comparison methodology (precision)

- D. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.
- [2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (surf)," Computer vision and image understanding, vol. 110, no. 3, pp. 346– 359, 2008.
- [3] P. Mainali, G. Lafruit, Q. Yang, B. Geelen, L. Gool, and R. Lauwereins, "Sifer: Scale-invariant feature detector with error resilience," *International Journal of Computer Vision*, pp. 1–26, 2013.
- [4] J.-M. Morel and G. Yu, "Is sift scale invariant?," Inverse Problems and Imaging, vol. 5, no. 1, pp. 115–136, 2011.
- [5] K. Mikolajczyk and C. Schmid, "Scale & affine invariant interest point detectors," *International Journal of Computer Vision*, vol. 60, no. 1, pp. 63–86, 2004.
- [6] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool, "A comparison of affine region detectors," *International Journal of Computer Vision*, vol. 65, no. 1-2, pp. 43–72, 2005.
- [7] S. Ehsan, N. Kanwal, A. F. Clark, and K. D. McDonald-Maier, "Measuring the coverage of interest point detectors," in *Image Analysis and Recognition*, pp. 253–261, 2011.
- [8] K. Cordes, B. Rosenhahn, and J. Ostermann, "Increasing the accuracy of feature evaluation benchmarks using differential evolution," in *Differential Evolution (SDE)*, 2011 IEEE Symposium on, pp. 1–8, 2011.

# Summary

- SIFT, SURF, SIFER, their invariances properties
- The repeatability criteria
- Possible bias in the performance measure.
- A suggested correction

# **SIFT, SURF, SIFER** share a general "scale space" framework:

| Detection   | Extract the 3D extrema from $v(\sigma, x, y)$ ,              |  |  |
|-------------|--------------------------------------------------------------|--|--|
|             | a multi-scale detector of the image $u(x,y)$ .               |  |  |
| Description | Extract an image patch around each keypoint $(\sigma, x, y)$ |  |  |
|             | to compute the feature vector.                               |  |  |

# SIFT / SURF / SIFER: extrema of the multiscale detector yield the <u>key points</u> or <u>points of interest</u> (*x*,*y*) with an associated scale $\sigma$

|       | Multi-scale detectors                                                                                                                 |                                                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|       | $v(\sigma, x, y) = K_{\sigma} * u(x, y)$                                                                                              |                                                                           |
| SIFT  | $K_{\sigma}(x,y) = G_{k\sigma}(x,y) - G_{\sigma}(x,y)$                                                                                | $G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$ |
| SURF  | box filters used to approximate $\sigma^4 det(\mathcal{H}(G_{\sigma}))$                                                               |                                                                           |
| SIFER | $K_{\sigma}(x,y) = 2\pi\sigma^2 G_{\sigma}(x,y) \left(\cos\left(\frac{cx}{\sigma}\right) + \cos\left(\frac{cy}{\sigma}\right)\right)$ |                                                                           |

# SIFT / SURF / SIFER

For each detection in scale-space  $(\sigma, x, y)$ 

- Assign a principal orientation θ.
  (or several orientations in the case of SIFT)
- Extract a truncated Gaussian window centered on (x, y) and aligned with the orientation  $\theta$ . Its standard deviation is  $(\zeta \sigma)$ . Its width is  $(2\rho\sigma)$   $2\rho\sigma$

|       | ρ  | $\zeta$ |
|-------|----|---------|
| SIFT  | 6  | 6       |
| SURF  | 10 | 3.3     |
| SIFER | 6  | 6       |



#### The classic repeatability criteria: a transform is simulated on a benchmark image, and the detector is applied before and after transform. Then keypoints are compared:

Depending on the adopted criteria, two detections  $(\sigma_a, \mathbf{x}_a)$  and  $(\sigma_b, \mathbf{x}_b)$  are one repeated detection if

$$1 - \frac{R_{\mu_a} \cap R_{(H^T \mu_b H)}}{R_{\mu_a} \cup R_{(H^T \mu_b H)}} \le \text{ overlap error}_{\max} \left| 1 - s(H)^2 \frac{\min(\sigma_a^2, \sigma_b^2)}{\max(\sigma_a^2, \sigma_b^2)} \right| \le \text{ overlap error}_{\max}$$

$$\mu_a, \mu_b$$
 the characteristic ellipses  $(\mathbf{x}^T \mu \mathbf{x})$ .  $s(H)$  the measured scale factor between  $u_a(\mathbf{x})$  and  $u_b(\mathbf{x})$ .





### Classic detection/repeatability results SIFT, SURF, SIFER perturbation: rotation and scale





2.5

3

3.5

4

4.5

2

1000

0

1

1.5

Problem: SIFER is NOT rotation or scale invariant and nevertheless beats two theoretically scale and rotation invariant detectors !



### Classic detection/repeatability results SIFT, SURF, SIFER perturbation: tilt









### Classic detection/repeatability results SIFT, SURF, SIFER perturbation: JPG compression







Apparent conclusion: SIFER is more repeatable and has more detections than SIFT or SURF. It is therefore better.



### **Detections maps**



SIFT

SURF

SIFER

The SIFT descriptors are more spread out than the SURF descriptors

### **Detections maps**



SIFT

SIFER

The SIFER descriptors are more cluttered than the SIFT descriptors

### **Detections maps** (siemens star)





 $\mathbf{SIFT}$ 







 $\mathbf{SIFT}$ 









 $\mathbf{SIFT}$ 



 $\mathbf{SIFT}$ 

















 $\mathbf{SIFT}$ 













# **Detections maps** (two blobs)



 $\mathbf{SIFT}$ 



$$K_{\sigma}(x,y) = G_{k\sigma}(x,y) - G_{\sigma}(x,y)$$

$$u(\mathbf{x})$$



$$K_{\sigma}(x,y) = G_{k\sigma}(x,y) - G_{\sigma}(x,y)$$

$$u(\mathbf{x})$$



$$K_{\sigma}(x,y) = G_{k\sigma}(x,y) - G_{\sigma}(x,y)$$

$$u(\mathbf{x})$$

SIFT

# **Multi-scale response**



Anisotropic response

$$K_{\sigma}(x,y) = 2\pi\sigma^2 G_{\sigma}(x,y) \left( \cos\left(\frac{cx}{\sigma}\right) + \cos\left(\frac{cy}{\sigma}\right) \right)$$



Anisotropic response

$$K_{\sigma}(x,y) = 2\pi\sigma^2 G_{\sigma}(x,y) \left( \cos\left(\frac{cx}{\sigma}\right) + \cos\left(\frac{cy}{\sigma}\right) \right)$$



Anisotropic response

$$K_{\sigma}(x,y) = 2\pi\sigma^2 G_{\sigma}(x,y) \left( \cos\left(\frac{cx}{\sigma}\right) + \cos\left(\frac{cy}{\sigma}\right) \right)$$





SIFT





SIFT



 $\mathbf{SIFT}$ 



 $\mathbf{SIFT}$ 



 $\mathbf{SIFT}$ 



SIFT









SIFT

# Suggested simple correction

 $f_k(x, y)$ : the Gaussian window extracted for the description of the keypoint  $(\sigma_k, x_k, y_k, \theta_k)$ .



3 detected keypoints

3 detected keypoints

# **Suggested simple correction**

 $f_k(x, y)$ : the Gaussian window extracted for the description of the keypoint  $(\sigma_k, x_k, y_k, \theta_k)$ .



k

### Proposed correction of the repeatability criterion

$$\left(\sum_{k} f_k(x, y) - \max_{k} f_k(x, y)\right)$$
 maps the detections redundancy



### **Proposed correction of the repeatability criterion:** Detections overlap



\_

Detection maps

# Suggested simple correction Detections overlap





 $\left(\sum_{k} f_k(x,y) - \max_k f_k(x,y)\right)$ 

# **Suggested simple correction**

$$\int_{\Omega} \sum_{k} f_{k}(x, y) dx dy = \text{ number of detections}$$
$$\int_{\Omega} \max_{k} f_{k}(x, y) dx dy \approx \text{ number of detections without overlap}$$

repeatability rate =  $\frac{\int_{\Omega} \max_{k \in K_{\text{rep}}} f_k(x, y) dx dy}{\text{total number of detection in use}}$ 

 $K_{\text{rep}}$ : set of repeated keypoints.

### The new repeatability curves SIFT, SURF, SIFER perturbation: rotation and scale









#### New repeatability curves

#### The new repeatability curves SIFT, SURF, SIFER perturbation: tilt









#### New repeatability curves

### The new repeatability curves SIFT, SURF, SIFER

perturbation: JPG compression









#### New repeatability curves

# **Conclusion and open problems**

**Conclusion**: One cannot be satisfied with the proliferation of unprincipled detectors/descriptors. For many of them, the benchmark data demonstrating than they "win" may well be misleading.

Open problem 1:

By simply modifying the parameters of the most invariant method (so far SIFT), one may reach improvements in the performance curves equivalent to those obtained by modifying the detector/descriptor pair. All things equal, we will prefer the really invariant methods.

#### Open problem 2:

Make the mathematical theory and check if the numerous interest-point/descriptor methods are really scale invariant or not in the Lowe sense. Classify them by their proven invariances.

#### Open problem 3:

SIFER seems to suggest that scale invariance is not necessary. Thus, all homothety-invariant families of filters are candidates to construct keypoints! If this is true, the chase is open for the best filter family. SIFER is just one of them.

#### Open problem/proposition 4:

Should we not check repeatability, invariance, and robustness on a short list of reliable patterns where we can also view and discuss the position of interest points?

#### Open question 5: make requested invariances and benchmarks match!!!

Why are we testing and comparing detectors/descriptors for invariances that they do not have in theory?? (E.g. blur invariance or affine invariance)

### **Detections maps**



SURF

### **Detections maps**



SURF